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A B S T R A C T

The rapid expansion of Next Generation Sequencing (NGS) data availability has made exploration of appropriate
bioinformatics analysis pipelines a timely issue. Since there are multiple tools and combinations thereof to analyze
any dataset, there can be uncertainty in how to best perform an analysis in a robust and reproducible manner. This
is especially true for newer omics applications, such as miRNomics, or microRNA-sequencing (miRNA-
sequencing). As compared to transcriptomics, there have been far fewer miRNA-sequencing studies performed to
date, and those that are reported seldom provide detailed description of the bioinformatics analysis, including
aspects such as Unique Molecular Identifiers (UMIs). In this article, we attempt to fill the gap and help researchers
understand their miRNA-sequencing data and its analysis. This article will specifically discuss a customizable
miRNA bioinformatics pipeline that was developed using miRNA-sequencing datasets generated from human
osteoarthritis plasma samples. We describe quality assessment of raw sequencing data files, reference-based
alignment, counts generation for miRNA expression levels, and novel miRNA discovery. This report is expected
to improve clarity and reproducibility of the bioinformatics portion of miRNA-sequencing analysis, applicable
across any sample type, to promote sharing of detailed protocols in the NGS field.
1. Introduction

Next Generation Sequencing (NGS) technology has revolutionized the
study of human genetic code, enabling a fast, reliable, and cost-effect
method for reading the genome. Whereas “first generation” sequencing
involved sequencing one molecule at a time, NGS involves sequencing
multiple molecules in parallel [1–3]. This advance has reduced the time
and cost per base that is sequenced, and has expanded sequencing ap-
plications which now includes microRNAs [4–7]. MicroRNAs (miRNAs)
are small RNAs of 22–25 base length, regulating gene expression through
degradation of mRNA transcripts and inhibition of translation [8].
MiRNAs have emerged as critical regulators of health and disease, and
when found in circulation, represent promising biomarkers given their
stability, specificity, and ease of detection and quantification [9].

By providing a quantitative readout of all molecules of interest in a
sample without relying on endogenous controls or pre-selected probes as
do real-time PCR and microarray approaches, NGS has emerged as the
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gold standard approach for profiling nucleic acid, including miRNAs.
Detecting single-nucleotide sequence changes or altogether novel se-
quences are added advantages of sequencing [10]. As a result,
sequencing has the capacity to identify molecules with greater sensi-
tivity, specificity, and predictive ability for detecting disease [11]. For
these reasons, sequencing has been applied to biomarker discovery for a
variety of diseases, but not without limitations. There are several sources
of error that can be introduced during a sequencing experiment. Among
these, the patient cohort may be underpowered [12]; sample extraction,
library preparation, and sequencing may create bias that leads to over- or
under-estimation of the expression level of a molecule or subset of mol-
ecules [13]; or a one-size-fits-all approach may be inappropriately
applied to data analysis. To harness the potential of NGS to identify
miRNAs as biomarkers – including novel miRNAs – a rigorous approach
that overcomes existing limitations is needed [14]. This report focuses on
the data analysis aspect, where a rigorous methodology for bioinfor-
matics analysis of miRNA-sequencing data has been developed and
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applied to identify miRNAs in plasma samples from osteoarthritis pa-
tients [15].

Here we focus on two major advantages of miRNA-sequencing, the
discovery of novel miRNAs, and the use of unique molecular identifiers
(UMIs). A novel miRNA is predicted based on secondary structure and
lack of homology with miRNAs in other species [16]. Novel miRNAs
represent promise in precision medicine approaches given their potential
specificity to disease states. Given this potential biological importance,
we have developed and tested a method for discovery of novel miRNA
sequences that are present in miRNA-sequencing data. In addition to
novel miRNA discovery, our pipeline includes analysis of UMIs. During
library preparation prior to amplification and sequencing, UMIs are
added to each miRNA transcript. Following sequencing, UMI reads are
collapsed such that the counts per miRNA remaining are more repre-
sentative of the original starting sample prior to amplification. This is an
internal control for managing library amplification bias, enabling accu-
rate miRNA quantitation. While previous studies reporting
miRNA-sequencing analysis may have incorporated UMI analysis, this
level of detail is often not reported, nor is the method used to execute
UMI analysis. Examples of available software which enable
miRNA-sequencing analysis, but not UMI processing, include
CAP-miRSeq and miRge [17,18]. Other software, such as TRUmiCount,
handles UMI processing, and integrates the same UMI-tools software as
we describe in our pipeline [19]. Yet other software, like sRNABench and
sRNAtoolbox, provide a similar pipeline but the UMI processing is
available only on the web-server mode and not standalone version, which
is not secure for analyzing data generated from patient samples [20]. To
overcome these limitations in the field, we put forth a detailed protocol
for analysis of miRNA-sequencing data, including quality control, align-
ment, demultiplexing, UMI analysis, and novel miRNA analysis.

It is our aim to establish a standardized protocol in the field such that
subsequent miRNA-sequencing studies will have a pipeline for guidance
in bioinformatics analysis. This will enable biologists who may not have
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sufficient expertise in bioinformatics methods to understand the steps
that need to be taken when analyzing a miRNA-sequencing dataset. It
will also benefit bioinformaticians who have not previously worked with
miRNA-sequencing data, given that this approach is relatively new as
compared to more established sequencing approaches such as DNA-
sequencing and RNA-sequencing. Furthermore, having a standardized
protocol will promote integration of research findings from different
groups, consistent with the efforts of established guidelines such as
‘Minimum Information about a high-throughput Nucleotide SEQuencing
Experiment’ (MINSEQE - http://fged.org/projects/minseqe/) and
‘Encyclopedia of DNA Elements’ (ENCODE) pipelines - https://www.enc
odeproject.org/microrna/microrna-seq/). We leverage only open source
software in our pipeline, offering customizable scripts for more advanced
users. Having applied this pipeline and identified a unique signature of
11 circulating miRNAs in early knee osteoarthritis, we present the
pipeline in sufficient detail to be replicated and widely used by others for
the bioinformatics analysis of miRNA-sequencing data [15].

2. Overview of miRNA NGS analysis pipeline

There is more than one way to analyze miRNA-sequencing data so
here we present the approach we determined to be most suitable for
bioinformatics analysis of miRNA-sequencing data generated from
human plasma samples. Fig. 1 depicts an overview of the pipeline in its
entirety, including: Prerequisite sequencing quality checks, Alignment
steps, and Novel miRNA analysis. The first section begins with assessing
the quality of the raw sequencing data, which is crucial to defining the
path of downstream data processing. The second section involves read
mapping and populating the UMI-based miRNA expression table for all
samples in an experiment. This section represents the core of analysis.
The third and final section describes the steps involved in novel miRNA
prediction analysis. For those who are interested in applying this analysis
pipeline, a detailed method is provided in Supplementary File 1
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(miRNA analysis protocol) and Supplementary File 2 (novel miRNA
analysis pipeline), along with details about software and databases used
in Table 1.

3. Detailed NGS analysis pipeline

3.1. Pre-requisite sequencing quality checks

A critical issue to consider in NGS experiments is accurate preparation
of the sample sheet. A sample sheet is a comma-separated values (.csv)
file, outlining the information required for a text editor (e.g. Illumina
Experiment Manager) to interpret the data generated from a sequencing
run. Without the sample sheet, demultiplexing of samples is not possible,
and therefore it is essential that the sample sheet accurately identifies the
specific index that was used for each sample. During library preparation
prior to sequencing, a specific barcode (8 nucleotides [nt] in length) is
assigned to each sample, therefore enabling the individual libraries to be
pooled and sequenced in the same run. The unique barcode (8 nt in
length) is not to be confused with the UMI (12 nt in length). Following
sequencing, the sample sheet is used to ‘decode’ and separate the samples
from each other based on these unique barcodes. In the event barcodes
are mismatched, demultiplexing is not possible. In other words, the
sequencing reads for individual samples cannot be separated from each
other and those data are lost. Further detail on demultiplexing following
sequencing is provided below.
3.2. Demultiplexing

Once sequencing is complete the result is base call files (.bcl) that are
generated for all the samples in a run, consisting of a series of images
captured and converted into base calls. These files need to be separated
into the individual biological samples based on aforementioned barcodes
added during library preparation. This process is known as demulti-
plexing. These bcl files (binary format and not viewable) are converted
into Fastq files using the bcl2fastq tool provided by Illumina, which al-
lows users to open and view the file. At the end of demultiplexing, mil-
lions of reads for each sample are obtained in Fastq file format. For
example, in our previous study, we obtained an average of 10 million
Table 1
List of software and databases used in both miRNA analysis and novel miRNA
prediction pipeline.

Name URL/link Utility Date of
Access

Bcl2fastq2 https://support.illumina.c
om/downloads/bcl2fastq-c
onversion-software-v2-20.h
tml

Software: Conversion
of.bcl files to.fastq files

12-Feb-
2019

Bowtie1 http://bowtie-bio.sourcefo
rge.net/index.shtml

Software: Read
alignment

13-Mar-
2019

miRDeep2 https://github.com/ra
jewsky-lab/mirdeep2

Software: Novel miRNA
prediction

20-Jun-
2019

FastQC https://www.bioinformatics.
babraham.ac.uk/projects/fast
qc/

Software: Single sample
Quality Control (QC)
report creation

21-Mar-
2019

MultiQC https://multiqc.info Software: Creation of
multi-sample QC report

22-Mar-
2019

UMI-tools https://github.com/C
GATOxford/UMI-tools

Software: Handling of
UMI-tagged reads

31-Mar-
2019

Cutadapt https://cutadapt.readthed
ocs.io/en/stable/guide.html

Software: Adapter
trimming

25-Feb-
2019

Samtools http://www.htslib.org Software: Processing
aligned files (.SAM)

24-Jun-
2019

miRBase http://www.mirbase.org Database: Mature and
hairpin miRNA
sequences

05-Jan-
2019

vGRCh38 http://hgdownload.soe.u
csc.edu/goldenPath
/hg38/chromosomes/

Database: Human
reference genome
sequence

06-Jan-
2019

3

reads per sample [15].

3.3. Quality assessment

It is essential to ensure the reads are of sufficient quality for subse-
quent analyses. Quality control of reads avoids ‘Garbage In Garbage Out
(GIGO)’ during downstream analysis, which is a computer science
abbreviation implying poor quality input (i.e. sequencing reads) will
result in poor quality data (i.e. expression values). There are two types of
read quality checks we perform for every sample. The first is to check the
quality of raw sequencing reads and the second is to check the number of
reads post-alignment to the reference database. Read quality is measured
using a metric called Q score or Phred score, which is logarithmically
related to base calling error probabilities [21]. A Q score of 30 (99.9%
accuracy) is considered acceptable across the field. For
miRNA-sequencing data, a higher percentage (>40%) of reads having 30

adapter and universal adapter contamination (e.g. Illumina Universal
adapter - ‘AGATCGGAAGAG’) is often observed. This is attributable to
the short length of mature miRNAs, where in a 75-base single-end read
sequencing run, the sequencer will read into the adapters in addition to
reading the entire length of the mature miRNA as shown in Fig. 2. In
cases where <40% reads have 30 adapter contamination, this may be an
indication of degraded RNA or other small RNA molecules such as
snoRNA, piRNA, etc. This can be confirmed by carefully noting the
genomic coordinates of these RNA molecules to the reference genome
and determining whether they have a disproportionate amount of
aligned reads [22].

The second major quality check is performed post-alignment to the
mature miRNA reference database, where miRBase is most often used
[23]. Poor quality samples with an insufficient number of aligned reads
should be excluded from further analysis to avoid biasing the final re-
sults. On average, successful alignment will yield at least 3 million
aligned reads per sample, provided that the sequencing depth was
assigned 10 million reads per sample. Samples with low numbers of
aligned reads can be identified based on having log-reads below the
0.025 normal quantile of the log-reads distribution across all samples. In
our previous study, this resulted in samples with fewer than 400,000
aligned reads being excluded due to insufficient read depth [15]. An
option to salvage such samples is to repeat library preparation and
re-sequence to see if the number of reads can be increased.
MiRNA-sequencing typically does not require great read depth or long
read overlap since mature miRNAs are 22–25 bases in length, although
sufficient read depth will provide greater confidence in identifying iso-
miRs (miRNA isoforms) and novel miRNA sequences. Quality Control
(QC) can be visualized through plots based on individual base sequence
quality scores, sequence length distribution, individual sequence GC
content, duplicate sequences and many other criteria using tools like
FastQC and FastX toolkit. To create multiple sample QC reports, MultiQC
tool is recommended (Table 1; Supplementary File 1).

3.4. UMI analysis and read filtering

In our previous study, we used the QIAGEN QIAseq miRNA library kit
which incorporates a UMI for each read. During bioinformatics analysis,
UMI reads must be collapsed to produce counts for eachmiRNA that were
present in the original biological sample prior to amplification. In our
experience, UMI-tools is the best open source software to accurately
process reads since it has multiple steps to extract, assign, deduplicate
and count the UMI-based reads [24]. Other tools available for UMI
analysis include bcl2fastq and FastP, but these tools do not provide the
number of reads tagged with each UMI [25]. Even with a tool to assist, it
is crucial to understand the structure of the entire read, identifying the
location of the 30 adapter, UMI, Reverse Transcription (RT) primer and 50

adapter (Fig. 2). Based on this structure, we generated a regular
expression (a string of characters which define a search pattern) with
some leniency to accommodate both the maximum number of reads and
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Fig. 2. UMI read architecture. The raw sequenced read is divided into the following parts:1. Trimmed read remaining - is the first part of the read, which codes for the
mature miRNA sequenc. 2. 30 Adapter – fixed length (19 nucleotide [nt]) of Illumina adapter sequence. 3. UMI tag – stands for Unique Molecular Identifier (UMI) tag of
fixed length of 12 nt. 4. Illumina univ – stands for Illumina Universal adapter of fixed length of 12 nt. 5. X seq – stands for a random sequence of nucleotides, when read
in combination with Illumina universal adapter makes up for the Reverse Transcription (RT) primer.

P. Potla et al. Osteoarthritis and Cartilage Open 3 (2021) 100131
also the most correct reads based on their UMI tag. Since it is imperative
to retain and trim only those reads having the 3’ adapter the sequencer
will read into the adapter in order to capture miRNAs. The utility of UMIs
is only seen post-alignment as there is greater confidence in the genomic
read location. Since the length of mature miRNAs is known to be around
22–25 bp, the final raw read filtering step is to trim the reads to retain
only the expected miRNA read lengths with some leniency, to remove
reads that are either too short (<18 bp) and too long (>30 bp). The result
of UMI analysis and read filtering is a set of good quality raw sequences,
ready to be processed for any analysis, such as alignment.

3.5. Reference-based read alignment

Given that miRNA-sequencing produces very short reads, accurate
alignment requires stringent parameters to avoid multiple matches across
the reference database. Our tool of choice is the original version of
Bowtie, since it is better known for short read alignment and also per-
formed better than tools like Bowtie2 and BWA. In our method, we
perform two rounds of alignment, one against a database of mature
miRNA sequences and the other against the reference genome sequence,
both being organism-specific. The most used reference database for
miRNA alignment is miRBase, currently in version 22.1 (Table 1) with
38,589 miRNA entries [23]. In the first round of alignment, reads are
aligned to mature miRNA entries from miRBase with stringent criteria.
Alignment to the reference genome is an important additional step since
the matrix of counts generated from miRBase alignment can be further
increased. Reads that do not align to miRBase are aligned to the genomic
coordinates of mature miRNA from the reference genome (e.g.
vGRCh38). Ideally, alignment to miRBase should account for the ma-
jority of the sequencing reads at roughly 60–80%. If this is the case, it is
an indication that the preceding filtering steps were successful in
retaining high quality data. This also lends confidence to the starting
sample quality and proper library preparation. In cases where the per-
centage of aligned reads to miRBase is low (<40%), the problem could be
an incorrect adapter sequence being used, regular expression being used
in UMI extraction, or an inappropriate reference database.

Once both alignment steps are completed for each sample, counts for
each miRNA are added to create a matrix of sums of UMI-based counts,
where each row is a miRNA and each column corresponds to a sample.
This step can be performed as per the user’s convenience and knowledge
using custom scripts (Supplementary File 1). These raw counts can then
be used for downstream Differential Expression Analysis (DEA) and sta-
tistical analysis. DEA and other downstream analyses are beyond the
scope of this article but have been described elsewhere [26]. These an-
alyses will depend on the research question and key variables such as the
number of samples, groups, batch effects, metadata (e.g. age, sex,
comorbidities), time points, and so on.

4. Novel miRNA analysis

Sequencing applications are increasingly used for detection of single
nucleotide polymorphisms, gene isoforms, and other lowly-expressed
genetic variants. With miRNA-sequencing, prediction of novel miRNAs
is possible based on features such as alignment, secondary structure
prediction, energy scores, and homology to other species. This prediction
4

pipelinemakes use of open source tools such as mirDeep2 [16]. However,
to the best of our knowledge, there are no existing tools which incor-
porate UMI information into novel miRNA prediction. Therefore, it is
critical to remove UMI tags from all reads using UMI-tools before pro-
cessing reads for novel miRNAs to avoid incorrect alignment. When the
first step of alignment occurs in miRDeep2.pl script, it is recommended to
find a species, genetically similar to the species profiled in your
sequencing data, so that homology between the observed and expected
mature and hairpin miRNA sequences can be accounted for before
moving ahead. The recommended goal of these prediction-based ana-
lyses is fewer novel miRNAs with greater confidence. In order to achieve
this, we removed sequences showing homology with known human and
mouse mature and hairpin miRNA sequences from miRBase. It is equally
essential to only retain sequences that are predicted to form a hairpin-like
structure (since this is the secondary structure of final mature miRNAs)
based on nucleotide energy calculations using specific software like
RNAfold within miRDeep2 [27].

Once a list of predicted novel miRNAs is generated for each sample,
an appropriate filtering strategy must be applied. The predicted novel
miRNAs are often not consistently found across all samples, therefore
precluding typical differential expression analyses. To increase confi-
dence that a predicted novel miRNA may be a true biological phenom-
enon rather than a computational artefact, one way to filter the list is to
select novel miRNAs that are consistently found across biological samples
in a pre-defined group. When applied in our previous study, we identified
4 novel miRNAs that were consistently found in >95% of samples in our
group of interest [15]. Novel miRNAs that are consistently present in one
group and absent in another may reflect a new biomarker of disease or a
new regulator of disease processes. A step-by-step guide has been curated
for scientists interested in novel miRNA prediction (Supplementary File
2).

5. Discussion

The recent surge in exploring bone and joint pathologies such as
osteoarthritis using NGS continues to advance our understanding of un-
derlying molecular processes [28,29]. MiRNA-sequencing offers the
power to identify both known and novel miRNAs in any sample, free of
specific probe-binding or endogenous references as required by older
technologies, revealing the complete miRNome of the biological sample.
Discovery of a panel of differentially expressed miRNAs can be utilized to
understand disease mechanisms, identify novel disease biomarkers, or
design therapeutic agents such as antisense oligonucleotides [30]. MiR-
NAs are implicated in a variety of disease processes and have been
demonstrated to have cell- and tissue-specific expression and behavior
[31]. Therefore, the pipeline we present for miRNA-sequencing repre-
sents an important advance in the omics field, with a key advantage being
the level of customization offered to the user. While the upstream
experimental design and downstream analyses (e.g. DEA) are beyond the
scope of this article, here we provide a detailed method for the bioin-
formatics portion of miRNA-sequencing analysis. Given the complexity
and importance of this step in obtaining high-quality sequencing data,
greater attention to bioinformatics processing is needed in the omics
field. Going forward, reports using sequencing would be strengthened by
including detailed bioinformatics methodology such that analyses can be
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understood and replicated by other groups. Collaboration between aca-
demic labs and private companies can leverage different expertise to
accelerate translation of research data.
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