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Abstract

Genotype imputation is an indispensable step in human genetic studies. Large reference panels
with deeply sequenced genomes now allow interrogating variants with minor allele frequency < 1%
without sequencing. While it is critical to consider limits of this approach, imputation methods for
rare variants have only done so empirically; the theoretical basis of their imputation accuracy has
not been explored. To provide theoretical consideration of imputation accuracy under the current
imputation framework, we develop a coalescent model of imputing rare variants, leveraging the
joint genealogy of the sample to be imputed and reference individuals. We show that broadly
used imputation algorithms includes model misspecifications about this joint genealogy that limit
the ability to correctly impute rare variants. We develop closed-form solutions for the probability
distribution of this joint genealogy and quantify the inevitable error rate resulting from the model
misspecification across a range of allele frequencies and reference sample sizes. We show that the
probability of a falsely imputed minor allele decreases with reference sample size, but the proportion
of falsely imputed minor alleles mostly depends on the allele count in the reference sample. We
summarize the impact of this error on genotype imputation on association tests by calculating the r?
between imputed and true genotype and show that even when modeling other sources of error, the
impact of the model misspecification have a significant impact on the r? of rare variants. To evaluate
these predictions in practice, we compare the imputation of the same dataset across imputation
panels of different sizes. While this empirical imputation accuracy is substantially lower than our
theoretical prediction, modeling misspecification seems to further decrease imputation accuracy for
variants with low allele counts in the reference. These results provide a framework for developing

new imputation algorithms and for interpreting rare variant association analyses.
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1 Introduction

Emerging results from sequencing studies elucidate the impact of rare variants on the etiology of
complex diseases [1]. Genome sequencing studies with deep coverage allow directly assessing these
variants [2], but such studies are still expensive. As an alternative, array-based technologies can be
employed at a substantially lower cost. Commercial genotyping arrays cover a pre-selected set of
common variants, and in some cases low frequency variants known to be of interest from previous
studies. To recover high resolution genetic information, genotype imputation compares assayed
genotypes to a sequenced reference panel, thus leveraging the shared genealogy between genotyped
(target) individuals and reference panel to infer unobserved genotypes [3].

Modern imputation methods combined with large reference panels have achieved high accuracy
among even low frequency variants. For example, using the TOPMed data as reference, the average
imputation quality (r?) of variants with frequency 0.1% is over 0.90 for both African and European
ancestry genomes [4]. Such high resolution improves the power of genome-wide association studies
(GWAS) for low frequency and rare variants, and enables joint analysis across studies with different
sets of genotyped variants [5]: Recently, the TOPMed consortium identified a new risk variant for
breast cancer by imputing rare variants with minor allele frequency (MAF) < 0.5% into the UK
Biobank [4]. The advent of affordable whole genome sequencing generating large collections of refer-
ence haplotypes combined with efficient imputation algorithms will power more of such discoveries.

Most of these modern imputation methods are based on the Li and Stephens’ model [6]. They
leverage that haplotypes from unrelated individuals sharing chromosome segments from a common
ancestor. These segments are more similar to each other if their common ancestor is more recent.
Among haplotypes in a large reference panel, the haplotype that has the most recent common ancestor
(MRCA) with the target haplotype probably also tends to have similar genotypes as the target. Using
a Hidden Markov Model (HMM), the Li and Stephens’ algorithm models each target haplotype in
the study as an imperfect mosaic of haplotypes from the reference panel. The haplotypes making up

this mosaic are inferred to be the most closely related to the target, and thus provide information for
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unobserved genotype information. The HMM framework is computationally tractable and naturally
approximates recombination and mutation in its transition and emission probabilities.

Simulation studies have shown that imputation quality depends on the imputed variants’ allele
frequency, genomic context, the size of the reference panel and population demographics [7, 5].
Such studies illustrate that, despite significant improvements, imputation of rare variants still has
high uncertainty: The average squared correlation (r?) for variants with MAF 0.01% is below 0.5
even with the largest reference from the same continental population [4]. But simulation studies only
provide a limited opportunity to understand these limits. Although they have the flexibility to mimic
a particular imputation setting, they are often computationally expensive and hard to generalize.
Alternatively, probabilistic models capturing the basic properties of the imputation process can make
predictions before data collection and are easily generalizable.

The key in such a probabilistic model is the relatedness between reference and target haplotypes,
which explains how the reference informs unobserved genotypes in target haplotypes. Kingman’s
coalescent [8] provides a suitable theoretical framework for modelling the shared genealogy of these
haplotypes. The coalescent traces the genealogy back in time, modeling a sequence of events where
individuals find their common ancestors. Mutations resulting in polymorphisms can be mapped to
branches on the coalescence tree at each locus, with all its descendants carrying the derived allele
(Figure [1)). The coalescent time (the time it takes for two or more haplotypes to find their MRCA,
TMRCA) thus gives a measure of expected genetic dissimilarity, since only mutations occurring more

recent than the coalescent time can result in different alleles among those haplotypes.
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Figure 1: Connection between genotype sequences and coalescence tree. On the left is the genotype
matrix of 8 haplotypes (a ~ g as reference plus a target haplotype) at 5 SNPs (1 ~ 5). Ancestral alleles
are colored black, derived (mutated) alleles are colored red. Question marks denote sites where the target
is not genotyped. The Li and Stephens algorithm models the the target haplotype as the observation from
a HMM where reference haplotypes a ~ g constitute the state space. By identifying which of the reference
haplotypes is the hidden state of the target haplotype, the algorithm can identify which allele to infer for
the unknown sites. Note that haplotypes c,d and e all have the same alleles as the target at the genotyped
loci, making them equally likely to be the hidden state without further information. On the right is the
corresponding coalescence tree assuming no recombination. Mutations are labeled on the branch, with all
the descendants (leaves) carrying the derived allele. Template haplotypes ¢, d or e being the hidden state is
equivalent to the target haplotype coalescing at one of the yellow arrows. As the Li and Stephens algorithm
assumes a single best template, it does not consider the possibility that the target may fist coalesce with
the branch pointed by the blue arrow. All indicated coalescence events are compatible with the observed
genotypes but give different imputation results.

Some aspects of imputation accuracy have already been explored using coalescent theory. Jewett
et al. studied the scenario where the target and reference are sampled from two populations diverged
in the past, and derived expected imputation error rate as a function of reference size and divergence
time [9]. Huang et al. further included mutation rate and marker density as factors; and analyzed the
potential gain in accuracy by choosing the reference panel from a more closely related population|7].

Here we develop a coalescent approach to understand imputation accuracy within population,
focused on rare variants. It is useful to recognize that imputation error has two types of sources:
(1) failure to identify haplotypes most closely related to the target as the template and (2) true
differences between the template and the target haplotype due to recent mutation events. While
improving imputation algorithms may reduce error of the first type, error of the second type is

a result of the underlying genealogical relation between the target and the reference sample and
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how this relationship is modelled. Here we focus on modelling the second type of error, where we
determine the error that is immanent to the Li and Stephens’ model.

For this purpose, we consider one target haplotype with missing genotype and n fully sequenced
haplotypes as references. These n + 1 observed lineages form the leaves of a binary tree with their
(unobserved) ancestors as internal nodes. Intuitively, if the target first finds its MRCA with a set of
reference haplotypes, their genotypes are the most similar to the target thus the most informative
for imputation. The Li and Stephens’ algorithm assumes that there is exactly one such most closely
related reference haplotype, but we show that this assumption is wrong with probability 1/3.

We compute how often this misspecification leads to an ambiguous or wrongly imputed genotype,
assuming the imputation algorithm correctly identifies exactly those haplotypes that are most closely
related to the target sample in the reference. We then provide the probability of generating a
particular imputed dosage conditional on allele frequency of the variant and the size of reference
panel. We also quantify the imputation accuracy in terms of the r? between the imputed dosage
and the true genotype, and show that, as a result of this misspecification, the r? largely depends
on the allele count in the reference panel, improving only marginally with increased reference size.
We assess the impact of population history on these results and use coalescent simulation to confirm
our analytic results. Taken together, our approach provides the minimum size of the reference panel
necessary to achieve the desired imputation accuracy for a given allele frequency.

We evaluate the upper bounds predicted with this model where the only source of error is model
misspecification by imputing a sample of 56,984 individuals using reference panels of different sizes
and evaluating the empirical imputation accuracy > 60, 000 variants. We observe substantially higher
imputation error in the empirical results than the theoretical bound in our model. Moreover, when
conditioning on minor allele count (MAC), imputation error is larger in larger reference panels. We
also observe that for MAC 2 ~ 10, imputation error increase much faster with decreasing MAC,
consistent with our result that especially for these MACs, model misspecification reduces imputation

accuracy.
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The model we develop here can also be leveraged to improve current imputation algorithms.
For example, most imputation algorithms assume that the distance between switching template
haplotypes reflects recombination events and is exponentially distributed [10]. We derive the length
distribution of contiguous segments without observable recombination breakpoints, and show that it
differs substantially from the exponential assumption by having thicker tails for both very short and

long segments.
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2 Methods

We consider imputing a single target variant for one target haplotype with a reference panel consisting
of n reference haplotypes. For simplicity, we only discuss biallelic sites denoting the ancestral allele
as 0 and derived allele as 1. At each SNP site, all reference haplotypes and the target form a
coalescent tree with n + 1 leaves. This tree is unknown but represents the complete information that
imputation can possibly use (Figure . If the target’s most recent common ancestor (MRCA) with
the reference sample occurs on a branch that is ancestral to u > 1 reference haplotypes, all u present
day descendants of that branch are the most closely related reference haplotypes. We assume that
the imputation algorithm identifies these most closely related reference haplotypes, then assigns the
mean genotype of them to the target haplotype as the imputation dosage.

Under this assumption, we consider three scenarios: (1) The mutation generating the target
variant is ancestral to the time to the most recent common ancestor (TMRCA) of the target haplotype
and all its most closely related reference haplotypes. In this case, it will be imputed correctly with
dosage 1 (Figure[2[a). (2) The mutation occurred more recently than the TMRCA and the mutation
occurred on the branch to the target haplotype. Then the target variant is not polymorphic in the
reference sample and will always be falsely imputed to be the ancestral allele (Figure |2/ b). (3) The
mutation occurred more recently than the TMRCA and the mutation occurred on the branches to
the reference haplotype. Then some or all of the most closely related reference haplotypes carry the
derived allele while the template haplotype carries the ancestral allele and the reference sample will
be imputed to carry the derived allele with some dosage> 0 (Figure |2 ¢ and d).

We focus on the third scenario where j of the v most closely related templates carry the derived
allele while the target does not. The Li and Stephens model assumes a single closest haplotype, and in
the HMM implementation the imputed fractional genotype (dosage) is a weighted average of multiple
reference haplotypes based on their posterior probabilities of being that right template. When the
are equivalently close to the target, they are expected to have equal posterior probabilities. Thus the

imputed dosage ¢ is § = j/u € (0, 1] while the true genotype g is g = 0 (“false positive”), resulting
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in loss of information in downstream analysis.

In the following sections, we derive the probability for all possible (j, u) configuration, conditional
on observing the derived allele count j in the whole reference. For simplicity, we distinguish the one
target haplotype from the rest n reference ones, making the whole tree size n + 1, although they are
exchangeable under the assumption of homogeneity and random mating. We will always consider

time backward with ¢ = 0 being the current generation.

2.1 Number of most closely related templates

We first give the probability of having u equally good templates at any random position for a target
haplotype: P(u;n). This probability depends only the topology of the genealogy, independent from
mutation events. We leverage that the probability that a set of k lines coalesce before they coalesce
with any line among the rest n — k |11] is

2(k — 1)!(n — k)!
ok = kT D)(n— 1)1 (1)

The generative process can then be imagined as three steps: u templates coalesce first before their
MRCA meets the target; then the resulting branch of size v + 1 meets the rest of the tree. Finally

we sum over all possible sets of u templates.

n
P(U, n) = Qu+1,n—u * Qu,1 ° ('LL) (U, < 7’L>

~ 2ul(n —u)! 2(u —1)! n!
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The expected number of best templates is close to 2 when the reference is large:

Elu;n] = Z uP(u;n)

n—1
4
= U +n-q, (3)
; w(u+1)(u+ 2) In,1
2
= i ~ 2
n+1

Symbol | Meaning

g True genotype at the imputed locus.

g Estimated genotype at the imputed locus.

n Number of haplotypes in the reference panel.

u Number of most closely related haplotypes (MCRH) in the reference panel.

7 Number of the rare allele in the reference panel.

k Number of lines remaining on the tree just after all MCRH have reached their MRCA.

d Number of lines remaining on the tree when the target haplotype coalesces with one
ancestor of the reference haplotypes.

l Length of an internal branch.

m Number of mutation events on a particular branch.

Table 1: Notation for key quantities

2.2 High certainty error

We now derive the probability of imputing the target to carry the mutation with dosage ¢ = 1
while the truth is ¢ = 0, conditional on the observed derived allele count in the reference panel:
P(g = 1,9 = 0|j;n). This happens when the target haplotype first coalesces with a branch (1) of

size j carrying a mutation (Figure [2| ¢).

10
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Figure 2: Possible scenarios when imputing one target haplotype (yellow lineage) using a reference panel
with n haplotypes. Red lines are haplotypes carrying a mutation that occurs on the blue branch. Gray
horizontal dashed line indicate the time intervals where an event of interest occurs. a) The derived allele
arises ancestral to the MRCA of the target with the reference haplotypes and is shared between the target
(9 = 1) and all most closely related haplotypes. Thus it will be correctly imputed (§ ~ 1). b) The derived
allele arises on the branch of the target (¢ = 1) and is thus absent from the reference. It will be falsely
imputed to be ancestral (§ = 0). c¢) The derived allele arises after the MRCA of the closest reference
haplotypes before coalescing with the target haplotype. The target haplotype does not carry the derived
allele (g = 0), but all closest reference haplotypes do. The target will be imputed to carry the derived allele
(g = 1). d) The derived allele arises on a branch ancestral to j = 2 of the closest reference haplotypes before
the MRCA of all u = 4 closest haplotypes. The target haplotype does not carry the derived allele (g = 0).
The target’s derived allele dosage will be imputed to reflect that j of u closest haplotypes carry the derived
allele (§ ~ j/u = 0.5).

Throughout the following derivation, we use the number of ancestral lines £ for the current
day sample to keep track of coalescent time and to connect topology and branch lengths. We first
introduce some quantities useful for our derivation:

Let P(j,k;n) be the probability for j lines to reach their MRCA at the coalescent event that

reduces the overall number of ancestral lines from k + 1 to k, without any of the j lines coalescing

11
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with any of the n — j other lines first. Let Py(n,d) be the probability for one line to encounter no
coalescent event for (at least) the first n — d events. Let P(m > 1|I) be the probability of having
at least one mutation event on a branch with length [, and let P(L = l|k,d;n) be the probability
density function for the length of one internal branch starting when there are k lines left and ending
when there are d lines left, in a tree of size n. Using these terms, we can now calculate

P(g=1,9=0,j;n)

P(g=1,9=0[j;n) = PGn)

We calculate the joint probability P(¢ = 1,9 = 0, j;n) in the following three steps by conditioning
on d and k (Eq. [ Figure 2] ¢). We calculate P(j;n) by adapting the second step (Eq. [f]).
1) To coalesce in the (n — d + 1)-th coalescent event, when d lines remain on the tree, the target
haplotype cannot coalesce in the first n — d events. By definition of Py, this is Py(n + 1,d + 1).
2) A branch of size j ancestral to all most closely related reference haplotypes arises in the reference
at the (n — k)-th event (P(j,k;n)) and encounters a mutation before it coalesces with the target
branch in event n—d+1 (g(k,d;n)). Here the probability for a mutation to occur on that particular
branch is computed by integrating over all possible branch length [ given k and d: g(k,d;n) =

X Pm > 1) P(L = |k + 1,d;n + 1)dl.

3) The size-j branch does not coalesce till the (n — d)-th event and then coalesces with the target:
Py(k,d) - @

Multiplying the probabilities of these sequential events and summing over all possible values of d, k

give the joint probability:

P(f]: 179207j;n)

n—j+1 k l=co (4)
1
= > > Pyn+1,d+1)- P(j,k;n) / P(m > 1)P(L =k + 1,d;n+ 1)dl - Po(k,d) 77
k=2 d=2 =0 (“37)
P(j;n)
n—j+1k-—1 I=00 (5)
= > ZP(j,k:;n)-/ P(m > )P(L = Ik, d;n)dl - Po(k,d + 1)~
k=2 d=1 =0 (5)
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To compute P(j, k;n), define H(n, k) := (3) (";1) . (kH) the number of possible configurations

of the topological history for n lines to coalesce till there are k£ ancestral lines left. Then

() HGDHE 5k =1 (55")
H(n, k)
@ﬁfﬂk—n@

"

P(j, k;n) =

Next we consider the integral corresponding to the mutation event g(k,d;n) (Eq. [7]). Let E[T}; n]
denote the expected time for the number of ancestral lines to go from 7 to ¢ — 1 in the coalescence
process for a sample of n current haplotypes , which depends on the population history model. Thus,
g(k,d;n) depends on mutation rate p and expected coalescent time intervals E[T;n|, which can be

numerically computed [12] or approximated by Monte Carlo.

=00
gk, d:n) :/ P(m > 1) P(L = 1|k, d: n)dl
=0

:/(1 — e "MP(L = l|k,d;n)dl
l

=E[1 — e ™|k, d;n) (7)
~uElk,d;n]
=p Z Tk7
i=d+1
Substituting Eq. ﬁ and Py(k,d) = ; into Eq. I,I we now have the conditional probability

fully defined:

P(g=1,9=0]j;n)
ik ST PG k) i z’“ ( —1) g(k+1,din+1 (8)
n(n+1) Lak=2 D RN =Dk 2ud=2 ydin+1)

"I P R n) = 1)k " d gk, d;n)

Following similar logic as above, we then consider the conditional probability distribution for
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fractional dosages. We derive P(¢§ = j/u,g = 0|j;n), the probability of having u equally closely
related best templates, 7 of which carry the mutation, for a target actually carrying the ancestral
allele, conditional on observing the derived allele count as j in a reference of size n (figure 2| d).

Details of derivation are in the Appendix [A]

2.3 Modelling r? as a function of misidentification proportion

The above derivation fully characterizes the distribution of the imputed dosages assuming we perfectly
identify the optimal templates. While it is difficult to model all the possible sources of error in the
real imputation process, we can use the total weight (¢) attributed to haplotypes outside the set of
most closely related templates to measure the identification error. Here we derive its influence on
the square of correlation coefficient (r?) between the true genotype and imputed dosage.

Let g be the true genotype, 1 for the derived allele and 0 for the ancestral allele; let f be the derived
allele frequency, so E[g] = f. Let g and g be the imputed dosage with and without misidentification
respectively.

Let z be the random variable representing the proportion of carriers of the minor allele among the
sub-optimal templates contributing to the imputed dosage, so that g can be modeled as a mixture
g = (1—q)g+ qz. If we assume that the sub-optimal templates are sampled at random from the
population and each of the suboptimal templates is given equal weight, z is the average genotype of
m random haplotypes, so E(z) = f and V(z) =V (g)/m = f(1 — f)/m.

When the optimal templates for a target sample provide the perfect information (§ = g), misiden-
tified templates may be the alternate allele and therefore increase imputation error. However, where
the target sample carries the ancestral allele but some of its optimal templates carry the derived
allele, sub-optimal templates attenuate the resulting error. Nevertheless, here we show that in ex-
pectation imputation error will always reduce the correlation between the true and the imputed

2

genotype. Let’s express 7 - in terms of quantities regarding the theoretical imputed dosage g.
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_ 2 _ Covlg,9) _ ((1=q)Cov(g,9) +qCov(g,2))”
9" VgV (9) VgV - 9)j+q2) (9)
~ Cou(g,9)* + $#4,Cov(g,§)Cou(g, 2) + 55 Cov(g, 2)°
V(9IV(9) + 2LV (9)Cov(§, 2) + 7LV (9)V ()
Comparing to the theoretical r ?fé;gf/’gj:

~ Cov(g,z Cov(g,z

2 (1= q)* +29(1 — @) e + ¢* () "
T - ov z z
"9 (1 -9 +2q(1 — @) “FE + ¢

Since g is based on a few reference haplotypes and equal to g with large probability, we can
reasonably assume C'ov(g, z) = Cov(g, z), Cov(g, §) = V(g) and Cov(g, z) < Cov(g, g) (misidentified
haplotypes are more distant). Therefore the middle terms in the numerator and denominator of Eq.

are approximately equal; the difference between the r2’s is governed by the last terms, which have

Cov(g,2)2 V(§) __ Cor(g,2)?
Coolg.5)2 V(=) — Corlg.gf < 1

a ratio strictly smaller than one:
If misidentified haplotypes are close to random draws from all reference haplotypes (Cov(g, z) ~
0), the ratio simplifies to

<1. (11)

In practice, the sub-optimal templates contributing to the imputed dosage are more likely to be
from lineages closer to the target, so their effect on imputation accuracy would be smaller than that

from the above assumptions.

2.4 Length of haplotype before the next recombination breakpoint

Next we aim to derive the distance between consecutive recombination events on an external branch.
For the purpose of modelling imputation, these distances represent the lengths of segments that are

copied from the same haplotype. Let X be the genetic distance to the next observed recombination
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event on the target, and T be the length of its corresponding external branch. We calculate fx(z) =
[ fxir(x) fr(t)dt (we will use f(-) for continuous and P(-) for discrete distributions). Similar to
above, we compute the probability density function of T by considering it first coalesces at the
(n+1—k)th event. T'|k is the sum of n+ 1 — k coalescent time intervals, thus following a convolution
distribution as the sum of n + 1 — k£ exponential with different rates. Conditional on T', X follows
an exponential distribution with rate 27" since a recombination event on either the current template

or the target haplotype results in a switch of template.

fx‘T(QT) = 2T€_2T$

fT|k(t) = an+1+"'+Tk+1 (t)
(12)

= fxx(xlk) = /t_o Jriitam (O fxr(z|t)dt

= Epp[2Te ") (Tk ~ fropyetTiin)

dMGdJZT(y)‘y:_QI7 where MGFp s the moment

When population size is constant, Er[2Te 21"] =
generating function of the hypoexponential distribution 7T'|k. When population size changes through
time so time intervals are correlated, we can approximate the expected value with 2E[T|k]e2E[T Ikl
and compute E[T'|k] with Monte Carlo.

The probability for a haplotype to first coalesce at the (n+1— k)th event is Py(n+ 1,k + 1)@,

with Py(n + 1,k + 1) being the probability of not coalescing with any lineage in the first (n — k)

events (starting from total sample size n + 1). Therefore we have the distribution of X is

n

fx(z) :ZPO(n—l—l,k—i—l)%me(:dk) (13)
2

CES 2k Facalh) (14)
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2.5 Simulation

We performed a standard Kingman coalescent simulation under population history models suggested
by recent studies (detailed in the Results). We simulate size-(n + 1) trees with n varying from 500
to 50k. For each generated tree, we keep track for all subtree configurations (1 4 u(j)) (one exter-
nal branch first coalesces with a branch of size w, which contains a branch of size j) of interests,
and record the length of this size 7 branch. The sum of all such relevant branch lengths in the
tree divided by the number of present haplotypes n + 1 is one realization of the joint probability
P(g = j/u, g =0, j;n), which will then be approximated by averaging such realizations over all
simulated trees. To approximate the probability of observing j derived alleles in the reference panel,
we simulated another independent set of trees of size n and summed over the lengths of all size j
branches to get sample frequency spectrum. We present results from 50k independent simulations

under each parameter setting throughout this article.

2.6 Empirical Evaluation

To evaluate the predictions of our model, we imputed genotypes from the Michigan Genomics Ini-
tiative (MGI) [13] using different imputation panels. To assess imputation quality, we masked some
genotypes and compared the imputed genotypes to the genotypes generated by the array. MGI is col-
lected from the patient population of the University of Michigan Hospitals and thus mostly (> 90%)
consists of individuals of European decent. The MGI individuals analyzed here are genotyped on a
Mlumina Infinium CoreExome chip with ~ 60,000 custom markers, providing sufficient low frequency
variants to assess imputation performance for rare variants.

We considered five reference panels: (1) The Haplotype Reference Consortium (HRC) rl.1 ref-
erence panel (n = 32,470 individuals of mostly European descent, ~ 39M variants) [14], (2) the
1000 Genomes Project (1KGP) variant calls from low-coverage sequencing (n = 2,548, ~ 78 M vari-

ants) [15], (3) the 1IKGP variant calls from high-coverage sequencing (n = 2,504, ~ 100/ variants)
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(Michael Zody, personal communication), (4, 5) subsets of the high- and low-coverage 1KGP variant
calls containing only samples from the European super population (n = 503). Note that the HRC
reference panel only provides varaints with minor allele count > 5 [14]. We subsetted all 1IKGP vari-
ant reference panels to the set of overlapping individuals and markers and filtered out monomorphic
and singleton sites, resulting in 2,503 samples and 41M varaints for panels 2 & 3 and 503 samples
and &~ 13M variants for panels 4 & 5. We also re-phased all 1IKGP panels using Eagle (v2.4.1) [16]
without a reference panel to avoid confounding due to differing phasing quality.

Using each reference panel, we imputed all autosomal variants by running Minimac4 (v1.0.0)
[17] on a computing cluster maintained by the Center for Statistical Genetics at the University of
Michigan in Ann Arbor. We set Minimac4 parameters to use 16 cpus and output data in genotype,
estimated alternate allele dosage, and estimated haploid alternate allele dosage formats. For all rare
variants genotyped in MGI, we estimated imputation quality using the squared Pearson correlation

coefficient between known and imputed genotypes.

Data Availability

1000 Genomes low coverage sequence data were downloaded from ftp://ftp.1000genomes.ebi.ac.
uk/voll/ftp/data_collections/1000_genomes_project/release/20190312_biallelic_SNV_and_
INDEL/. 1000 Genomes were downloaded from ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/

data_collections/1000G_2504_high_coverage/.

Software Availability

Codes used to perform analytical calculation and coalescent simulation are available from https:

//github.com/Yichen-Si/ImputationBound.
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3 Results

We derived an analytical approach to calculate the impact of model misspecification of the current
imputation framework with our coalescent model on rare variants (see the Method). Assuming a Li
and Stephens model[6] based imputation algorithm correctly identifies all and only those haplotypes
in the reference that are most closely related to the target sample (”closest templates”), we calculated
the theoretical error rate as a function of reference size n and the derived allele count (DAC).
Using coalescent simulations, we confirm the analytical results, and incorporate general population
models. We compared our theoretical predictions with empirical imputation accuracy observed in
the Michigan Genomics Initiative (MGI), with the 1000 Genomes|18| or the Haplotye Reference

Consortium|19] as reference.

3.1 The number of closest template haplotypes

In the coalescence context, identifying a single reference haplotype that is most similar to the target
haplotype is equivalent to selecting the reference haplotype that has the MRCA with the target
haplotype or, equivalently, whose lineage is the first to coalesce with the target. However, by the
time this lineage coalesces with the target, it may be ancestral to multiple reference haplotypes
(Figure . In this case, those reference haplotypes are equally closely related with the target, each
of them in expectation providing the same amount of information for imputing the target sample.
Thus, the model assuming one single best template is misspecified, and imputation is more likely to
be ambiguous when the number of closest templates is larger.

The probability for the target haplotype to first coalesce with a lineage having u descendants in
the reference is

4

P(u):u(u+1)(u+2),(1§u§n—1). (15)

Note that the derivations of this probability do not condition on the presence of a variable site.

Thus,this probability depends only on the topology of the coalescent tree, independent of population
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history (see the Method). Interestingly, the probability distribution of the number of best matches

does not depend on the size of the reference panel (n), except for the extreme case u = n, where

the entire reference has equal genetic distance to the target. In that case, P(u = n) = ﬁ The

expected number of closest templates E(u) = 2 approaching 2 as the size of the reference

.
panel increases.

From equation , we see that with probability %, the target haplotype first coalesces with
an external branch (u = 1) and the reference contains exactly one best match. Thus, the Li and
Stephens model of exactly one best template is misspecified with probability % The probability of
u equally good templates drops rapidly with increasing u (Table . With probability %, the target
haplotype first coalesces with an internal branch with two descendants in the reference (u = 2), while

the probability is 0.0108 that the target haplotype first coalesces with an internal branch with more

than 10 descendants in the reference (u > 10).

No. Templates | 1 2 3 4 5 6 7 8 9 10
Prob. | 0.6667 0.1667 0.0667 0.0333 0.0190 0.0119 0.0079 0.0056 0.0040 0.0030

Table 2: Probability of multiple reference haplotypes (“No. Templates”) being most closely related to the
target haplotype.

3.2 Impact on imputation accuracy

As we have just demonstrated, the model assumption that each target haplotype has a single most
closely related template haplotype is a model misspecification for 1/3 of the genome where there are
multiple closest templates. This model misspecification contributes to imputation error beyond the
typical source of error created by failing to identify the most closely related haplotype. To isolate
this additional error, we now evaluate the imputation of a missing genotype assuming that all closest
templates are correctly identified but analyzed under a model that assumes a single best haplotype.
In this scenario, imputation algorithms will correctly impute all non-singleton variants if the target
haplotype has a single most closely related template haplotype. Imputation errors can only occur if
the target haplotype has more than one closest template, i.e. a model misspecification. In this case,
imputation algorithms consider all these template haplotypes to be equally likely to be the ”"best”
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template. Accordingly, it will interpret identifying multiple equally close templates as uncertainty
in identifying the best template. For variants that differ between these template haplotypes, the
imputed genotype is then usually the average of the DAC of those templates, a fractional genotype
(dosage). Thus, for one given target haplotype carrying the ancestral allele to be imputed with a
non-zero DAC dosage (“false positive”), some of its templates have to carry the derived allele.

While the probability of this misspecification is independent of population history, the probability
of a mutation event causing an imputation error depends on the history of the population template
and target haplotypes are sampled from. In our primary analysis we consider a population history
model approximating European population history [20, 21]. Starting from an ancestral population
with effective population size 10%, it undergoes a bottleneck with N, = 2 - 103 for 100k years (ap-
proximately 3450 generations), then grows with an accelerated rate (faster than exponential growth
[22]) to N, = 107 during the most recent 10k years. The effect of these model parameters on the
following results is marginal within a model space reasonable for human population (Appendix .

We first consider the special case where all the closest templates for a target carry the derived
allele, while the target haplotype carries the ancestral allele. In this case, the imputed dosage
of the derived allele is 1 when the truth is 0 (Figure 2| a). By integrating over all possible tree
shapes and branching times (see the Method), we calculated the probability for this configuration
for reference sample sizes of 500, 5000, 20,000 and 50,000 individuals. We verified all results using
computer simulations. Across all considered reference sizes, the probability of this completely wrong
imputation for one imputed haplotype is small ranging from 1072 to < 107% (Figure |3| a, Table 3.
Holding reference size constant, this probability decreases with rising DAC. Similarly, holding DAC
constant, this probability of imputation error decreases with increasing number of templates.

To put these error rates in relationship with the number of true carriers of the derived allele,
we assume that the derived allele frequency (DAF) in the target population is the same as that in
the reference population. For instance, consider a site with two copies of the derived allele in a

reference of 500 individuals (MAF = 0.002). For this site, we expect to impute one individual as
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false carrier for every 1210 individuals (Figure. Among these 1210 individuals, we also expect 4.84
true carriers of this variant assuming the same MAF in the target population. Thus, for variants
that are doubletons in a reference sample of 500 individuals, about one in six imputed rare alleles
will be a false positive (Table . More generally, for a fixed DAC in the reference, the probability of
falsely imputing the derived allele decreases with increasing reference size while the number of true
carriers of the derived allele also decreases. As a result, the proportion of falsely imputed derived
alleles decreases only moderately with increasing reference size. For example, for variants that are
doubletons in the reference, the proportion of false positive derived alleles decreases only from 17.5%
for a reference size of 500 to 14.7% for a reference size of 50,000.

If we now consider the more general case where at least one of the closest templates carry the
derived allele while the target carries the ancestral allele (dosage 0). In this case the imputed dosage
g > 0 (Figure . Across reference sizes of 500, 5000, 20,000 and 50,000 individuals, we calculated
the probability of g > 0 for each imputed haplotype. This probability is notably larger than the
probability of falsely imputing dosage 1, ranging from ~ 1073 to ~ 10~ for doubletons (with DAC
2, Figure |3| b). This probability decreases with rising DAC and increasing reference size.

From these probabilities, we calculate the expected number of haplotypes carrying the ancestral
allele (¢ = 0) that are falsely imputed to have either a non-zero derived allele dosage (¢ > 0), a
higher dosage g > 0.5 or a dosage of 1 for every million target individuals (Table |3). Haplotypes
with ¢ > 0.5 represent cases where a "best-guess” imputation algorithm would infer the alternate
allele. Beyond the previously described impact of DAC and reference size, these results show that
for DAC < 5, about half of all falsely imputed derived alleles have a dosage > 0.5. This observation
can be explained by the fact that for a given DAC, observing a dosage < 0.5 requires a larger
number of equally good templates than observing a larger dosage. As large numbers of equally good
templates are rare (Table , the proportion of higher dosage among all falsely imputed non-zero

dosages increases with the DAC.
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Figure 3: Upper panel: False discovery rate among non-carriers. Given a target haplotype carrying the
ancestral allele (true dosage 0) , the probability (y-axis, in log scale) of having a) all the closest templates in
the reference panel carrying the derived allele thus an estimated dosage 1; or b) having non-zero estimated
dosage for the derived allele. Lower panel: proportion of false positives among all imputed carriers. For
a target sample, the proportion (y-axis) of haplotypes with the ancestral allele among c) individuals with
estimated dosage 1 or d) haplotypes with non-zero dosage. Both results are conditional on the DAF in
the reference (x-axis); color indicates the size of reference panel, in the number of individuals. Results
for reference size below 20,000 are from analytical calculation while those for 20,000 and 50,000 are from
coalescence simulations.
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Figure 4: a) The upper bound of squared correlation (r?) (y-axis) between imputed and true genotype
dosages, conditional on the DAF in the reference (x-axis). Color indicates the size of reference panel. b)
The 72 (top) and MSE (bottom) when a certain proportion of weight (x-axis) is attributed to sub-optimal
templates. The impact depends on the absolute number of sub-optimal templates, we show examples of 1,
5 in the left and right columns. Here we fix the reference size to 20k. Results are from 50k independent
coalescence simulations, each data point is an average of over 107 loci.

Derived allele count in the reference panel
Ref. Size 2 | 3 | 5 | 10 | 20

(Individuals) Imputed dosage for the derived allele

>0 >05 =1] >0 >05 =1] >0 >05 =1[>0 >05 =1]|>0 >05 =1
500 2145 1122 848 | 1802 1006 653 | 1361 815 420 | 840 541 153 | 435 292 57
5000 214 109 80 179 97 60 136 78 41 84 52 23 49 32 13
20000 53 27 18 44 24 15 34 19 11 21 13 7 12 7 4
50000 21 10 7 17 9 6 13 8 4 8 5 3 5 3 2

Table 3: Expected number of imputation errors. Consider imputing a sample dataset with one million
individuals using a reference panel containing 500 to 50000 individuals from the same population as the
sample, the expected number of individuals who are homozygous for the ancestral allele (¢ = 0) but have
an imputed genotype dosage g as § > 0, g > 0.5 or § = 1. Each combined column represents one DAC in
the reference. Results are from 50k independent coalescence simulations, each data point is an average of
over 107 loci.

To summarize the impact of this error on association tests, we calculated the squared correlation
coefficient (r?) between the imputed dosages and the true genotypes using simulations, both under
the assumption that model misspecification is the only source of error and under the assumption that
some reference haplotypes are falsely identified as being most closely related. 72 is a commonly used
measure for imputation quality, as it is directly related to statistical power in downstream association
tests 23] 24, 25].

Still assuming that closest templates are identified perfectly, we generated the distribution of

expected 72 for a range of minor allele counts (MAC) and reference sizes using simulations (see the
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Method). The expected r? increases monotonically with DAF in the reference and reference size
(Figure[d). If we consider the increase with DAF across reference sizes, we observe that the curves of
expected r? values look very similar for each reference panel size, only shifted by a factor of 1/panel
size. In other words, r? of variants with the same MAC remains almost the same across all considered
reference sizes. For example, the average r? among doubletons is 0.822 in a reference size of 500 and
0.831 in a reference sample size of 50,000, where its frequency is only 1/100 of the former. For
variants observed ten or more times in the reference, the expected 72 is > 0.97 regardless of the size
of the reference, as model misspecification do not play a mayor role for the imputation quality of
these variants, but for variants observed less often, 72 decreases rapidly with decreasing allele count.

To include other sources of error in the imputation process, we model the false identification of
reference haplotypes that are more distantly related to the target as templates. Those distantly
related haplotypes are less likely to carry the same allele as the target haplotype and thus introduce
an additional source of error. We parameterize this identification error as the sum of all probabilities
assigned to falsely identified templates, denoted as ¢ (see the Method). In practice, this imputation
error depends on the choice of imputation algorithm, marker density, quality of genotyping and
statistical phasing; detailed modeling of these factors is beyond the scope of this paper.

As expected, imputation error of the variant increases with increasing ¢ shown as the mean
squared error (MSE) of the imputed genotype (Figure D). As the imputed genotype for all indi-
viduals converges to the allele frequency f as g goes to 1, the MSE increases faster with higher f.
Similarly, the r? between the true genotype and the imputed genotype decreases with increasing
q. However, including some suboptimal haplotypes only has a small effect for rare variants. If we
assume a single sub-optimal template, ¢ < 10% only has marginal effect on r2, when ¢ increases
beyond this threshold the decrease of r? becomes almost linear. This threshold depends on the
number of sub-optimal templates: with a larger number of templates, the variance of the imputed
genotype decreases and the effect of including suboptimal templates is more deterministic (see the

Method). Accordingly, if the number of suboptimal templates is larger, the threshold where r? starts
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to decrease with ¢ is larger while the MSE is lower (Figure . For example, consider imputing a
variant that is a doubleton in the reference with 20k haplotypes. Assuming no identification error,

= 0.83. If we identify one sub-optimal templates with posterior probability 0.3 as well as all
the closest templates, the expected 72 is 0.70 and the MSE is 1.80 x 107°. If we instead identify 5
sub-optimal templates with total posterior probability 0.3 as well as all the closest templates, the
expected r? increases to 0.80 while the MSE decreases to 1.44 x 107°.

For variants with DAC < 5 in the reference, the error caused by model misspecification dominates
for a wide range of ¢; while for variants of DAC over 20 the error caused by model misspecification
is negligible and the rZ with perfectly identified optimal templates is above 0.99 regardless of the

reference size (Table , thus the identification error dominates the empirical imputation error.

Ref. Size Derived allele count in the reference

(Individuals) 4 5 10 20

500 822(0 089) 0.885(0 067) 0.919(0.051) 0.940(0.041) 0.979(0.017) 0.995(0.0055)
2000 0.823(0.089) 0.886(0.066) 0.920(0.051) 0.940(0.040) 0.979(0.016) 0.994(0.0054)
5000 0.826(0.088) 0.887(0.065) 0.921(0.050) 0.941(0.040) 0.979(0.016) 0.994(0.0055)
20000 0.828(0.087) 0.889(0.065) 0.922(0.050) 0.942(0.040) 0.980(0.016) 0.994(0.0053)
50000 0.831(0.087) 0.891(0.065) 0.923(0.050) 0.943(0.039) 0.980(0.016) 0.994(0.0053)

Table 4: The maximal squared correlation can be achieved. Numbers in the parentheses are standard
deviation summarized over 107 loci, representing the variation among variants in a population sample.
Results are from 50k independent coalescence simulations.

3.3 Comparison with empirical imputation accuracy

We imputed genotypes of 56, 984 participants in Michigan Genomics Initiative (MGI) using two stan-
dard reference panels, the 1000 Genomes (1KG, 2504 individuals) and the HRC (32,470 individuals).
For variants present in the MGI dataset, we calculated r? between observed genotypes and imputed
genotypes and stratified these by the MAC of the variant in the reference panel (figure [5).

We recapitulate previous results (e.g. [b]) that panel size had a notable effect on imputation
accuracy. For a given MAC, r? for variants imputed with the largest panel (HRC) is lower than

that for variants imputed with the full 1IKG panel by = 0.10, the later is in turn lower than that for

variants imputed with the European ancestry individuals from 1KG by ~ 0.04 (difference relatively
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stable across MAC). However, when conditioning on MAF, the order of panels flips, as the same
MAC reflects much smaller MAF in larger panels. Here, r? for variants imputed with HRC is higher
than that for variants imputed with the full 1IKG panel by &~ 0.05, the later is in turn higher than
that for variants imputed with the European ancestry individuals from 1KG by = 0.10.

Sequencing depth of the reference panels on the other hand had only a very small effect. The
use of deep coverage 1KG panels increased imputation accuracy typically by < 0.01, compared to
the low coverage panel. Note that markers called only in the deep coverage panel are not included
in this comparison.

Comparing these empirical result with the theoretical upper bound from our model (figure {)),
we observe that the empirical 72 is much lower than what is predicted under the assumption that
only model misspecification affects imputation accuracy. For doubletons imputed with the whole
1KG, the average 2 is 0.32; for doubletons imputed with the European subset (504 individuals) the
average r2 is 0.41, while the theoretical upper bound is above 0.82 for both sample sizes. While
empirical imputation accuracy of rare variants decreases with decreasing MAC across all reference
panels, it decreases more rapidly for MAC < 10. This more rapid decrease is mirrored by the rapid

decrease of the theoretical upper bound for MAC < 10 observed in the theoretical prediction.
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Figure 5: Imputation accuracy empirically evaluated in MGI using different reference panels. Y-axis is
average r2 evaluated at genotyped sites, x-axis is a) MAC or b) MAF in the reference panel, with MAF
plotted in log scale. Rarest variants are highlighted in b) for comparison. Color coding in a) and b) is the
same.

3.4 Length between template switches

We now consider another potential source of error in current imputation model: the switch be-
tween templates. When we model the target haplotype as a mosaic of templates from the reference,
switching between templates can be interpreted as a historical recombination event that breaks the
genealogical bond between the target and its current template, i.e., the branches connecting the two
leaves in a coalescent tree. The two haplotypes will become practically independent beyond the
recombination break point.

Conditional on a known local genealogy, the length to the next recombination break point follows
an exponential distribution, with the rate proportional to twice the TMRCA between the target and
the template. In practice, the genealogy is unknown, and the length to the next recombination break
point is a combination of the distribution of the conditional length and the time to the TMRCA
(detailed in Method). Here we compare this mixture distribution with the exponential distribution

that is typically assumed in current imputation methods [6} [26].
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Comparing the mixture distribution to an exponential distribution with the same mean shows
that with genealogy and population history aware modeling, the distribution of length between
switches is very similar for small reference samples (n = 500) (Figure [6). For larger reference
samples (n = 20,000) the mixture distribution has larger variance, with higher density in both
extremely short and long intervals but lower density for intermediate ones. If the excess of short
no-recombination intervals is not well captured due to model misspecification, we expect to have
more suboptimal templates thus higher imputation error rate. When the reference size increases,

switches are less frequent as it is more likely to find a template sharing a very recent MRCA with

the target.

Ref. size

(# individuals)
N -a— 500
-a— 20000
-a~ 50000
2007 . 0.26 cM

q 159 oM Distribution

N - =+ Exponential
\, 3.41 cM — Mixture

Density

100 4

0.1 0.5 1 2 10
Length until next template switch (cM)
(plot in log scale)

Figure 6: Distribution of the distance before the next recombination event breaking the relation between
a pair of haplotypes. The x-axis shows the length in genetic distance (¢cM). Solid line is predicted by our
coalescent model, the dashed line is an exponential distribution with the same mean as we predicted. Colors
represent different reference sizes (n) in the number of individuals. The average lengths with reference being
n=500, 20000, 50000 are 0.26, 1.59 and 3.41 cM respectively.
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4 Discussion

The empirical performance of imputation methods has been extensively studied [4, 5, [27, 28], while
the theoretical behavior and limit of the underlying framework has not been well characterized,
especially for rare variants. We formulate this problem of imputation accuracy into a coalescent
model, considering imputing the missing genotypes on one target haplotype by copying from a set
of reference haplotypes that share the most recent common ancestor (MRCA) with the target. Our
approach identifies two model misspecifications in modern imputation algorithms and explores their
impact on our ability to impute rare variants.

First, most imputation algorithms model a single best template as the hidden variable to infer.
We show that in 1/3 of the cases, multiple haplotypes are equally good templates for imputing one
target in any given reference panel, independent of reference sample size or population history. The
resulting model misspecification leads to imputation error when genetic variants are shared by some of
the optimal templates but not with the target. We develop analytical expressions for the imputation
error resulting from this model misspecification as a function of the derived allele frequency and
reference size.

For this purpose, we assume that the imputation algorithm correctly identifies the most closely
related haplotypes so that this model misspecification is the only source of error. In this idealized
scenario, we observe that for variants observed five or less times in the reference panel, > 8% of
variants with non-zero dosage are non-carriers; up to minor allele count 10, the mean r? between the
imputed dosage and true genotypes < 0.98. Conditional on the derived allele count, this effect is
broadly independent of reference panel size: although the probability of falsely imputing carriers of
the rare allele decreases as the reference panel size becomes large, the number of true carriers also
decreases and the proportion of false carriers over true carriers stays about the same. Including other
sources of error that occur in practice further decreases imputation accuracy. Thus the expected 72
we present here designate the upper bound of achievable mean imputation accuracy for rare variants

in current imputation framework.
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Such imputation error substantially reduces the power for detecting novel risk variants in an
association study based on imputed genotypes. Two scenarios can be considered here: First, single-
marker tests of imputed rare variants can be powerful if the case-control data set is much larger than
the imputation panel |4]. In this scenario, inaccurately inferred genotypes at a disease-related locus
attenuate the allele frequency difference between cases and controls, and 2 is directly related to this
loss of information that compromises the statistical power in association tests. Imputation error rate
of 2% ~ 6% leads to 10% ~ 60% increase in required sample size in a single marker test [24]. As a
second scenario, imputed rare variants can be aggregated into a single test statistic [2]. In this study
design, poorly imputed variants will have an attenuated signal, potentially diluting the signal from
better imputed variants. This loss of power can be limited by focusing on imputed variants where
misspecification will not impede imputation accuracy, e.g. variants that occur more than five times
in the reference.

We consider a second model misspecification: the use of exponential distributions to model the
length of contiguous haplotypes without template switches. The true distribution of this length is
driven both by the recombination rate and the relationship between the template haplotype and
the target haplotype. For smaller reference such as the 1000 Genomes [18] (2504 genomes) this
model misspecification has a negligible effect, but for reference samples of the scale of TopMed
[4] (53,831 genomes), gnomAD [29] (15,708 genomes), or the Haplotye Reference Consortium [19
(38,821 genomes), the length distribution of shared segments between the target and a single template
has a much heavier tails than modelled. This misspecification penalizes both extremely short and
extremely long switching intervals, decreasing the probability of finding the optimal templates. This
in turn reduces imputation accuracy, especially for low frequency variants beyond the effect of the
first model misspecification described above.

The theoretical results we present here are broadly robust to assumptions about population size
history in a range reasonable for major human populations. We assume that the imputed region

is evolutionary neutral; for loci under selection the impact of the described model misspecifications
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would likely depend both on the selection model and on the population history. Further, we assume
that the reference is from the same homogeneous population as the target sample. If we instead mod-
eled a diverse reference sample, results would depend on the frequency distribution of the imputed
variant among the reference samples. For rare alleles, which are typically private to a single popula-
tion, only members of that single population among the reference would affect imputation accuracy.
Our results can be extended to including migration, admixture or selection, as the mathematical
derivation and simulation scheme in this work are general for coalescence at a single locus.

In our empirical evaluation of imputation quality using two commonly used reference panel, the
accuracy of rare variants is well below theoretical upper bound, suggesting that we have not reached
the limit of the Li and Stephen’s framework. Conditional on MAC, imputation becomes less accurate
with increasing reference size, suggesting that failure to identify the genealogically best templates
is likely the biggest source of error. Identifying these best templates may not always be possible
with available marker data, whose resolution is limited by the observed polymorphic sites and local
variation of recombination rate. Other factors that are likely to reduce imputation accuracy include
error in statistical phasing in the reference or the target haplotypes and departures from the infinite
sites assumption (parallel mutations or back mutations). However, as our model predicts, for all
reference panels, empirical imputation accuracy decreases much faster for MAC < 10, suggesting
that for these low counts the model misspecification modeled here further reduces the ability to
correctly impute rare variants.

Our results suggest that potential improvement of the imputation framework may lie in more de-
tailed modeling of the underlying genealogy, especially for extremely rare variants where only a small
subset of the reference contributes information about the imputed genotype. For example, suppose
the ancestral recombination graph (ARG) including both the target and the reference haplotypes
is constructed, the scenarios resulting in fractional dosage could be avoided (up to uncertainty in
ARG). However, alleles absent from the reference would still be missed, and there would be uncer-

tainty when all and only the closest reference haplotypes carry an allele: we can only probabilistically
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decide whether the mutation event or the coalescence event with the target haplotype happens first.

Overall, we identify that the model misspecifications in imputation algorithms limit our ability
for imputing rare variants. Such inherent errors reduce the power of single variant tests as well as
aggregation tests in studies that impute genotypes in large cohorts, especially if they focus on alleles
that are observed only a few times in the reference panel. Beyond improving our understanding of
the performance of imputation algorithms, these results point to potential new imputation strategies

that help identify new risk variants.
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A Probability distribution of fractional dosages

In the Method section, we derived the probability of having even the best possible evidence suggesting
a wrong allele type. Here we will generalize it to the cases where the most closely related templates
have different allele types, resulting in a fractional estimated dosage (figure [2/d).

Let P(g = j/u,g = 0]|j;n) be the probability of having u equally good optimal templates, j
of which carrying the mutation, for a target actually carrying the ancestral allele; conditional on
observing the derived allele count as j. Let (k’,d") denote the numbers of ancestral lines within the
size u subtree when the branch carrying the mutation starts and ends; (k”,d”) denote the numbers
of lines in the whole tree at the corresponding time point.

We will outline the calculation of the joint probability (the numerator), while the denominator is the
same unfolded frequency spectrum as before. We proceed by the following steps, each subsequent
probability is conditional on the previous one, in parallel with that for the special case in the Method.
1) The target haplotype does not coalesce in the first (n — d) events: Py(n + 1,d + 1).

2) A branch of size u arises in the reference at the (n — k)-th event, then remains alone till the
(n — d)-th event to coalesce with that external branch: P(u, k,d;n)Py(k,d + 1)@
3) The subtree of size u contains a branch of size j: P(jlu;n) = >~ 4 P(J, k', d'[u;n). (This step
only concerns the topology within the subtree)

4) The size-j branch encounters a mutation:P(m > 1[5, k', d’, u, k,n) = > yn P(m > 1|K",d";n +
DPK",d"|K',d,u, k,n). (Here we need to put the subtree back to the whole size-(n + 1) tree to get
the branch length and introduce mutation)

Step 1-2) are similar to the three steps in the previous section except for not involving mutation
events, we combine them to P(ext,u,k,d;n): an external branch first coalesces at the (n — d)-th
event with an internal branch of size u which starts at the (n—k)-th event. In step 3), P(j, k', d'|u;n)
is similar to P(u, k,d;n) in step 2), as P(j,k',d'|u;n) = P(j,k',d’;u): the probability for a branch

of size j to start at the (u — k’)-th event and end at the (u — d’)-th event.
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P(g=3j/u, g=0, j;n)

=" Plext,u,k,d;n)P(m > 1, jlu, k, d; n)
(k,d)

=Y Plest,uk,din) > |PGK, dlukin) Y P(m > 1k d"n+ )PRE" d"|K,d u,k,n)

(k,d) (K'.d") (k",d"")
n—u+1 u—j+1 k'—1 n—u+k’ k-1
(k‘ d) k=2 d=1 (k',d") k'= d'=1 (k",d'") k'=k'4+1 d'=d'+k—1

(16)

The only component left is P(k”, d"|k',d’, u, k,n), the link between the topology within the subtree
and the branch lengths, which is relative to the whole sample and involves the population size history
model. Since coalescent time intervals are measured for the whole tree, (k”,d”) tells us when the
branch of size j starts and ends, which leads to the probability for a mutation to occur.

We divide the coalescent process among the whole reference from n lines to k lines into three
parts: n — k" — d” — k. There are (n—k" —1)+ (K" —d”" —1)+(d” — k —1) unfixed events (since we
are conditioning on the three time points, (k', k"), (d',d") and (k)). Within each part, we consider
the number of events that has to happen inside the subtree: (v — k" — 1), (' —d' —1),(d —1—1).
With the number of lines fixed, P(k”,d"|k',d’,u, k,n) is calculated by considering the possible ways

to arrange those events in the three time intervals.

(s Tt | Gy (17)

("5

P, d" |k, d u k,n) =

The denominator in (10) comes from removing the constrains introduced by the mutation event.
Conditional on (u, k), there are in total (n —k —1) unfixed events in the whole tree, including (u— 2)
in the subtree. Since (k”,d") defines the coalescent time in the whole size-(n+1) tree, we can calculate

the length of the branch carrying mutation by (6): P(m > 1|k",d";n+1) =pu Zf:{,,lw E[T;n+1].
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B Comparison of opulation growth models
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Figure 7: Effect of population growth model on false discovery rate among non-carriers, from analytical
calculation. Given a target haplotype carrying the ancestral allele, the probability (y-axis, in log scale) of
having all the most closely related reference haplotype in the reference panel carrying the derived allele thus
an estimated dosage 1, on the derived allele frequency in the reference (x-axis). Each sub-figure represents
one reference size (in individual); each color represents a population growth model. FTE(EXP)_10M_2K:
faster-than-exponential (exponential) growth with current day effective population size 10 millions, and a
bottleneck with effective population size 2 thousands.
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Figure 8: Effect of population growth model on imputation accuracy upper bound (r?), from coalescent
simulation. Y-axis is the average 2 between imputed dosages and true genotypes without identification
error; error bars represent one standard deviation. Each sub-figure represents one reference size (in in-
dividual); each color represents a population growth model. FTE(EXP)_10M_2K: faster-than-exponential
(exponential) growth with current day effective population size 10 millions, and a bottleneck with effective
population size 2 thousands.

C Genotyping and Sample Quality Control

DNA samples from the blood of Michigan Genomics Initiative (MGI) participants were processed on
one of two production batches of a customized lllumina Infinium CoreExome-24 bead array. Genotype
calls were produced with the [llumina GenomeStudio 2.0 software operating the Genotyping Module
v2.0.4 and the Gentrain clustering algorithm v3.0. Variant and sample level quality control (QC) is
detailed as following.

Reads mapping and genotype calling were performed according to the Genome Reference Consor-
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tium Human Build 37 (GRCh37), 502,255 variants passed variant level QC. Variants were excluded
if (1) bead array probe sequences did not perfectly and uniquely map to the reference (BLAT v.351)
[1], (2) variant-level call-rate was below 99%, (3) variant fail Hardy-Weinberg equilibrium exact test
with p < 1076 in unrelated European samples (PLINK v1.90) [2], (4) GenomeStudio GenTrain score
< 0.15 or Cluster Separation score < 0.3, or (4) allele frequency differed between bead array produc-
tion batches (p < 1073, Fisher’s exact test). The genetic ancestry of MGI participants was inferred
by projecting MGI samples onto the space created by the first two principal components (PCs) of 938
unrelated samples of the Human Genome Diversity Project (HGDP) reference panel [3] (PLINK).
MGI samples were inferred to belong to a HGDP reference population if they fell within a circle
drawn around that population in a plot of the PCs. We also lift it over to GRCh38, where 501,607
variants remained.

Only consent individuals were included, and 56,984 samples passed sample level QC. Samples were
excluded in QC if (1) genotype-inferred sex is abnormal or did not match the self-reported gender
of the participant or the self-reported gender was missing, (2) sample shared a kinship coefficient
> (.45 with another sample with a different identification tag (KING v2.1.3) [4], (3) sample-level
call-rate was below 99% or any chromosome had a call-rate bellow 1/5 of the average, or (4) estimated

contamination level exceeded 2.5% (VICES) [5].
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