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Abstract

Complementary to the genome, the concept of exposome has been proposed to
capture the totality of human environmental exposures. While there has been some
recent progress on the construction of the exposome, few tools exist that can integrate
the genome and exposome for complex trait analyses. Here we propose a linear mixed
model approach to bridge this gap, which jointly models the random effects of the two
omics layers on phenotypes of complex traits. We illustrate our approach using traits
from the UK Biobank (e.g., BMI & height for N ~ 35,000) with a small fraction of the
exposome that comprises 28 lifestyle factors. The joint model of the genome and
exposome explains substantially more phenotypic variance and significantly improves
phenotypic prediction accuracy, compared to the model based on the genome alone.
The additional phenotypic variance captured by the exposome includes its additive
effects as well as non-additive effects such as genome-exposome (gxe) and
exposome-exposome (exe) interactions. For example, 19% of variation in BMI is
explained by additive effects of the genome, while additional 7.2% by additive effects
of the exposome, 1.9% by exe interactions and 4.5% by gxe interactions.
Correspondingly, the prediction accuracy for BMI, computed using Pearson’s
correlation between the observed and predicted phenotypes, improves from 0.15
(based on the genome alone) to 0.35 (based on the genome & exposome). We also
show, using established theories, integrating genomic and exposomic data is essential
to attaining a clinically meaningful level of prediction accuracy for disease traits. In
conclusion, the genomic and exposomic effects can contribute to phenotypic variation
via their latent relationships, i.e. genome-exposome correlation, and gxe and exe
interactions, and modelling these effects has a great potential to improve phenotypic
prediction accuracy and thus holds a great promise for future clinical practice.
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Introduction

Both genetic and environmental factors underlie phenotypic variance of complex traits.
Understanding the influences of these factors not only helps explain why individuals
differ from one another in phenotypes but also helps predict future phenotypes, such
as disease diagnoses. The proliferation of genotypic data in the past decades, along
with developments in relevant analytic tools, have already contributed a great deal to
understanding phenotypic variations of complex traits’®, and enabled phenotypic
predictions at a level of accuracy for potential use in clinical settings'®'2. However,
these understandings and predictions are bounded by the heritability of the traits, and
for many complex traits, large phenotypic variation remains unexplained, suggesting
substantial environmental contributions to phenotypic variance.

Complementary to the genome, the concept of exposome has been proposed to
capture the totality of human environmental exposures, encompassing external as well
as internal environments over the lifetime of a given individual'*-'5. Similar to
genotypes, exposomic variables are standardised across cohorts'®. Since the
inception of the concept, considerable efforts have been made to assess and
characterise the exposome'’. For example, the Human Early-Life Exposome project
is a European collaborative effort established to characterize the early-life exposome
which includes all environmental hazards that mothers and children are exposed to'®.
Despite the progress in the construction of the exposome, few analytic tools exist to
date that can integrate genomic and exposomic data for complex trait analyses. We
hypothesize that exposomic variables do not only affect phenotypes on their own but
also interact among each other'%2% and with genotypes?®2'. In addition, the estimation
of exposomic effects and genomic effects on phenotypes could be biased, if these
effects are correlated but the estimation model assumes otherwise?2. Hence, tools that
integrate genomic and exposomic data are required to capture variance as well as
covariance components of phenotypes.

Here we propose a versatile linear mixed model that fulfils these requirements. The
proposed approach jointly models the random effects of the genome and exposome
and can be extended to capture genome-exposome and exposome-exposome
interactions and genome-exposome correlations in the phenotypic analysis of a
complex trait. It also allows us to model exposomic effects modulated by one or a few
specific environmental variables. We demonstrate the proposed approach using traits
from the UK biobank with 11 complex traits and 28 lifestyle exposures that were
measured using a standard protocol.
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Results

Method overview

We used a novel linear mixed model (LMM) to jointly model the effects of the genome
and exposome on the phenotypes of a complex trait. The exposome here is restricted
to 28 lifestyle exposures that were measured using a standard protocol (see Methods).
Our model has three key features. First, it allows estimation of the correlation between
genomic and exposomic effects, relaxing the assumption of independence between
those effects as in a conventional LMM?2. Second, the model can capture both additive
and non-additive effects of the exposome and genome, i.e. pair-wise interactions
between exposomic variables (exe interactions; e.g.’®) and interactions between
exposomic variables and genotypes (i.e., gxe interactions; e.g.?'). Third, the model
can handle correlated exposomic variables (see Methods & Supplementary Note 1)
that may cause biased variance estimations of exposomic variables (e.g.?°).

To illustrate the use of the model with real data, we selected 11 complex traits from
the UK Biobank with heritability estimates above 0.05, including BMI, sitting height and
years of education etc. (https://nealelab.qithub.io/lUKBB Idsc/), along with 28 lifestyle
variables, including alcohol use, smoking, physical activity and dietary composition
(see Methods for a detailed description). We performed the following analyses. First,
for each trait, we used various models to estimate variance components of the additive
and non-additive effects of the exposome and genome, including exe interactions and
gxe interactions. The significance of the variance components was determined
through a series of model comparisons using likelihood ratio tests (Table 1). Second,
we extended the proposed model to examine the extent to which exposomic effects
are modulated by covariates such as age, sex and socio-economic status (i.e., exc
interactions). Third, we used 5-fold cross validation to show that the prediction
accuracy increased significantly after accounting for the exposomic effects and exe
interactions. Finally, we explored the potential clinical use of the proposed integrative
analysis of genomic and exposomic data, by projecting its prediction accuracy for a
disease trait in terms of the area under the receiver operating characteristic curve
(AUC). The projection was based on well-established theories?33° that express AUC
as a function of sample size, proportions of variance explained by genomic and
exposomic effects and the population prevalence of the disease.

Exposomic effects on phenotypes

In line with previous estimation (https://nealelab.github.io/UKBB ldsc/), we found
significant SNP-based heritability for all selected traits, with estimates ranging
between 0.08 (years of education) and 0.52 (standing height; Figure 1). We detected
robust additive effects of the lifestyle-exposome on phenotypes of all traits (see Figure
1 for e and Table 1 for p-values under Ho 6; = 0). The magnitude of these additive
effects, however, varied across traits. For example, the exposome accounted for 8.5%
of the phenotypic variance of waist circumference, but less than 2.5 % for height,
standing height, heel bone mineral density and fluid intelligence. Importantly, the
additive exposomic effects were mostly uncorrelated with the genetic effects (see
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Table 1 for p-values under Ho o,. = 0; see Supplementary Table 1 for covariance
estimates), which was notably different from the genome-transcriptome correlation??.

The estimated variance component of non-additive effects of the lifestyle-exposome
(exe) was highly significant for 7 out 11 traits (Table 1), although they only account for
~ 1% to 2% of phenotypic variance (See Figure 1 & Supplementary Table 2). By
contrast, significant gxe interactions are only evident for BMI, weight and years of
education (Table 1), but they could account for up to 9% of total phenotypic variance
(years of education; Figure 1 & Supplementary Table 2). The low presence of gxe
signals is probably due to relatively low power of detecting gxe interactions, which is
caused by a large number of pairs of gxe interaction terms to be estimated in the model,
i.e. 28 (number of exposomic variables) x 1.3 million (number of SNPs) in this study.
In addition, the identified gxe and exe interactions are orthogonal to each other. This
is evidenced by that both gxe and exe remained significant when being jointly
modelled (see p-values under Ho ogyejexe = 0 @nd under Ho Geyejgxe = 0).

By extending the proposed model to a reaction normal model (RNM; see Methods),
we examined whether the additive exposomic effects on phenotype vary depending
on specific covariates, which would be evidenced by the presence of significant exc
interactions. Using single-covariate RNMs, we identified several significant exc
interactions (Supplementary Table 3), noting that most covariates are lifestyle related,
which are in line with the exe interactions found above. For each trait, we then fitted
an RNM model that simultaneously includes all significant exc interactions identified
from single-covariate RNM analyses. The variance estimates of exc interactions from
the joint analyses are presented in Supplementary Table 7.

It is important to note that the estimation of exposomic effects is sensitive to the
correlation structure of exposomic variables. Specifically, multicollinearity between
exposomic variables would bias the estimate of 62 (Supplemental Note 1); and by
extension, correlated exe interaction terms and gxe interaction terms (Equations 3 &
4 in Table 2) would bias the estimates of ¢%,, and che, unless their true values are
small (e.g., 04y = 0.1 and oZ,. = 0.1 in our simulations). Without knowing the true
values of variance components, transforming exposomic variables and interaction
terms using a principal component analysis (see Methods & Supplemental Note 1)
seems necessary prior to model fitting in order to avoid estimation bias due to
multicollinearity. While transforming the exposomic variables and the exe interaction
terms are computationally trivial, transforming the gxe interaction terms is
computationally infeasible (28 x 1.3 million variables). Nonetheless, the variance of
gxe interactions is small in general, suggesting that using the gxe interaction terms
without the transformation (i.e., derived from G®E in Equation 3 of Table 2) is
generally free from the estimation bias due to multicollinearity. Note that the largest
variance estimate of gxe interactions in this study is ~0.09.

Validation of exposomic effects
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Using 5-fold cross-validation, we found that both additive (e) and non-additive effects
(exe) of the exposome, which were significant in the discovery dataset, could improve
the phenotypic prediction accuracy in the target dataset. In general, the larger the
variance estimates, the greater the prediction improvements (Figures 2a & 2b), which
indicates that the additive effects of the exposomic variables and exe interactions are
genuine. Similarly, we also validated the exposomic effects modulated by specific
covariates, by showing that the larger the total variance estimates of exc interactions,
the greater the improvement of predication accuracy (Figure 3). The validated exc
interactions would in part explain the phenotypic variance due to residual x covariate
interactions found in our previous studies3'-33,

By contrast, although gxe interactions contribute to the phenotypic variance of BMI,
weight and years of eduation (Table 1), the contribution did not lead to significant gains
in phenotypic prediction accuracy (Supplementary Figure 1). This was most likely due
to a lack of power. i.e. the size of discovery samples was insufficient to accurately
estimate an extremely large number of parameters, i.e., best linear unbiased
prediction (BLUPs) of gxe interaction effects?3272834 This is further verified using
simulations (see Supplementary Note 2 and Supplementary Figure 2).

Given the sample sizes of the discovery data sets (~28,000), the prediction accuracies
of the model y = g + ¢ for the selected traits are only between 1/3 and 1/2 of the
theoretical maximums (i.e., square root of heritability; Supplementary Figure 3). They
can improve, in theory, by increasing the sample size of discovery sets
(Supplementary Figure 3); or, as shown in the above, by accounting for the additive
effects of the exposome and exe interactions (Figures 2b & 2c¢). To examine prediction
efficiency of the latter, we projected the observed prediction accuracies of the models
y=g+e+ecandy =g+ e + exe + € onto the theoretical trajectory of prediction
accuracies of the model y = g + € as a function of the sample sizes of discovery
datasets (Supplementary Figure 3). As such, the use of exposomic information could
improve phenotypic prediction accuracy to the same extent as a 1.2 to 14-fold increase
in sample size, depending on the significance of the exposomic effects and their
interactions (Figure 4). Given the substantial costs and efforts associated with
increasing sample size, the improved predictive accuracy by the modelsy=g+e +¢
and y = g + e + exe + ¢ are considerable, despite the fact that the proportion of
phenotypic variance explained by the exposome is small (see the x-axis of Figures 2b
& 2c).

Quantification of clinical relevance

We quantified the clinical relevance of the proposed model by exploring its prediction
accuracy for quantitative traits and disease traits. For quantitative traits, we expressed
the prediction accuracy of the model y = g + e + € (i.e., correlation coefficient between
the true and predicted phenotypes) as a function of the sample size of the discovery
dataset, variances explained by the genome and exposome, and effective numbers of
(independent) SNPs and exposomic variables (see Methods), using previous
theoretical derivations?’-3034, Based on the derived expression (Equation 6), we
computed the expected prediction accuracies for the quantitative traits used in this
6
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study and found that they agreed well with the observed prediction accuracies from
the 5-fold cross validation (Supplementary Figure 4). We then extended the derived
expression to disease traits in terms of the area under the operative characteristic
curve (AUC; see Equation 10 in Methods for details) using well-established theories?3
26, AUC is a gold-standard measure used to evaluate how well a prediction model
discriminates diseased from non-diseased individuals. An AUC between 0.7 to 0.8 is
considered acceptable, 0.8 to 0.9 excellent, and above 0.9 outstanding®®. Figure 5
shows the expected AUC of the proposed integrative analysis of genomic and
exposomic data for disease traits of different values of population prevalence (k),
assuming different amounts of variance (on the liability scale) explained by the
genome and exposome and discovery sample sizes. For simplicity, we use 62, to
denote the total variance in disease liability explained by additive effects of the
exposome and exe interactions as a whole.

When setting 02, to 0—that is, using no exposomic information at all—varying the
heritability of disease liability h? from 0 to 0.3 improves AUC from 0.5 to ~ 0.6 when
the sample size of the discovery set is 50k. This is in contrast to a 2-fold improvement,
from 0.5 to ~ 0.7, when the sample size is 500k. Thus, genomic prediction accuracy
heavily relies on sample size, such that for a disease trait with a moderate heritability,
a clinically meaningful level of accuracy (AUC >=0.7) may not be attainable unless the
sample size of the discovery dataset is substantially large (> = 500k). On the other
hand, the benefit of using exposomic information to disease prediction can be realised
with a relatively small discovery sample. This is evidenced by that when setting h? to
0 (i.e., using no genomic information at all), increasing the value of 62, has the same
effects on AUC whether using a discovery sample of 50k or 500k individuals. Notably,
for a moderately heritable disease that affects 1% of the population, with a discovery
dataset of 50k individuals, a collection of exposomic variables that together explains
~30% of the variance in disease liability is sufficient to yield an AUC greater than 0.85
for the target sample (see area under ROC when h?=0.3, k =0.01, 63,, =0.3 & N =
50k in Figure 5). Importantly, in all scenarios, AUC consistently improves with
increasing oZ,... Thus, incorporating exposomic data is not only an efficient but also
an effective way of improving prediction accuracy based on genomic data alone.
Taken together, genomic prediction accuracy for disease traits is constrained by
sample size; with a relatively small sample at hand, a desired level of prediction
accuracy may only be achieved by combining genomic and exposomic information.

Comparison with existing models

The key model parameters of the proposed integrative analysis of genomic and
exposomic data (IGE) compared to existing linear mixed models that incorporate
genetic and environmental effects on phenotypes are outlined in Table 3. In general,
IGE offers thus far the most detailed partition of phenotypic variance.

Both IGE and GXEMM?3¢ are whole-genome approaches to the estimation of heritability
and g x e interactions, although IGE is considered more comprehensive and versatile,
which models variances explained by additive effects of exposomic variables, by
exposome x exposome interactions, and by exposome x covariate (such as
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demographics) interactions; and covariance between genetic effects and exposomic
effects (Table 3). Further, bivariate or multivariate IGE (i.e., simultaneously including
two or more traits) can be feasibly performed using mtg2 version 2.18
(https://sites.google.com/site/honglee0707/mtg2).

In contrast, StructLMM has been developed primarily for a genome-wide by
environment interaction study (GWEIS)?° that examines one SNP at a time with a
focus on association tests (providing p-values) for GXE interactions between the SNP
genotypes and multiple exposomic variables. Using the well-established SNP BLUP
method?3738 IGE can also provide GWEIS summary statistics, including estimated
allele substitution effects of all SNPs across environments, their standard errors and
p-values. Note that SNP BLUP implemented in IGE can model all SNP jointly (a whole-
genome approach). Nonetheless, one of the main scopes of this study is to provide
unbiased estimates of exposomic variances, e.g. v(e) (c2) that is common to both
StructLMM and IGE (Table 3 & Supplementary Note 3). Importantly, correlated
exposomic variables would cause biased estimation of 6% (Supplementary Table 4)
unless they are transformed to independent variables via a principal component
analysis (Methods). To our knowledge, this transformation has not yet been
implemented in any existing methods including StructLMM. Using results from
simulations, we show that o estimates by StructLMM are prone to bias due to
correlated environments (Supplementary Table 4). The other model parameters such
as v(exe), v(exc) and cov(g, €) cannot be estimated by StructLMM (Table 3).
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Discussion

Using our approach, we demonstrate the importance of the exposome for
understanding individual differences in phenotypes. Although the ‘exposome’
constructed in this study comprises only 28 lifestyle factors, when integrated with
genomic data, it explained between 2% to 10% additional phenotypic variance and
significantly improved phenotypic prediction accuracy to a level equivalent to a 1.2 to
14-fold increase in sample size. The additional phenotypic variance is not only from
additive effects of the exposome but also from its non-additive effects (exe) and
genome-exposome interactions (gxe). We expect that as the construction of the
exposome continues to progress, more phenotypic variance will be explained and
greater improvements in phenotypic prediction accuracy will be gained. This would be
particularly promising for phenotypic analysis and prediction of traits with small to little
heritability component, such as ovarian and colorectal cancer®.

We noted that when exposomic variables are correlated, the variance estimate of
additive effects of exposomic variables is biased unless these variables are
transformed using a principal component analysis (i.e. E in Table 2 should be based
on transformed variables). By extension, this would apply to exe interaction terms and
gxe interactions terms, unless the proportions of phenotypic variance explained by
these interaction effects are small (<10%), as shown in our simulations. These
observations have important implications for modelling environmental effects in LMMs.
Recently, Moore et al.?° proposed the structured linear mixed model (StructLMM) that
incorporates random effects of multiple environments in order to study the interactions
between these environments and genotypes of a single SNP (i.e., gxe interactions).
However, the environmental variables in StructLMM are not transformed, even though
they are very likely correlated, which would have biased the variance estimate of
environmental effects. Consequently, it remains uncertain the extent to which the
estimation bias affects the StructLMM-based test statistics for detecting gxe
interactions.

Depending on the research question at hand, the construction of the exposome may
be guided by causal analyses. A meaningful exposome may only contain causal
information. Examples may include lifestyles that potentially alter the molecular
pathways or the pathogenesis of the main trait, or biomarkers that potentially explain
possible molecular pathways underlying the phenotypes. As a contrast, in our BMI
analysis, for example, it is not useful to include weight and height as part of the
exposome, even though they would explain a large amount of phenotypic variance.
This is because variations in these traits inform nothing other than the fact that they
are correlated with the trait.

Heritability estimates were slightly reduced after including more variance components

(result not shown). We considered two possibilities. First, the exposome may mediate

part of additive genetic effects on phenotypes. For example, some SNPs affect

smoking status, which in turn affect BMI. A model that simultaneously includes genetic

and exposomic data would account for smoking status and their genetic effects, and

hence gives arise to reduced heritability estimates. Second, there is a genuine
9
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correlation between exposomic and genomic effects in some latent mechanism. It is
noted that there are marginally significant correlation estimates, which were not
significant after Bonferroni correction. Such correlation may be because people who
have similar genotypes may somehow share similar exposures i.e. genotype-
environment correlation.

In conclusion, the genomic and exposomic effects can contribute to phenotypic
variation via their latent relationships, i.e. genome-exposome correlation, and gxe and
exe interactions, for which our proposed method can provide reliable estimates. We
show that the integrative analysis of genomic and exposomic data has a great potential
for understanding genetic and environmental contributions to complex traits and for
improving phenotypic prediction accuracy, and thus holds a great promise for future
clinical practice.
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Methods
Ethics statement

We used data from the UK Biobank (http://www.ukbiobank.ac.uk/) for our analyses.
The UK Biobank’s scientific protocol has been reviewed and approved by the North
West Multi-centre Research Ethics Committee (MREC), National Information
Governance Board for Health & Social Care (NIGB), and Community Health Index
Advisory Group (CHIAG). UK Biobank has obtained informed consent from all
participants. Our access to the UK Biobank data was under the reference number
14575. The research ethics approval of the current study was obtained from the
University of South Australia Human Research Ethics Committee.

Genotype data

The UK Biobank contains health-related data from ~ 500,000 participants aged
between 40 and 69, who were recruited throughout the UK between 2006 and 20104
Prior to data analysis, we applied stringent quality control to exclude unreliable
genotypic data. We filtered SNPs with an INFO score (used to indicate the quality of
genotype imputation) < 0.6, a MAF < 0.01, a Hardy-Weinberg equilibrium p-value <1e-
4, or a call rate < 0.95. We then selected HapMap phase Ill SNPs, which are known
to yield reliable and robust estimates of SNP-based heritability*?44, for downstream
analyses. We filtered individuals who had a genotype-missing rate > 0.05, were non-
white British ancestry, or had the first or second ancestry principal components outside
six standard deviations of the population mean. We also applied quality control on the
degree of relatedness between individuals by excluding one of any pair of individuals
with a genomic relationship > 0.025. From the remaining individuals, we selected those
who were included in both the first and second release of UK Biobank genotype data.
Eventually, 408,218 individuals and 1,133,273 SNPs passed the quality control of
genotype data.

Phenotype data

We chose eleven UK Biobank traits available to us that have a heritability estimate (by
an independent open source; https://nealelab.qgithub.io/UKBB Idsc/) greater than 0.05.
These traits are standing height, sitting height, body mass index, heel bone mineral
density, fluid intelligence, weight, waist circumference, hip circumference, waist-to-hip
ratio, diastolic blood pressure and years of education.

Prior to model fitting, phenotypic data were prepared using R (v3.4.3) in three
sequential steps: 1) adjustment for age, sex, birth year, social economic status (by
Townsend Deprivation Index), population structure (by the first ten principal
components of the genomic relationship matrix estimated using PLINK v1.9),
assessment centre, and genotype batch using linear regression; 2) standardization;
and 3) removal of data points outside +/- 3 standard deviations from the mean.
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Exposomic variables

We deliberately selected lifestyle-related variables that are known to affect some of
the selected traits to construct the exposome in this study. These variables include
smoking, alcohol intake, physical activity, and dietary composition. Details of these
variables are listed in Supplementary Table 6. Our aim here is not to cover a
comprehensive set of exposomic variables, but to demonstrate the potential use of the
proposed integrative analysis of genomic and exposomic data for partitioning
phenotypic variance and phenotypic prediction.

Statistical Models

We used LMMs to simultaneously model the random effects of the genome and the
exposome. The model equations and their assumed sample variance-covariance
structures are summarized Table 2. In these models, a genomic relationship matrix (G)
was constructed using an n x m1 genotype coefficient matrix (A) as G=AAt/m1, where n
is the number of participants and m1 is the number of SNPs. Similarly, an exposomic
relationship matrix (E) was estimated using an n x m2 exposomic variable matrix (B)
as E=BB m, Where mz is the number of exposomic variables (Table 2). These
relationship matrices were used to estimate the additive effects of the genome and the
exposome. In addition, interaction effects, including gxe, exe and exc, were also
considered in these models (Table 2).

Principal component-based transformed variables for E

If the degree of correlation among variables is high, it can cause biased estimates
when the variables are fitted in a model, i.e. multicollinearity problem. Such bias is
also problematic when using correlated exposomic variables to construct E to be fitted
in an LMM to estimate the proportion of the variance explained by the variables (R? =
o2 when phenotypes are standardised with mean zero and variance one). The R? can
also be obtained from a linear model, i.e. the coefficients of determination. For
problematically correlated variables, principal component regression has been
introduced*®.

A linear model can be written as
y=WB+ € (1)

where y is a N vector of phenotypes, W is a column-standardised N x M matrix having
correlated exposomic variables, B is their effects and € is a vector of residuals.

When exposomic variables in W are highly correlated, estimated exposomic effects
(B-hat) are inflated due to multicollinearity problem.

From the singular value decomposition, W can be expressed as
12
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W = UDV*

where U is a matrix whose columns contain the left singular vectors of W, D is a
diagonal matrix having a vector containing the singular values of W and V is a unitary
matrix (i.e. VV’=I) whose columns contain the right singular vectors of W.

V can be also obtained from the eigen decomposition of the covariance matrix of the
variables, i.e. W'W.

The principal component regression approach® proposes to transform W to a column-
orthogonal matrix, Q, multiplied by V, which can be written as

Q =WV

Now, we can replace W with Q in the model as
y=Qy+ ¢ 2)

where § = (2'Q)"1Q'y = (W'V'WV)"1W'V'y = (WW) 1W'yV’' = BV

Therefore, R? values obtained from models (1) and (2) are equivalent as

R2 = M-l _ Sy-@nil? _ S-@Bvoil” _ Sly-whil’
Zly-vil? Lly-vil? Zly-yil? Zly-yil?

However, equation (2) can avoid a collinearity issue among the variables. Therefore,
model (2) can be extended to a linear mixed model, i.e. the covariance structure can
be constructed based on Q, i.e. QQ’/m where Q is column-standardised.

Suppose a LMM of the form

y=WB+ € (3)
where y is a vector of phenotypes for n individuals; W is a n x m matrix that contains
m exposomic variables; B is a vector of random exposomic effects, each assumed
normal with mean zero and variance o%/m; and € is a vector of residuals, each
assumed normal with mean zero and variance o2.

Under this model, phenotypic variance is partitioned as

var(y) = o2 WW'm + o?I,
where | is the n x n identify matrix.

When exposomic variables are highly correlated, a transformed W, denoted as Q,
should be used, to avoid biased 62.

13
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In a similar manner to the linear models (1) and (2), LMM (3) can be rewritten as
y=UDV'g + ¢

Since VtV =1
y = UD(VIV)VIB + € = (UDVHV(V!B) + e = WV(V'B)+ €= Q (V') + ¢

Then
var(y) = Qar(V'B)Q' + o2l = QVtvar(B)VQ' + o2l = o2VVQ'/m + 021
= 02QIQ'/m + o2l = 62QQ'/m + 621

Therefore, using column-standardized principal components of exposomic variables
as W for Equation (3) can avoid biased 2. This is further verified using simulations.

Estimation of exc interactions

We extend the proposed model to a reaction normal model (RNM) by introducing exc
interaction terms, where e is the additive effects of exposomic variables and c is a
covariate. Given the robust additive effects found in the above, the interest of fitting
RNMs is determine whether these effects vary depending on covariates, which would
be evidenced by the presence of significant exc interactions.

While estimates of 02,, inform the phenotypic variance explained by the sum of all
possible combinations of pair-wise interactions between lifestyle-exposomic variables,
it may also be of interest to estimate the modulated exposomic effects specific to
particular covariates, using the reaction norm model (RNM3'-3346) The covariates
include alcohol intake, smoking, energy intake, physical activity, sex, socio-economic
status (indexed by Townsend deprivation index), age and ethnicity measured using
the first two ancestry principal components. For each covariate, we fitted the RNM that
allows the covariate to interact with exposomic effects and compared the fit of this
model with a null model that assumes no exc interactions (see Supplementary Table
3 for p-values). Significant covariates were then included in a subsequent analysis of
RNM that fit multiple covariates simultaneously. We reported the total variance of exc
interaction effects in Supplementary Table 7.

Five-fold cross-validation

Using 5-fold cross validation, we 1) validate significant variance components identified
above (Table 1) and 2) evaluate the extent to which the inclusion of these variance
components improves phenotypic prediction. For every trait, we randomly split the
sample into a discovery set (~80%) and a target set (~20%) and iterated this process
five times in a manner such that target sets did not overlap across iterations (see
Figure 6 for an outline). We derived the prediction accuracy of each model by
averaging the Pearson’s correlation coefficients between the observed and predicted
phenotypes across target sets; then compared prediction accuracies between models

14
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(e.g,y=g+evs.y=g+e+c¢g)to determine phenotypic prediction improvements
gained by the inclusion of a given variance component (e.g., var(e)). For each variance
component, we regressed prediction accuracy improvements on estimates of the
variance component and declared the variance component valid if the slope differs
from zero.

Theoretical prediction accuracy for quantitative traits

Suppose we predict phenotypes of a quantitative trait (e.g., BMI) with SNP-based
heritability h? using a discovery dataset of N individuals. Following previous theoretical
derivations?327-30.34 the genomic prediction accuracy based on the model y = g + ¢
can be written as

h2
— 2 .
rg=b hZ +M; /N (4)

where M is the effective number of chromosome segments, which is a function of the
effective number of population size and can be estimated using the inverse of the
variance of genomic relationships (i.e., G in Table 2) between the discovery and target
samples?’-30,

Assuming that phenotypes are standardized to have mean zero and variance one, if
the total amount of phenotypic variance explained by the exposome is ¢, Equation 4
can be adapted to describe the prediction accuracy of the model y = e + € in the form

o
re = Joc "2 +M,/N (5)
where M: is analogous to M1 and can be thought of as the effective number of
(independent) exposomic variables. Similar to M1, M2 can be estimated using the
inverse of the variance of exposomic relationships (E in Table 2) between the

discovery and target samples.

Upon establishing an agreement between expected accuracies, based on Equations
4 and 5, and observed accuracies for the 11 traits in this study (Supplementary Figure
4), we proceeded to the prediction accuracy of the proposed integrative analysis of
genomic and exposomic data.

Assuming that the genomic and exposomic effects on phenotypes are uncorrelated,
the prediction accuracy of the model y = g + e + € can be written as

r= /ré + r2 (6)

Equation 6 is verified by an agreement between the expected and observed
prediction accuracies for the 11 traits in this study (Supplementary Figure 4).

Theoretical prediction accuracy for disease traits

15
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Considering a disease trait with a population prevalence k, we derived the expected
prediction accuracy of the model y = g + e + ¢ for the disease in terms of the correlation
coefficient between the true underlying disease liability and predicted values from the
model?328:3447 ‘which can then be converted to an AUC value?3-%°.

Similar to rg and re, the expected prediction accuracies for the disease on the liability
scale, denoted as rg (for y = g + €) and r¢ (for y = e + €), can be computed using
previous derivations?328:3447 gg the followings.

2,2
' h4z

— 2.
‘e T \/h h2z2 + [k(1-K)J? - M1/[p(1-p) N]

(7)

where h? is the SNP-based heritability on the liability scale, N is the discovery sample
size, k is the population prevalence, p is the ratio of cases in the discovery sample,
and z is the density at the threshold on the standard normal distribution curve.

2 2
r_ 2 . Oe.totZ
r‘e - \/Ge.tot o2 T (8)

erotZ® + [k(1-K)]? - M2/[p(1-p)- N]

where o2, is the total amount of variance explained by the exposome on the liability
scale (i.e., 03 + 65.). Note 62;,. = o2 when 02, = 0.

As in Equation 6, we combined rgand r, to derive the expected prediction accuracy on

the liability scale for the disease, denoted as r’, under the assumption that the genetic
effects and exposomic effects are uncorrelated.

r'= ’réz + re? . (9)

Following a well-established theory?3-2528 that has been verified by a comprehensive
analysis of real data?®, we converted r’ to the area under the receiver operating
characteristic curve (AUC) as

AUC =

® (i—ix)r'? ] (10)
Vr2{[1-r2i(-0] + [1-1"21, (i, -]}

where i (=z/k) is the mean liability for diseased individuals, iz (=-ik/(1-k)) is the mean
liability for non-diseased individuals, t is the threshold on the normal distribution that
truncates the proportion of disease prevalence k and ® is the cumulative density
function of the normal distribution.

To derive the AUC values shown in Figure 5, we set p = k, M4 to 50,000 and M> to 28.
M+ (50,000) was estimated from the inverse of the variance of genomic relationships
(G) between the discovery and target samples?”2%30, Similarly, M (28) was estimated
from the inverse of the variance of exposomic relationships (E) between the discovery
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and target samples, which agrees with the number of transformed exposomic
variables by a principal component analysis in this study (see the correlated
exposomic variables section in Methods). Note that setting M2 up to 100 would not
yield expected prediction accuracies that notably differ from those from setting M. =
28.

Code availability
The source code for MTG2 v2.18 and example code along with related files for fitting

IGE model can be accessed without any restrictions from https://sites.google.
com/site/honglee0707/mtg2 or from https://github.com/honglee0707/IGE.
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Table 1. P-values for variance-covariance components of phenotypes of selected traits

Statistical Model

Model Comparison

y=8 +e ®
y=g+e +€,05.=0 () () o ()
y=g+e +€,0g0 70 ®
y=g+e+gxe +€,050=0 o ()
y=g+e +exe+eg,05.=0 ® ®
y=gtet+gxetexe+e,05,=0 (] (]
p-value under Hy:
Trait N 0Z=0 Oge =0 0%xe =0 026 =0 Opxelexe=0 Ooxelgxe="0
BMI 35,431 0.94
Standing Height 35,806 0.07 1.8E-02 4 9E-01 2.0E-02 5.8E-01
Sitting Height 35,553 0.19 2.4E-03 5.6E-01 2.7E-03 7.0E-01
Heel Bone Mineral Density 16,441 0.56 2.3E-02 1.2E-01 3.3E-02 1.8E-01
Weight 35,503 0.53
Fluid Intelligence 16,917 0.32 2.5E-01 4 3E-01
Years of Education 35,890 0.04
Waist Circumference 35,589 0.69 3.3E-02 1.7E-01
Hip Circumference 35,479 0.44 8.0E-01 5.1E-01
Waist to Hip Ratio 35,759 0.56 6.2E-01 3.3E-01
Diastolic Blood Pressure 34,100 0.97 6.2E-02 2.1E-01 6.9E-02 2.4E-01

Note: Bonferroni corrected alpha level for each model comparison = 0.05/66 = 7.6E-04
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Figure 1. Breakdown of phenotypic variance by the model with the best fit. The best
model for each trait is derived from model comparisons shown in Table 1. g = additive
genetic effects on phenotypes; e = additive effects of exposomic variables; exe =
interaction effects between exposomic variables; gxe = interaction effects between
genotypes and exposomic variables. Variance components are expressed as
percentage of total phenotypic variance.
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Figure 2. Exposomic variables contribute to phenotypic variance and improve phenotypic prediction accuracy. The prediction accuracy of a given model was
computed using the Pearson’s correlation coefficient between the observed and the predicted by the model. For all panels, the least squares line with 95%
confidence band is based on a linear model that regressed either prediction accuracies (panel a) or predication accuracy improvements (panels b-c) by a model
on variance component estimates of the model. The p-value is for the t-test statistic (df=7) under the null hypothesis that the slope of the regression line is zero.
of; = phenotypic variance explained by additive effects of the genome; 6% = phenotypic variance explained by additive effects of the exposome; 6%,, =
phenotypic variance explained by exposome-by-exposome interactions; and 0§ = total phenotypic variance. Panel a. Phenotypic prediction accuracies by the
baseline model that uses genomic data alone, i.e., y = g+¢, where g = phenotypic effects of the genome and ¢ = residuals. The larger the genetic variance, the
greater the prediction accuracy. Panel b. Additive effects of the exposomic variables (i.e., €) contribute to phenotypic variance and improve phenotypic prediction
accuracy. The greater the additive effects, the larger the gain in phenotypic prediction accuracy. A prediction accuracy improvement (on the y-axis) was derived
by subtracting the prediction accuracy of the model y = g+¢ from that of the model y = g+e+¢. Panel c. Exposome-by-exposome interactions (i.e., exe interactions)
contribute to phenotypic variance and further improve phenotypic prediction accuracy. The greater the variance estimate of exe interactions, the larger the gain
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in phenotypic prediction accuracy. A prediction accuracy improvement (on the y-axis) was derived by subtracting the prediction accuracy of the model y = g+e+¢
from that of the model y = g+e+exe+e.

22


https://doi.org/10.1101/2020.11.09.373704
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.11.09.373704; this version posted January 19, 2021. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

p = 1.65e-07

15e-02 - Waist Circumference®
BN

d

/»
Weight

Hip Circumferénce

1.0e-02 A
Waist to Hip Ratio
¢
Yeays of Education
4
5.0e-03 A

@®-Diastotic Blood Pressure

Fluid Intelligence

Prediction accuracy improvement

Heel Bone Mineral Density

Standing Height

0.0e+00 - Sitting Height

T T T T

2.5e-03 5.0e-03 7.5e-03 1.0e-02

2 2
Oec / Gy

Figure 3. Positive relationship between phenotypic variance explained by exposome-by-covariate (exc)
interaction effects and prediction accuracy improvement. Prediction accuracy improvement is computed
by subtracting the prediction accuracy of the model y = g + e + € from that of a model with multiple
covariates (see Equation 6 of Table 2) that are shown to interact with the exposome in univariate exc
interaction analyses. The least squares line with 95% confidence band is based on a linear model that
regressed prediction accuracy improvement on phenotypic variance explained by exc interactions. The
p-value is for the t-test statistic (df=7) under the null hypothesis that the slope of the regression line is
zero. Significant covariates included for each trait can be found in Supplementary Table 3.
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Trait n;
Years of Education 28712 010 1
Waist to Hip Ratio 28607 8%
Waist Circumference 28471 0100 g 13
BMI 28344 ® %8 6s
Hip Circumference  2s3s3 Oéls
Weight 28402 L
Diastolic Blood Pressure  27.280 833
Fluid Intelligence 13533 %3

Standing Height 23644

oo

Sitting Height 23442

my=g+e + €
mYy=-g+e+exe+e

Heel Bone Mineral Density 13152 §

oo

[ I I I 1
1 5 i 10 1_5 20
sample size relative to n; (fold increase)

Figure 4. Additional sample size required for the model y = g + € to achieve the same level of prediction
accuracy asy =g +e + ¢ (blue)andy =g + e + exe + € (red). nt = sample size of training (or discovery)
datasets.
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Figure 5. Expected prediction accuracy of the proposed integrative analysis of genetic and exposomic
data for disease traits of different prevalence (k) and heritability (h?) at varying levels of total variance
explained by the exposome (o2,,,) and sample size of the discovery dataset (N). Diseases are assumed
to have a liability of mean zero and variance 1, and both h? and o2,,, are on the disease liability scale.
Prediction accuracy is measured using the area under the receiver operating characteristic (ROC) curve,
with 0.7 to 0.8 generally being considered acceptable, 0.8 to 0.9 excellent, and above 0.9 outstanding.
The assumed effective number of chromosome segments and the number of exposomic variables are
50,000 and 28, respectively, which are based on the genomic and exposomic data used in this study.
However, varying the number of exposomic variables from 28 to 100 does not have a notable effect on
the expected area under the ROC curve.
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Figure 6. A schematic showing 5-fold cross-validation procedures. i) Randomly assign individuals to 5 groups of an equal size. ii) Choose one group as the
target dataset and the remaining four as the discovery dataset. Iterate the selection process five times in such a way that target datasets do not overlap across
iterations. Fit 4 models to each discovery dataset. iii) For each model, generate the best linear unbiased predictions from discovery datasets and project them
onto their corresponding target datasets to derive predicted phenotypes. Compute the phenotypic prediction accuracy for each model by averaging Pearson’s
correlation coefficients between the predicted and the observed phenotypes across target datasets.
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Table 2. Model equations and their assumed sample variance-covariance matrices.

Model Equation

Matrix Notion

Sample Variance-Covariance Matrix

Forindividual i=1, 2, ...., n, Fory = (y1, y2, ..., Yn),
my
— — t
1 yi—u+Zai]-aj+£i y_lJ-ln-i-g-l-s GEAA/m1+GgI
j=1 N
o G
8i a1 vt Am, oy
where yiis the phenotype, 11 is the grand mean, aj is the SNP genotype ~ Where g = Aa® = < P ) < : ) where Lis the n x n identity matrix.
at locus j, m1is the total number of SNPs, a; is the random effect of the a1 " @nmy/ \%m,
SNP that is assumed to be normal with mean zero and variance
cé/ml, and ¢iis the residual assumed to be normal with mean zero
and variance o?2.
my
— — t
2a Yi—u+gi+zbik[3k+€i y=ul,+gt+ete 02G+ o2 BB/ + 0?1
k=1 NE—
-
€; E
i b11 blmz Bl
where bi is the kth exposomic variable, mz is the total number of where e = BBt = -, : :
exposomic variables, and Bk is the random effect of the exposomic bni - bnm,/ \Bm,
variable that is assumed to be normal with mean zero and variance
o2/m,. To avoid estimation bias due to multicollinearity, bk is
transformed using a principal component analysis (see Methods).
2b yi=pt+g tetg y=pl,+gt+e+e o§G+o§E+[\/6+\/E+(\/E+\/E)]oge+ogl
where VG and VEE are the Cholesky decompositions of G and
E', respectively, and o, is the covariance between g and e.
Q
3 yi=u+gi+ei+2ciqu+gi y=pl,+g+e+gxe+ ¢ 0§G+O'§E+O'§xer+0€l
q=1
NG
g X ¢

where c, is the qth pairwise interaction term between SNP genotypes
and exposomic variables, and v, is the effect of the gth interaction
term. y, is assumed to be normally distributed with mean zero and
variance o3,./Q, and Q is the total number of interaction terms (Q =

m;m,).

Ci1 0 C1Q\ /Y1
where gxe = Cy'= < )() and C

Ch1 " CnQ YaQ
can be derived using the following pseudo-code
with A =[a; an,]; B=I[b; bn,]; C=
[¢1 - €ql,andg=1,2...Q.
fori=1tomi{
forj=1to mz{
Cq = ai®b]~ }}

where T is a n x n matrix derived by the Hadamard product of
GandE ,ie.,, GRQE.
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3
Yi=H +g +ei+zxipep+si
p=1
=
exe;

where x, is the pth pairwise interaction term between exposomic
variables, and when the two exposomic variables are identical, the
interaction term becomes the quadratic term of the exposomic
variable; 8, is the effect of the pth interaction term and is assumed to
be normally distributed with mean zero and variance 02,./P, and P is
the total number of interaction terms (P = m2 (m2 + 1)/2). To avoid
estimation bias due to multicollinearity, x, is transformed using a
principal component analysis (see Methods).

y=pl,+g+e+exe+ ¢

X11  Xgp\ /6
where e x e = X0 = < )()

Xn1 " Xpp Op
and X can be derived using the following pseudo-code
with B = [by bn,]; X =[X Xp],and p = 1,
2...P

fori=.1 to mz2{
forj =ito mz{
Xp = bl®b]}}

t
05G+ oZE +0§><exx/p + 021
L

()

Vi=un +g +te+gXe +teXe+g

y=pl,+g+e+gxe+exe+¢

05G+ 02E +03¢e T +03¢e © + 021

L mp

Vi=HW+g +ei+ZCﬂZbik7\kl+Si

I=1 k=1
—_—

Sl

where 1, is the random effect of kth exposomic variable, b,
modulated by the Ith covariate c;. A,y is assumed to be normally
distributed with mean zero and variance o /m,

L

y=pl,+ g +e +Zexcl + €
=1

where e X ¢; is a n x 1 vector that can be derived by
b11 b1m2 )\11

e ®c;, and e, = S : :
bnl bnm2 }\mzl

03 G+ E®(PKP") + o2 1

where¢p = (1, ¢; €2 €.) and
2
Gen GeOeL
K= : - :
2
GeOeL 0-EL
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Table 3. Comparisons of methods (software packages) on the genomic and
exposomic analysis of complex traits

Model Parameter/ software functionality Method
IGE StructLMM GxEMM
v(9)
single SNP °
whole genome o0 '
v(gxe)
single SNP x multiple environments °
whole genome x multiple environments (1) '
GWEIS summary statistics (X oo
cov(g,e) (X
v(e) o0 °
v(exe) (X
v(exc) (X
bivariate or multivariate analyses o0

IGE (proposed method): integrative analysis of genomic and exposomic data

StructLMM & GXEMM are existing linear mixed models that incorporate genetic and exposomic effects on
phenotypes

e: the parameter is included in the model, but the parameter estimate is not provided by the software
package.

ee: the parameter is included in the model, and the parameter estimate is provided by the software package.

v(g): additive genetic variance due to either a single SNP or all common SNPs (i.e., whole genome)

v(gxe): GxE variance due to either interactions of a single SNP or all common SNPs with multiple exposomic
variables.

GWEIS: Genome-wide by environment interaction study. Using the SNP BLUP method, the software for IGE
(mtg2 v2.18) provides allele substitution effects of SNPs across environments, their standard errors and p-
values. The StructLMM software provides allele substitution effects and p-values for GXE interactions.

cov(g,e): covariance between genomic and exposomic effects on phenotypes

v(e): variance due to additive effects of exposomic variables

v(exe): variance due to exposome x exposome interactions

v(exc): variance due to exposome x covariate (e.g., demographics) interactions

bivariate or multivariate analyses: analyses that simultaneously involve two or more traits.
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