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Abstract

Accurate estimate of relatedness is important for genetic data analyses, such as association
mapping and heritability estimation based on data collected from genome-wide association
studies. Inaccurate relatedness estimates may lead to spurious associations and biased
heritability estimations. Individual-level genotype data are often used to estimate kinship
coefficient between individuals. The commonly used sample correlation-based genomic
relationship matrix (scGRM) method estimates kinship coefficient by calculating the average
sample correlation coefficient among all single nucleotide polymorphisms (SNPs), where the
observed allele frequencies are used to calculate both the expectations and variances of
genotypes. Although this method is widely used, a substantial proportion of estimated kinship
coefficients are negative, which are difficult to interpret. In this paper, through mathematical
derivation, we show that there indeed exists bias in the estimated kinship coefficient using the
scGRM method when the observed allele frequencies are regarded as true frequencies. This
leads to negative bias for the average estimate of kinship among all individuals, which explains
the estimated negative kinship coefficients. Based on this observation, we propose an unbiased
estimation method, UKin, which can reduce the bias. We justify our improved method with
rigorous mathematical proof. We have conducted simulations as well as two real data analyses
to demonstrate that both bias and root mean square error in kinship coefficient estimation can be
reduced by using UKin. Further simulations indicate that the power in association mapping can
also be improved by using our unbiased kinship estimates to adjust for cryptic relatedness.

Author summary

Inference of relatedness plays an important role in genetic data analysis. Many methods have
been proposed to estimate kinship coefficients, including the commonly used genomic
relationship matrix method. However, a substantial proportion of the kinship coefficients
estimated by this method are negative, which is difficult to interpret. In this paper, through
mathematical derivation, we show that there indeed exists a negative bias in this approach. To
correct for this bias, we propose a new kinship coefficient estimation method, UKin, which is
unbiased without requiring extra genetic information nor added computational complexity. The
better performance of UKin in reducing bias and root mean squared error is demonstrated
through theory, simulations and analysis of data from the young-onset breast cancer and familial

intracranial aneurysm studies.

Introduction

Accurate estimation of relatedness among individuals is important in genetic data analysis. For
example, in both population-based and family-based genome-wide association studies (GWAS)
with uncertain relationships among study subjects, it is critical to appropriately account for
cryptic relatedness because incorrect estimates can decrease power and inflate false positive
rates of association tests [1-3]. Several methods have been proposed to adjust for relatedness in

GWAS, such as introducing a genomic relationship matrix (GRM) as an augment into
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well-developed linear mixed model (LMM) [4-7]. It has been demonstrated that proper
consideration of genetic relatedness can also benefit heritability estimation based on GWAS data
in the presence of pedigree structures [8,9].

In order to adjust for cryptic relatedness in genetic studies like association mapping and
heritability estimation, individual-level genotype data are often used to estimate pairwise kinship
coefficients. The sample correlation-based genomic relationship matrix (scGRM) method
estimates kinship coefficient by calculating the average sample correlation coefficient among all
genetic variants, in which the observed allele frequencies are used for the calculation of both
expectation and variance of genotypes [10—-12]. We note that most association mapping and
heritability estimation packages use this method as their default setting for calculating GRM,
such as GCTA, GEMMA and FaSTLMM [6, 8, 13]. Although this method is widely used,
researchers have noted that a substantial proportion of the estimated kinship coefficients are
negative. As kinship coefficient is defined to be a positive number (see in Materials and
Methods), it is difficult to interpret these negative estimates [14—16].

In this paper, through mathematical derivation, we first show that there indeed exists bias in
the estimated kinship coefficients using the scGRM method. The bias exists because the
observed allele frequencies are regarded as true frequencies. We also prove analytically that the
bias essentially results in a negative average for all estimates, which explains the large
proportion of negative values. Based on this observation, we propose an improved kinship
estimation method, UKin, which can remove bias. We provide a mathematical proof for the
unbiasedness of the UKin estimator. Simulations and real data analyses also demonstrate that
both bias and root mean square error (RMSE) can be reduced by replacing the scGRM method
with our UKin method. For real data analyses, we apply our method to two studies, young-onset
breast cancer (BC) and familial intracranial aneurysm (FIA), which have pedigree information to
evaluate our results. Finally, as an application of our method in association mapping, we conduct
a simulation study to show the power of detecting genetic associations can be improved by
correcting cryptic relatedness using our unbiased kinship estimates.

The paper is organized as follows. In the Results section, we evaluate the performance of
UKin through two simulations and two real data sets in BC and FIA to validate our theoretical
derivation and demonstrate the effectiveness of UKin estimator in reducing bias and RMSE. In
the Materials and Methods section, we present the theoretical details which show the sScGRM
method is biased, propose our UKin estimation method and give the correctness proof, as well as
its connection with the scGRM estimator. Lastly, we conclude with a simulation study in the
Discussion section to demonstrate that UKin method can further improve the power of
association mapping. Technical details such as mathematical derivations are provided in S1

Appendix.

Results
1. Simulation experiments

An illustrative example
We start our discussion with a simple but extreme example. In this experiment, we assumed
that there were 500 full siblings from the same family. Although unlikely to exist in reality, this
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example serves as a good illustration of our theoretical derivation. As every two individuals
selected from the same family were full siblings, the true value of their kinship coefficient
should be 0.25 (see in Table 5). However, following Property 3 in the Materials and Methods
section, their average kinship coefficient estimated by scGRM, denoted by 5 should have the

expectation:

n—1,_ nin—1), p—1_ 05-1

. _ — — _ —4
7 P05 )= =50 = 2110

E§ =

where n is the sample size and p is the average of their true genetic correlation coefficients.
Property 1 together with Table 5 in the Materials and Methods section suggest that p = 0.5 for
full siblings.

This result shows the unexpected phenomenon that although all individuals in our simulated
samples are full siblings to each other, the average of the estimated kinship coefficients has a
negative value. To illustrate Property 3 in practice, we simulated 200 unrelated families each
consisting of 500 full siblings with the method provided by the package CorBin [17]. Each
individual was genotyped at 10,000 single nucleotide polymorphisms (SNPs). Following the
scGRM method and the UKin method proposed in Materials and Methods, we estimated
pairwise kinship coefficients and calculated their mean values, respectively. The histograms of
these estimated average kinship coefficients are shown in Fig 1. From this plot, we could see the
distribution of average kinship estimated by the scGRM method centered around —5 x 1074,
which is consistent with our expectation from the analytical results. By contrast, the UKin
approach performed better in dealing with this extreme situation, with the average estimates
centered at 0.25, the true value of pairwise kinship coefficient for full-sibling pairs. Besides,
from Fig 1 we could observe that the two distributions have similar shapes, which could be
explained by Equation 5 in Materials and Methods which suggests that unbiased estimator of
correlation coefficient p,, could be expressed as a linear combination of the scGRM estimators
p,; - Considering there were 500 full siblings from the same family, we calculated the average on
both sides of Equation 5 among all the simulated individual pairs, which is p = 500p + 1, where
p and p represent the average of correlation coefficients between full siblings from the same
family, estimated by the UKin method and the scGRM method respectively, i.e.

n A
i =i+1
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As there was a linear relationship between kinship coefficient and correlation coefficient (see
Property 1 in Materials and Methods), the distributions of the average kinship coefficients

estimated by the two methods should have the same shape.

A more general simulation

To evaluate the performance of the UKin method in kinship coefficient estimation and to
compare it with the scGRM estimate in a more general situation, we performed the following
simulations in which population homogeneity was assumed. To include different kinds of
relationships in our experiment, we simulated 6,000 people including 1,000 pairs with kinship
coefficient 0.125, 1,000 pairs with coefficient 0.25, and 500 pairs with coefficient 0.5. For
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Fig 1. Distribution of average Kinship coefficients estimated by the scGRM (left) and
UKin (right) methods in this extreme example. Two hundred unrelated families each
consisting of 500 full siblings were simulated, with each sibling genotyped at 10,000 SNPs. The
averages of kinship coefficients among all individual pairs from the same family were calculated
and the distribution of these averages is displayed. The true value of kinship coefficient between
full siblings is 0.25. The vertical dashed line in each plot corresponds to the mean value of these
averages estimated by the corresponding method.

simplicity, different relative pairs were set to be unrelated. In addition, we also included 1,000 78
people who had no relationship with other individuals. For each subject, genotype data were 79
generated for 10,000 random and independent SNPs. The minor allele frequencies (MAFs) of 80
genotyped variants were drawn uniformly from [0.05,0.5]. 81

With the UKin and scGRM estimators, we estimated kinship coefficients between all 82

simulated individual pairs and divided those coefficients into four groups according to their true s

relationships. Fig 2 shows the distribution of the estimated kinship coefficients in each group 84
respectively. As shown in this plot and summarized in Table 1, for groups with true kinship 85
coefficient 0.25 and 0.5, our UKin method achieved lower RMSE than the scGRM method in 86
estimating kinship coefficients, while the opposite was true for the independent pairs. For the 87
group consisting of pairs having kinship coefficients 0.125, the two methods had similar 88
performance. 89

Although Fig 2 clearly demonstrates the RMSE for the two methods, it is difficult to 9

compare their biases from the plots. More detailed comparisons are shown in Table 1. As shown
in the second column of this table, UKin always performed better than scGRM when we 92
compared the mean values of estimated kinship coefficients, as the results of the UKin method e
were closer to true values for all four groups. Besides, results in the third column of Table 1 94
show that UKin could reduce RMSE for close relatives, which is consistent with the conclusion s
we get from Fig 2. Furthermore, UKin shows a downward trend of RMSE with increasing true s
kinship coefficients, while scGRM is completely on the opposite. It is also notable that when we o7
consider individual pairs with kinship coefficient 0.5, i.e. Monozygotic twins (M-Z twins), both e
bias and RMSE are extremely close to zero if we utilize UKin to estimate. 99

2. Real data analyses 100

524
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Fig 2. Distributions of kinship coefficients estimated by the UKin method and the
scGRM method in our simulation study including 6,000 individuals with different
relationships. The four plots correspond to the four groups divided by the true value of
estimated kinship coefficients.

0.23

Table 1. Comparison of UKin and scGRM in biases and RMSEs

True Value | Bias from True Value(x 107%) | Root Mean Square Error(x1073)
(UKin)  (scGRM) (UKin)  (scGRM)
0.000 3.943 —11.81 6.915 5.000
0.125 1.543 —7.486 5.724 5.668
0.250 3.414 —13.80 4.537 6.329
0.500 0.000 —22.82 0.000 7.431
The Young-Onset Breast Cancer Study 101

To demonstrate our unbiased method could get more accurate results in estimating kinship 102
coefficients, we applied the UKin method to real data from a family-based study of genes and 103

environment in young-onset BC (dbGaP Study Accession: phs000678.v1.pl). This study 104
recruited families from the US and Puerto Rico with a daughter who was recently diagnosed 105
with breast cancer and another unaffected daughter. For each family, only the diseased daughter 106
and her unaffected full sister were genotyped for analysis. As for data quality control, we 107
removed individuals with more than 10% missing genotypes as well as SNPs with a missing 108

genotype rate greater than 5% or a minor allele frequency less than 5%. After further removing 109
individuals with missing phenotypes, we got 1,983 subjects (1,458 cases and 525 controls) with 110
614,310 variants in total. The processed data included 511 pairs of full sisters, with one affected 111
by breast cancer. We assumed individuals from different families were unrelated, then the true 112
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values of all estimated kinship coefficients should be either 0.25 (511 full sister pairs) or O (all
the other individual pairs).

We first applied the scGRM method to estimate the kinship coefficients, which had poor
performance. For the 511 within-family pairs (full sister pairs), only 473 pairs were estimated to
have kinship coefficients between 2~5/2 and 273/2, which means 7.4% of full sisters were
incorrectly inferred to be other kinds of relative pairs. Estimation of 1,964,642 = (1’9283) —511
between-family pairs with the scGRM method also performed poorly, as 0.45% unrelated pairs
between families were misspecified as 1st-degree relative pairs (such as sibling pairs),
2nd-degree relative pairs (such as half-sibs, avuncular pairs and grandparent-grandchild pairs) or
3rd-degree relative pairs (such as first cousins). In contrast, our UKin method had more accurate
estimates with 501 out of 511 (98.0%) full sisters pairs correctly estimated and only 177
unrelated pairs (Iess than 0.01%) were misspecified as 3rd-degree relative pairs (Table 2 and
Table 3).

Table 2. Distribution of estimated kinship coefficients of 511 full siblings in the two sister data
studying young-onset breast cancer

Relaionship | e | s | e [ v vz in
Inference criteria < 29% (29%, 27%) (27%, #) (25%7 23%) > 23%
scGRM 0 0 6 473 32
UKin 0 0 10 501 0
True 0 0 0 511 0

Table 3. Distribution of estimated kinship coefficients of 1,964,642 unrelated individual pairs in
the two sister data studying young-onset breast cancer

Relationship unrelated r;rils:ir :iis rzg:i'j:iz; r;lztt'iizg;;ers M-Z twins
Inference criteria < 29—1/2 (29%,27%) (27%,25%) (25%,23%) > 23%
scGRM 1,955,711 2,129 2,081 4,721 0
UKin 1,964,465 177 0 0 0
True 1,964,642 0 0 0 0

The histograms of kinship coefficients estimated by scGRM and UKin for all pairs
(including both full sister pairs and unrelated pairs) in the BC study are given in Fig 3. To make
the comparison more clearly, we only took individual pairs with estimated kinship coefficients
between 27> and 27! into consideration. It is obvious that the histogram corresponding to
scGRM contains more pairs with estimated kinship coefficients larger than 2-7/2. From
previous analysis, we know most of them are misspecified unrelated pairs. In contrast, our
approach is much less likely to make such mistakes. Besides, the UKin histogram shows a peak

centered close to 0.25 and has a distinct separation from estimated kinship coefficients near zero.

However, scGRM does not work well in this aspect because the distribution of non-zero kinship

coefficients is centered around 0.23 and has an obvious distribution overlap with unrelated pairs,
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which suggests that UKin performs better in separating relatives from unrelated pairs.
Furthermore, if we only consider the 511 full sister pairs, the true kinship coefficient should be
0.25. However, the average and mean square error (MSE) of the kinship coefficients estimated
by scGRM were 0.263 and 4.03 x 1073, respectively. In contrast, the corresponding UKin
results were 0.248 and 6.72 x 1074, respectively. To visualize the difference between UKin and
scGRM, we also draw the scatter plot of the estimated kinship coefficients for the 511 full sister
pairs between the two methods (Fig 4). The scatter plot demonstrates that while the distribution
of UKin estimates is more concentrated at its true value, SCGRM tends to overestimate the
kinship coefficients for many full sister pairs. These results clearly show the better performance
of UKin than scGRM.
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Fig 3. Comparison of distributions of kinship coefficients estimated by scGRM (left) and
UKin (right) in breast cancer study. This study genotyped 1,983 individuals at 614,310
variants. Pairwise relationships in this dataset included 511 full sister pairs from irrelevant
families and unrelated pairs. In this figure, we only considered estimated kinship coefficients
between 27> and 27!, Class interval of the histogram for each method is set to be 0.005.

The Familial Intracranial Aneurysm Linkage Study

To further investigate the effectiveness of the UKin method in kinship coefficient estimation,
we applied UKin to infer pedigree structure using genotype data from the FIA linkage study
(dbGaP Study Accession: phs000293.v1.pI). This study recruited 400 families with multiple
individuals who have an intracranial aneurysm (IA) through 23 (25) referral centers throughout
North America, Australia, and New Zealand that represent 35 (40) recruitment sites. After a
standardized procedure of quality control and discarding subjects with missing phenotype, we
obtained 990 individuals from 371 families and each of them was genotyped at 5,505 SNPs. In
this FIA dataset, the confirmed relationships include 137 1st-degree relative pairs (including 19
full siblings and 118 parent-child pairs).

We compared the performance of UKin and scGRM in identifying these 1st-degree relative
pairs and estimating their kinship coefficients. UKin was able to correctly recognize all the 137
1st-degree pairs (with estimated kinship coefficients between 2-2 and 2~!'), while scGRM
misspecified one parent-child pair as monozygotic twins, with an estimated kinship coefficient
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0.2

Fig 4. The scatter plot of the estimated kinship coefficients between the UKin and

scGRM

04

0.6

scGRM methods. For this plot we only consider the 511 full sister pairs in the BC data set. The
oblique solid line stands for the equation y = x, while the vertical and horizontal dashed lines
correspond to the mean values of scGRM and UKin estimates, respectively.

of 0.442. The histograms of the kinship coefficients of these 137 individual pairs estimated by

the two methods (Fig 5) indicate that unbiased estimations are more concentrated, taking values

between 0.21 and 0.3. However, the distribution of scGRM estimations is more dispersed,

including a distinct outlier. This fact is more clearly shown in the scatter plot including all the

137 1st-degree pairs in the IA data set (Fig 6). We further calculated the bias from the true value
(0.25) and RMSE of the estimated coefficients for each estimator. As summarized in Table 4, the
estimation bias of UKin was 1/6 of the bias estimated by scGRM, while the RMSE of UKin was
half of scGRM. We also note that scGRM misspecified 15 parent-child pairs or unrelated pairs

as MZ twins, while UKin only made five such mistakes which were all included in the

misspecified pairs of scGRM. These results demonstrate that our UKin method achieves more

accurate outcomes in relationship inference and kinship estimation, even when the number of

genotyped SNPs is small.

Table 4. Bias and RMSE of estimated kinship coefficients for the 137 pairs of 1st-degree

relatives in the FIA study

Estimation Method

Bias(x 1073)

RMSE(x1072)

UKin

0.667

1.175

scGRM

4.045

2.244
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Fig 5. Distributions of estimated kinship coefficients of 1st-degree relatives in the FIA
study with scGRM (left) and UKin (right). Among all the 137 1st-degree relative pairs in this
dataset, there are 19 full siblings and 118 parent-child pairs. Class interval of the histogram for
each method is set to be 0.005.

Discussion 172

Among the many kinship coefficient estimation methods, the most commonly applied estimator 173
uses dense SNP genotypes and allele frequencies in the samples to calculate average pairwise 174

correlation coefficients among SNPs. Although this method is intuitive and easy to calculate, we 175

prove that it is actually biased because it treats the observed allele frequencies as true 176
frequencies. Through rigorous derivation, we showed that pairwise kinship coefficients 177
estimated by scGRM add up to be a negative value, which explains the phenomenon that a 178
substantial proportion of kinship coefficient estimates are negative. 179

When conducting large scale estimates of kinship coefficients, the existing bias in sScGRM a0
can lead to incorrect inference of relationships, and this problem can be extremely severe if the  1a1
subjects in the dataset are highly related. Our method, UKin, solved this issue by incorporating 12
genetic information from the whole population to adjust for the bias in the estimated kinship 183
coefficient between every single pair. This unbiased estimator can be expressed as a polynomial  1s4
of scGRM estimators, and leveraging only information of dense genotypes from the population. 1ss
As demonstrated by our simulations and applications to the BC and FIA family data, UKin 186
performed better in reducing both estimation bias and RMSEs. For the two sister study, the 187
results suggest that while scGRM could lead to severe spurious inference of relative pairs, UKin  1ss
rarely made such mistakes. Even when the number of genotyped SNPs was limited for the FIA 189
study, UKin could reduce statistical bias and RMSE while avoiding spurious relationship 190
inference. 191

In our theoretical derivations and simulation studies, we made assumptions like linkage
equilibrium (LE) and absence of inbreeding, that is, genotypes at different markers are
independent. During our derivation, we used the same weights for all SNPs, and our simulated
datasets were also generated under this assumption. Although there is linkage disequilibrium
(LD) in reality, empirical results from the analyses of the BC and FIA family data show that the
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Fig 6. The scatter plot of the estimated kinship coefficients between the UKin and

scGRM methods in the FIA study. Only the 137 1st-degree pairs are shown. The oblique

solid line stands for the equation y = x, while the vertical and horizontal dashed lines correspond

to the mean values of scGRM and UKin estimates, respectively.

o
o

0.20

bias and RMSEs can also be reduced greatly with the application of UKin to real data. To
consider the problem of LD in practice, we can give different weights based on LD to these
SNPs. Following the approach of Wang (2017) [15], these LD weights w = (w1, wy, ...,w;,)T
can be calculated by solving the following minimization problem:

mvs'n[wTRw—le] :ow; >0,V
where R = [plzk] is the matrix of squared LD correlations. Theoretically, this result can be
directly applied to UKin by assigning the correlation coefficient at each SNP marker its
corresponding weight, which might make our approach adapt to LD situation.

Another assumption throughout our study is a homogeneous population so that the allele
frequencies can be calculated once and applied to all subjects. Some methods have been
proposed to estimate kinship coefficients in admixed populations, where the assumption of
population homogeneity is untenable [11, 18, 19]. However, as most of these methods are based
on the scGRM method, they are also likely to be biased estimators, too. How to extend our UKin
method to deal with admixed populations is a topic for future studies.

More accurate kinship estimation will improve the performance of different genetic analyses
such as association mapping. In recent years, GWAS have seen great success in identifying
genetic loci contributing to complex human traits [20,21]. By studying a genome-wide data set
of genetic variants in different individuals, GWAS looks for SNPs correlated with traits in the

samples. Accurate specification of familial relationships is expected to bring more powerful
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association results in GWAS with unknown (or unrecognized) family structure. We have
investigated whether association mapping can be improved by applying UKin to account for
cryptic relatedness.

We conducted a simulation study to compare the performance of UKin with scGRM in
GWAS. In our experiments, we simulated 4,000 samples including 2,000 cases and 2,000
controls. We included subjects with various pairwise kinship coefficients in both cases and
controls. More specifically, we simulated 250 1st-degree relative pairs, 250 2nd-degree relative
pairs, 250 3rd-degree relative pairs, and 500 unrelated subjects. The total number of SNPs
genotyped for each individual was set to be 10,000 and the MAFs of non-risk SNPs were drawn
uniformly from [0.05, 0.5]. The proportion of risk SNPs was set at 0.05 or 0.1. For these risk
SNPs, a variable following the Gaussian distribution .#"(0, 0.05%) was added to the previous
uniform distribution to obtain their MAFs in cases. We set those MAFs below 0.05 or greater
than 0.95 to be 0.05 and 0.95, respectively.

We applied GEMMA [13], which was developed to implement the genome-wide mixed
model association algorithm for a standard linear mixed model for association analysis. In our
simulations, we performed likelihood ratio tests in a univariate LMM for marker association
mappings with a single phenotype. PLINK binary file format was [22] adopted as input files
containing phenotypes and genetic information. A standardized relatedness matrix file estimated
by either scGRM or UKin was included to appropriately account for relatedness among subjects.

We applied GEMMA to analyze the simulated GWAS dataset and selected all SNPs with
P-value below the threshold 5 x 10~*. Statistical power and type I error rate were calculated to
evaluate the performance of marker association tests when the relatedness matrix used in LMMs
was estimated by scGRM and UKin, respectively. The results suggest that the type I error rate
was appropriately controlled at a low level (less that 5 x 10™#) for both methods. We compared
the power of association mapping which suggests that for the two risk SNP proportions
considered (i.e. 0.05 and 0.1), the power of identifying risk variants was always improved after
we replaced scGRM with UKin in estimating pairwise kinship coefficients. For example, when
the proportion of risk SNPs was set at 0.05, the power was improved from 0.154 to 0.167 by
adopting the UKin method. This simulation demonstrates that the application of UKin can
improve statistical power while controlling the type I error rate in GWAS. However, further
simulations and real data experiments are required to evaluate the advantages of UKin over the
scGRM comprehensively, which is the subject of future research.

Materials and Methods

Alleles are said to be identical by descent (IBD) if they are inherited from a common ancestor.
To describe the average amount of IBD sharing at the genome level, we often adopt the concept
of kinship coefficient [12]. For two individuals indexed by a and b, their kinship coefficient, @,
is defined as the probability that two alleles sampled at random from two individuals at the same
autosomal locus are IBD. Let kogp, k145, k245 denote the probability that individuals a and b
share zero, one and two alleles IBD, respectively. The definition of kinship coefficient indicates
that @, can be expressed as a function of those IBD-sharing probabilities, to be more explicit,

Oub = k1ap/4 + koap /2. Table 5 lists values of kinship coefficients, their corresponding

12/24

206

207

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

236

237

238

239

240

242

243

244

245

246


https://doi.org/10.1101/2021.01.13.426515
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.01.13.426515; this version posted January 13, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

IBD-sharing probabilities and the inference criteria of ¢, derived using powers of 2 [18] for
various relative pairs under the assumption of no inbreeding.

Table 5. Kinship coefficients for different relative pairs

Relationship Oup (koabs k1aps koap) Inference criteria

Monozygotic twins 0.5 (0,0,1) > 23%

Parent-offspring 0.25 (0,1,0) (25%7 23%)

Full sibs 0.25 (0.25,0.5,0.25) (537 357)

Half sibs 0.125 (0.5,0.5,0) (577> 337)

Uncle-niece 0.125 (0.5,0.5,0) (27%7 25%)

First cousin 0.0625 (0.75,0.25,0) (372 377)
Unrelated 0 (1,0,0) < 5

Suppose we have genotype data of n individuals, for each person we consider his/her
genotypes at m SNP markers respectively. For 1 <i <n,1 < j <m, let X;; be the number of
reference alleles (with label A) for individual i at SNP marker j. Thus X;; takes values 0, 1, or 2
according to whether individual i has, respectively, 0,1, or 2 copies of allele A at marker j.

To simplify the illustration, we denote (t; and O'j2 as the expectation and variance of X;;,
respectively. In other words, E(X;;) = u;,Var(X;;) = 0'12. We assume the population variance
for each marker is already known throughout our derivation. In practice, we can use sample
variance, an unbiased estimator of population variance, as a substitute. Now we consider a pair
of individuals i and i'. We use P ;1o denote the correlation coefficient between X;; and Xl./j.
Besides, we let p; be the average of p;; ; among all the individual pairs, i.e.

n n
£ £
~ =l =it

Pi= -2

If we further assume all individuals are sampled from a homogeneous population, we can
derive the following relationship among those correlations:

Property 1. Assume all individuals are sampled from a homogeneous population, then for
1<i,i <n,1<j<m,wehave

Lpi j=Pits Pj=P-
ii'pii, = 2¢ii, .

This property has also been mentioned in other articles, for example, see [11]. A proof of
this property is given in S1 Appendix. Now we summarize the conclusions of this property as
follows:

Result i. implies that the correlation between X;; and Xi/j is irrelevant to which SNP we
choose and depends only on the pair of individuals we select. Result ii. provides the quantitative
relation between the kinship coefficient and the correlation of genotypes, which indicates that

the estimation of kinship coefficient ¢., is equivalent to estimating the correlation coefficient of
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genotypes between individual i and i P
Estimating kinship coefficient by calculating the average sample pairwise correlation among
all genetic variants has been taken by many methods. Following this principle, a natural

estimator of p,/ is

)

_ n
where X; = 1 ¥ X;; is the average counts of reference alleles (with label A) at SNP j in the
i=1

whole population. We call @ii/ = %ﬁii/ the scGRM estimator.

However, as we are going to demonstrate, p,/ is actually a biased estimator of p.,. To
illustrate this, we need the following property:

Property 2. For 1 <, i <n,1 < j <m, the estimated correlation coefficient between X;;

and X . has a systematic bias from p.,. More specifically, we have
[ i

(Xij — X)) (X, ; — X;)

2
0j

| 1 & 1 n—1_
:piiliﬁ Z pia*; Z pai/iz+ n p- @)
a=1 a=1

a#i a;éi’

The proof is given in S1 Appendix.

Equation (2) also reveals that the expected value of # (Xi;— X)) (Xl./j —X;) is not related to
which SNP we select. Now we consider the expectation (J)f estimator (1), it comes to the
conclusion that

1o (X Xj)(Xi’ —Xj)
Ep,; =E [ ! }
m J; GJZ
R {(XUXJ»)(X/] X/)}
m = o}
/! 1 & n—1_
=p;; — ; GZ] Pia — — a;l P — ; + n
aFti a:,él/

If p,; is an unbiased estimator of p,, then we should have Ep,; = p,,. However, the result
we derive is obviously contradictory to it. The existence of bias means a systematic error when
we estimate kinship coefficient via the scGRM method mentioned above. To make this fact
clearer, we sum the expectation of é (Xij —X;) (X, i X;) up over all the individual pairs in the
population, which leads to the follmfving property:

Property 3. For every SNP marker j, where 1 < j < m, we have

X'j_Xj) n—1

The proof is given in S1 Appendix.
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Recall that Ep,; = E é Xi;—X DXy = X;), thus Property 3 also suggests
i

! —1
Z Z Eﬁii’:nz (p—1).

=1 =it

From Property 1 we know p is the theoretical mean value of correlations between pair-wise
individuals, therefore it must take the value between 0 and 1. This fact together with Property 3
reveals that the mean value of estimator p,, is negative on average, which explains the empirical
observation that a substantial proportion of estimated kinship coefficients are negative.

This bias problem makes (]31.1,/ less desirable as an estimator of kinship between individuals i
and i . We can design an improved kinship estimation method which can eliminate the bias for
each pair of individuals based on the scGRM estimator (ﬁil./. The improved estimation method,
UKin, which stands for the unbiased kinship estimator, solves the bias problem without adding
much computational complexity. To understand how this method guarantees the unbiasedness,
we need the following property:

Property 4. For every SNP marker j,1 < j < m, and every pair of individuals i and i1<i,
i < n, we have

(Xijin)(Xi’j*Xj)dI»l < (X,‘j—)_(j)(ij—Xj)

012 2 k; GJZ
ki
1 & (le Xj)(Xi’j XJ)
+- +1|=p,. 3)
2 Zi, GJZ

The proof is given in S1 Appendix.

For ease of presentation, we set

& (X —X) (X, —X) 1& K—X)(X,—X5) (X —X) (X — X;)
u., = 1+7Z 2 +7Z 2 + 2
ii 2 '} o 2 &= o o
=1 Jj 1—1/ J J
ki I

Using (3), we also conclude that the expectation of ul]l , does not depend on which SNP we
select. Based on this fact, a reasonable estimator of P 18

i . (4)

As Property 4 shows E ulfl , = p,; holds for every 1 < j~§ m, the expectation of P,/ is still p,s.

In other words, p., is an unbiased estimator of p.., thus ¢., = % p.. is an unbiased kinship
123 124 i u
estimator. Besides, as we can observe from the expression of £ u, f)ii/ is the sum of a group of
12

scGRM estimators ;31.1./ and a few correction terms, which means the UKin estimator relies on the
same information we need for calculating the scGRM estimator gﬁii/. Thus the implementation of
the UKin method doesn’t require extra data.

It is worth noting that there exists some relationship between the scGRM and UKin estimator.
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Substituting the expression of u’, into (4), we get
11

1 n
pii’:ﬁii/+§z Aik+izp1i’+l' ®)

Equation (5) indicates that the UKin estimator (]Sl.i/ is a linear combination of some scGRM
estimators éﬁf and constants. Thus ‘ﬁu” and (/3”/ are based on the same genetic information.
Besides, this conclusion also shows that the UKin method won’t bring a significant increase in
computational complexity than the scGRM method.

Throughout our above analysis, we make assumptions of no inbreeding, LE and population
homogeneity. In the Discussion we have analyzed these assumptions in detail.

Supporting information

S1 Appendix. Mathematical derivations of the properties in the Materials and Methods
section.
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S1 Appendix

Proof of Property 1.

For the j-th single nucleotide polymorphism (SNP) (1 < j <m), let f; be the frequency of
the reference allele (with label A) at that SNP. Consider a pair of individuals i and i whose
kinship coefficient is denoted by ¢/, we derive the covariance of X;; and Xl,/j from two different
aspects. Recall that we denote P,/ ¥ to be the correlation between X;; and Xl./j, thus we have

Cov(Xij, Xy ;) = pl.i/,jo}. (S.1)

On the other hand, X;; can be treated as the sum of two independent Bernoulli random
variables. That iS, le = Blj<1) + Blj(z) For k = 1,2,

B — 0 if the k th allele for i at SNP jis a
ij(k) — 1 1 if the k th allele for i at SNP jis A -

With this expression of X;; , we have

COV(X,‘j,Xi/ )
:COV( ()+sz() <)+Br())

2 2
=X ) Cov(Bijw), By jw))

k=14/—1
2 2

= Z Z{E[Bl/(k)Bl/](k/)]7E[Bl/(k)]E[Bll](kl)]} (SZ)
k=1 =

As we denote f; to be the probability that a random allele chosen from the j-th SNP is A.
Notice that Bij(k)Bi'j(k’) = 1 only when the two alleles selected from i and i’ at this marker are
both with label A, under this circumstance, these two reference alleles are either identical by
descent (IBD) or not. For simplicity, let A;; (k) represent the k-th alleles from individual i at SNP
J, if we assume IBD genes have the same allelic types and non-IBD genes have independent

allelic types, we obtain

nglS

E[Bij(k)Bi’j(k’)]

Il
M T
Do T

[P(Aij(k) and A, (k') are IBD) f;+ (1~ P(Ay;(k) and Ay (K ) are IBD)) 7).

/

~
Il
_
~
Il

1

Consider the definitions of f; and ¢/, we obtain

E[Bijw))EBy ;)] = f7-

k) and A, ( ) are IBD).

>\.
Il

i ae®
*U
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Substituting them into (S.2), we get
COV(XijaX,"j) = 4¢,’,”fj(1 _fj)' (S.3)

As X;; is the sum of two i.i.d. Bernoulli random variables whose probability of success is f;,
we can derive that 67 = 2;(1 — f;). Together with (S.1) and (S.3), we have

pii/,j = 2¢ii’ . (S4)

Equation (S.4) also reveals that the value of correlation Pi doesn’t depend on which SNP
is selected, thus we get

Pit 1 = Pit 2= = Pif = Py -

| =pr=-=pn=P.

)l

Proof of Property 2.
To demonstrate this property, we need a few preparations:
i. Consider the result Cov(X;;, Xl./j) =p; GJZ, we have
EX; le,/].
= COV(Xij7X,‘/j) +EXijEXi’j
=P, 07 I (S.5)

Directly applying this result yields

()EX} = o7 +u7.

_ 1 &
EX}=E(> Y Xy)?
i=1
1 n 2 n
= SE() X;+2) ZX,JX/j)
i=1 i:li/<i
(0} +p7) +n(n—1)(poF + 47
— o
—1)p+1
_ DRt (S.6)

With these preparations, we now work on the demonstration of Property 2.
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Directly expand the expression on the left side of (S.2), we have

(Xij — X;) (Xy ;= X;)
E p;)
J
1 % % 72
= g[EX,‘le./j — EX,']'XJ' _EXi,ij +E(Xj )]
J

Substituting (S.5) and (S.6) into this expansion, we have

. { (Xij — X)Xy ; —X,-)}

2
Gj
1
= —[p; 0} +uj—f Z EX;jX,;+EX})
o <!

n—1)p+1
(Y EX; Xoj +EX3 ) + %G}—i—uﬂ

n a—l
a;ét
1
:?[p'c +1Ll"]_7 21 pzac +G +n.uj)
/ a#i
n
p+1
Y pyoi+o+nui)+ %GZ-HL,]
a=1
a;éi,
1 1 1 US:ES
== Z PiaC} — 07—~ Z Put OF — f"f]
] a=1 a=1
a#i a?él
(n—1 1
; Pia — Zl P+ —)p—;. (8.7)
a#i a?él

Thus we derive the conclusion in Property 2.
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Proof of Property 3.
For ease of calculation, we make a complement to the value range of index i

i =i+l

(Xij — X)) (X ; —X,)}

2
Oj

(Xij = X;) (X, — X,-)]

1 n
2E{Z o2

=17 % J
1y (Xij — X;) (Xy ;= X;)
— EZ E[ L ] (S.8)
=1 2 Oj

=1 =it J
1 & 1 & L (mn—1p 1
:EZ [pu n Z Pia — — Z Pai + n _E]
=1 4 a=1 a=1
i a#i a#ti
nn—1)_ 1 & i I & i nn—172%_ n(n-1)
= 2 P*ZZZ Z Pla*%Z Z Poi T M o
t=11’7éi a=1 lzll’?él a=1
a#i a;éi/
2n—1)n-1)_ 1 & ! 1 & ! nn—1)
= p_ﬂzz Z pm_?z Z pai,_ on
i:117él' a=1 i:l/?gl a:I,
aFi a#i
We observe that Y, pj, is irrelevant to i/, therefore
a=1
aFi
1 n n
%Zl Z Pia
i=lf4; a=1
a#i
n 1}1 n
= p
2n 1:21 a=1 “
n—1 _ (n—1)%_
= —1 =
5, n—1)p 5P
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Besides, if we change the sequence of summation, we have

1 n n
%Z Y Py
lill‘/?éi a:.ll

aF#i
1 n n
25,2 , Zl Pat
il a=1
i i# adi
n—1 _
= nn—1)
B (n—1)>?
B 2

Substituting them into the expansion, we get

nooo (X = X)) (Xy - X))

E|Y

=1/ =i GJZ

_@n=-1)(n-1)_ (-1?%_ (-1?_ nh-1)
- 2 pPmm P n
:((Zn—li(n—l)_(n_l)Z)p_ngl

_n—1_ n—1

T2 P

_n—1 5—1)

=—— (-1

Thus we finish the proof of Property 3.
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Proof of Property 4.
At the start, we focus on a part of the expression on the left side of (3):

r (X — X)) (Xy — X))

)y

2
i =1 Gj
i i
u 1 & 1 & (mn—1)_ 1
= Jzi:] [p,',"_; a;1 pia_ﬁ a;] pa,"+ n P—;]
{ #i ari ati
U n—-1 & 1 & U (n—12_ n-1
i i i £i {20 a#i
n 1 2 n n (n_l)z n—1
B M M M
o Tl ati
2 1 _ (n=1)%*_ n-1
==Y pii/—fn(n—l)pnt( Yo
no = n n n
i #i
2 & n—1_ n—1
= Z pu' - (S9)
no = n
i #i

Substituting (S.7), together with (S.9), into the whole expansion, we get

Here we have proved the conclusion in Property 4.
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