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Abstract

Cellular reprogramming drives cells from one stable identity to
a new cell fate. By generating a diversity of previously inac-
cessible cell types from diverse genetic backgrounds, cellular
reprogramming is rapidly transforming how we study disease.
However, low efficiency and limited maturity have limited the
adoption of in vitro-derived cellular models. To overcome these
limitations and improve mechanistic understanding of cellular
reprogramming, a host of synthetic biology tools have been
deployed. Recent synthetic biology approaches have
advanced reprogramming by tackling three significant chal-
lenges to reprogramming: delivery of reprogramming factors,
epigenetic roadblocks, and latent donor identity. In addition,
emerging insight from the molecular systems biology of
reprogramming reveal how systems-level drivers of reprog-
ramming can be harnessed to further advance reprogramming
technologies. Furthermore, recently developed synthetic
biology tools offer new modes for engineering cell fate.

Addresses
Department of Chemical Engineering, MIT, 25 Ames St., Cambridge,
MA, 02139, USA

Corresponding author: Gallowoy, Katie (katiegal @ mit.edu)

Current Opinion in Systems Biology 2020, 24:18-31
This review comes from a themed issue on Synthetic Biology (2020)
Edited by Matteo Barberis and Tom Ellis

For complete overview of the section, please refer the article collection -
Synthetic Biology (2020)

Available online 21 September 2020
https://doi.org/10.1016/j.coisb.2020.09.002

2452-3100/© 2020 The Authors. Published by Elsevier Ltd. This is an
open access article under the CC BY license (http:/creativecommons.
org/licenses/by/4.0/).

Keywords

Cellular reprogramming, Synthetic biology, Epigenetics, Gene regula-
tory networks, Delivery, Latent donor identity, Signaling, Cell state, Cell
fate, Gene circuits, Lineage tracing, Barcoding.

Introduction to cellular reprogramming

Over the last decade, cellular reprogramming has revo-
lutionized our understanding of the malleability of cell
fate. In 2007, Yamanaka and Thomson [16, 111] gener-
ated human induced pluripotent stem cells (iPSCs),
heralding a new paradigm in cellular programming with

significant implications for disease modeling and
regenerative medicine. Reprogramming of commonly
available cells (e.g. skin and blood cells) into rare,
difficult-to-isolate cell types massively advances our
ability to model diseases # vitro. In this review, we
utilize the term ‘reprogramming’ to indicate the con-
version of cellular identify from one cell fate to another.
While the term reprogramming has historically specified
conversion to iPSCs, the process and terminology
extend beyond stem cell biology to more generally
describe cell-fate conversion. Beyond pluripotent cells,
recent studies have shown that transcription factor-
mediated reprogramming can convert skin fibroblasts
directly into many somatic cell types including neurons,
neural precursors, cardiomyocytes, and hematopoietic
cells, skipping the time-consuming generation of iPSCs
[1—5]. Reprogramming from one somatic cell type to
another is often described as transdifferentiation or
direct conversion. Although the protocols for generating
cell types are as diverse as the cell types themselves, the
processes and strategies of reprogramming to pluripo-
tent and somatic cells are highly similar.

Reprogrammed cells provide patient-specific models of
complex disease. For diseases and developmental dis-
orders, a constellation of factors (e.g. genetic back-
ground, environmental exposure, history of infection)
influences the onset and course of disease. By expanding
the range of genetic backgrounds to include any donor
(e.g. patient-specific), reprogrammed cells fundamen-
tally alter the possibilities for modeling diseases at the
cellular level [6]. Relevant disease phenotypes have
already been captured in reprogrammed cells, suggest-
ing the potential to use these cells as a tool to study
neurological, muscular, and cardiac diseases [7—12].

Beyond modeling disease, reprogramming provides a
testbed for studying cellular plasticity. The malleability
required for cellular reprogramming poses questions
regarding how stable cellular identities are maintained
and why certain cells possess differential ability to
reprogram or transform. Simple overexpression of four
transcription factors redirects the entire trajectory of
cellular fate to that of an iPSC. If this relatively simple
expression system can direct a fibroblast to become an
iPSC, what could we do with more complex synthetic
circuitry such as feedback controllers [13]? Reprog-
ramming provides a rich landscape for investigating the
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performance and potential of synthetic genetic systems
to control cell fate.

Providing regenerative therapies through cellular re-
placements or / vivo reprogramming remains one of the
most ambitious aims of cellular reprogramming. Over
the coming decades, with the development of improved
understanding and tools, cellular reprogramming will
transform from an 7 vitro science into a translational
therapy. However, there remain several challenges to
achieving the potential of reprogramming. In this
review, we present how various synthetic biology ap-
proaches have been used to address challenges and
provide a perspective on how recently developed syn-
thetic biology tools and systems biology insights can be
applied to further develop the enormous potential of
reprogramming. As we gain improved control of the
reprogramming process through optimized vectors and
tailored protocols, reprogramming will support regen-
erative medicine by enabling the replacement and repair
of damaged tissues.

Synthetic biology approaches to challenges
in cellular reprogramming

While reprogrammed cells hold great potential, low
reprogramming rates and immaturity limit the practical
use of reprogrammed cells [14,15]. As molecular barriers
to efficient reprogramming and maturation have been
identified, synthetic biology tools to overcome these
barriers have in turn been developed.

Addressing challenges in delivery and transgene
expression

Effective reprogramming requires efficient delivery of
reprogramming factors and other genetic elements.
Initial reprogramming technologies used retroviruses to
infect difficult-to-transfect primary cells [16,17]. How-
ever, retroviruses introduce issues with silencing,
immunogenicity, and genomic integration [18,19]. As an
alternative, a range of new delivery modes have been
developed, including nonintegrating viruses and mRINA
of reprogramming factors. Each delivery vehicle pre-
sents different opportunities and limitations in disease
modeling and regenerative medicine.

Genetic elements that induce reprogramming can be
delivered via viral or nonviral vectors (Figure 1a). Viral
vectors enable high transduction efficiency, robust
transgene expression, and broad tropism (i.e. ability to
infect a particular cell type) in primary cells (Figure 1b
and c¢) [20]. Conventional lentivirus- and retrovirus-
mediated transductions integrate reprogramming fac-
tors into the genome, enabling long-term expression
(Figure 1b). However, integration creates the risk of
oncogenesis because of random insertional mutagenesis
[21]. Integrated transgenes can be eliminated via the
Cre-lox  recombination system by  flanking
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reprogramming transgenes with loxP sites [22]. Alter-
natively, nonintegrating viruses such as Sendai viruses
(SeVs) and adeno-associated viruses (AAVs) provide
better safety profiles while maintaining robust, tempo-
rary expression of synthetic constructs. SeVs have been
successfully used for i vivo reprogramming to replace
damaged cardiac tissue in mice [23]. Unlike AAVs, SeVs
can provide long-term expression and can be removed at
specific timepoints by various methods (e.g. siRNA)
[24]. AAVs are widely used for gene therapies because of
their low immunogenicity (Figure 1d) [20]. The high
cotransduction efficiency of AAVs enables the separa-
tion of factors onto individual AAVs which reduces cargo
size while still inducing reprogramming iz vivo [25].
However, AAVs have a low packaging capacity,
preventing the delivery of larger multigene cassettes

[20].

Nonviral delivery methods of reprogramming factors
typically use cationic polymers or lipids/liposomes to
directly deliver DNA or RNA into cells [21]. Although
rare, delivered DNA can integrate into host genomes
(Figure 1b) [26]. To address this issue, nonplasmid-
based methods have been developed which pose no risk
of integration. Synthetic modified mRNA cocktails can
reprogram human primary fibroblasts, sometimes with
higher efficiency than viral-mediated methods [27].
While most reprogramming methods rely on over-
expression of reprogramming factors, knockdown of a
key splicing factor via antisense oligonucleotides
(ASOs) converts astrocytes to neurons [28]. In addition,
injection of antisense oligonucleotides has proven clin-
ical efficacy and safety in treating neurodegenerative
diseases, presenting an alternative delivery method for
reprogramming [7,29]. Another nonviral delivery
method uses transposon systems, such as PiggyBac or
Sleeping Beauty, to temporarily integrate transposons
containing reprogramming factors [30,31]. Transposon
systems are delivered via plasmids and can be excised
when the appropriate transposase is expressed.

Although systemic analyses of these methods give some
insight into method selection, there is no comprehen-
sive study of all delivery methods that assesses reprog-
ramming efficiency and maturity of derived cells. Of the
semicomprehensive studies, a comparative analysis of
viral- and nonviral-mediated delivery methods in
reprogramming demonstrated that viral-derived human
iPSCs (hiPSCs) have the most similar transcriptome to
human embryonic stem cells (hESCs) [26]. Achieving a
more complete pluripotent state may require sustained
transgene expression enabled by viral delivery [26,32].
However, neither viral- nor nonviral-derived human
iPSCs show a difference in cardiac differentiation po-
tential [26]. Together, these observations suggest that
delivery methods affect the pluripotent state of
reprogrammed cells without compromising differentia-
tion potential. More robust studies will illuminate the
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advantages and disadvantages of different delivery
methods for reprogramming.

Given the importance of delivery, mechanisms enabling
multi-factor infection and stoichiometric balancing may
enhance reprogramming. Polycistronic cassettes of
transcription factor cocktails ensure that transduced or
transfected cells receive all transcription factors
required for reprogramming (Figure le) [4,33,34]. The
ordering of transcription factors on the cassette controls
transcription factor stoichiometry, resulting in highest
expression of upstream genes (Figure 1f) [33]. In
cardiomyocyte and dendritic cell reprogramming,
cassette ordering impacts stoichiometry and reprog-
ramming efficiency [4,33]. In contrast, during neural
reprogramming, widely varying ratios result in success-
fully induced motor neurons [35]. Given these data, how

on reprogramming? One experiment from cardiomyo-
cyte reprogramming may explain these paradoxical ob-
servations [23]. Reprogramming was optimized in a
retroviral cassette ordering reprogramming factors as
Mef2¢, Gata4, and Tbx5 (MGT). Surprisingly, rear-
ranging the factors in a SeV-delivered GMT ordering
induced cardiomyocyte reprogramming more efficiently
than the stoichiometry optimized retroviral MGT. Pu-
tatively, the observed reprogramming efficiency increase
is because SeV-GMT resulted in higher expression
levels of all three reprogramming factors (M, G, and T)
compared with retroviral-delivered MGT. Thus, suc-
cessful reprogramming may require specific transcrip-
tion factors to exceed certain thresholds rather than
meet precise ratios of reprogramming factors.

Tools from synthetic biology may resolve these poten-

do we understand the general impact of stoichiometry  tially contrasting observations by systematically
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Delivery vectors and transgene expression.(a) Viral and nonviral approaches to delivery of reprogramming factors. (b) Delivery vectors vary in the
duration of expression and the frequency of integration. Retroviruses and lentiviruses integrate with high frequency, enabling sustained expression.
Adeno-associated viruses (AAVs) and plasmids integrate on rare occasions and dilute through cell division, resulting in shorter expression duration. In
contrast, RNA-based methods and Sendai viruses (SeVs) pose no risk of integration. SeVs provide long-term expression without integration by replicating
in the cytoplasm. SeVs can be removed at specific timepoints by different methods, such as siRNA targeting Sendai polymerases [24]. (c) Viral delivery
methods vary tropism which is their ability to infect various cells types (e.g. dividing vs. nondividing cells, lineage-specific) as well as which area of the
body to target. Efficient in vivo reprogramming requires delivery targeted to the desired reprogramming site and cell type. (d) Viral vectors vary in their
immunogenicity. Newer viral delivery methods such as AAVs and SeVs are less immunogenic than conventional retroviruses or lentiviruses [20,23]. (e)
For multi-factor delivery, polycistronic cassettes ensure the delivery of all reprogramming factors to transduced cells; however, the limited cargo size of
AAVs requires separation of factors and cotransduction to achieve delivery. (f) The ordering of reprogramming factors on polycistronic cassettes impacts
the expression of each factor, resulting in highest expression of upstream genes [33].
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perturbing reprogramming factor expression levels.
Synthetic promoters operating with orthogonal tran-
scription factors offer predictable expression over a wide
range of expression levels [36]. In addition, degradation
peptide tags offer predictable control over protein
degradation rates [37]. Incorporation of these synthetic
regulators into larger gene circuits with feedback control
can reduce expression noise across cells [38]. By
providing layers of gene expression regulation, synthetic
biology will enable precise control over reprogramming
factor levels.

Addressing epigenetic roadblocks to reprogramming
The central hypothesis of transcription factor-mediated
reprogramming relies on optimal cocktails of factors
redirecting transcriptional networks and, thus, cellular
identity. However, epigenetic roadblocks may impede
transcription factor-mediated changes by inhibiting
access to various loci and prohibiting the activation of
critical subnetworks of genes [5,39]. To address this
issue, various cocktails of small molecules and genes
have been developed to increase genomic accessibility
[40—42]. Inhibitors of histone deacetylase block the
removal of acetyl groups from histones. These acetyl
groups prevent tight DNA-histone binding, putatively
enabling higher rates of transcription factor binding to
cognate sites [43]. In addition to cocktails to increase
DNA accessibility, synthetic biology approaches to
overcome epigenetic roadblocks have focused on
improving the efficacy of transcription factors to open
one or many loci and enable activation of native regu-
latory networks.

Transcription factors drive changes in chromatin struc-
ture by binding to cognate DNA sequences, recruiting
transcriptional machinery, and inducing transcription
[44,45]. Efforts to drive cellular transitions have focused
on transcription factor cocktails to induce specific cell
fates [46]. Induction of transcription remodels chro-
matin, putatively removing epigenetic roadblocks
through nucleosome eviction. Synthetic biology efforts
to overcome epigenetic barriers have largely focused on
engineering more potent synthetic transcription factors.

Synthetic transcription factors such as CRISPR activa-
tors (CRISPRa) promote changes in chromatin struc-
ture by recruiting transcriptional machinery to induce
transcription and epigenetic remodeling. Targeting of
just a single locus via CRISPRa can drive large-scale
chromatin remodeling needed for cellular reprogram-
ming. CRISPRa targeting Ocz4 or Sox2 eliminates the
need for Oct4 or Sox2 overexpression, respectively, in
reprogramming fibroblasts to iPSCs [47,48]. CRISPRa
can replace native factors to generate neurons, skeletal
muscle, and cardiac progenitors [49—51]. In addition,
recent techniques to connect CRISPRa to signaling
activity of native pathways provide the potential for
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signaling-dependent locus activation to enable coordi-
nation between signaling activity and reprogramming
[52]. While CRISPRa techniques provide programmable
site-specific activation, the large size of dCas9 (4.5 kb
gene) limits adoption into viral vectors with smaller
cargo limits (e.g. AAV). Smaller Cas variants may enable
improved flexibility of CRISPRa to target primary cell
types [53,54].

Expanding beyond native proteins, library-based ap-
proaches enable the selection of novel transcription
factors. Evolution of Sox17 via directed evolution of
reprogramming factors by cell selection and sequencing
identified variants that replaced Sox2 and increased the
rate of reprogramming to iPSCs [55]. Selection of zinc
finger libraries fused to VP64 identified artificial tran-
scription factor variants that could replace Oct4 over-
expression [56]. Effective artificial transcription factors
did not directly target Oct4, but instead appeared to
activate processes that indirectly induced endogenous
pluripotency networks.

Curiously, exclusion of Oct4 from Klf4, Sox2, and cMyc
(KSM) cocktails modestly reduces efficiency but im-
proves the developmental potential of iPSCs, increasing
the rate of live-born chimeric mice [32]. Together these
data suggest that identifying optimal reprogramming
protocols require defined objectives whether efficiency,
maturity, or potential. As greater insight into the central
processes that support reprogramming emerge, the
range of useful synthetic transcription factors and
combinations will continue to expand via directed
evolution.

Overcoming challenges from latent donor identity
Competition between established and newly induced
gene regulatory networks (GRNs) to define central
cellular properties (e.g. the actin cytoskeleton, splicing,
the ensemble of secreted extracellular matrix [ECM]
proteins) may limit the full adoption of the alternative
identity during reprogramming, resulting in a spectrum
of conversion. Latent activity of donor cell GRNs im-
pacts direct conversion and may compromise cellular
maturity [57]. Given their interconnection, perturba-
tions of native signaling pathways, the cytoskeleton, and
the ECM provide nodes for actuating changes in GRNs
to improve the efficiency and maturity of reprogrammed
cells (Figure 2).

Native signaling pathways in donor cells provide diverse
levers for tuning reprogramming (Figure 2a). For
example, addition of small-molecule inhibitors of pro-
inflammatory transforming growth factor (TGF)-8
signaling can improve reprogramming efficiency [58—
61]. TGF-B signaling may impede reprogramming by
inducing fibrosis and senescence [62]. In addition, in-
hibition of the inflammatory cytokine interleukin (IL)-
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Figure 2
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Challenges in latent donor cell identity. Residual expression of the donor gene regulatory networks (GRNs), vestiges of the cytoskeleton, and other
biomolecules defines the latent identity of donor cells. Through interconnection of properties, latent donor identity affects the efficiency and maturity of
reprogrammed cells. (a) Inhibition or activation of signaling pathways may increase or impede reprogramming, depending on the maturity of the donor cell
and reprogramming protocol. (b) Donor GRNs can be repressed by microRNA, allowing cells to more readily adopt new cellular identities. (¢) Mechanical
cues from the ECM are transmitted through the actin cytoskeleton and focal adhesions which are composed of integrins, Src kinases and other adaptor
proteins. Cells respond to mechanical cues via mechanotransduction (Figure 2d). (d) Mechanotransduction directly relays mechanical cues to the nu-
cleus via the linker of nucleoskeleton and cytoskeleton (LINC) complex [108]. Mechanotransduction can also transmit secondary signals via transcription
factors such as YAP, which translocates into the nucleus via nuclear pore complexes (NPCs) in response to mechanical forces. ECM, extracellular matrix;

miRNA, microRNA; YAP, Yes-associated protein; INM, inner nuclear membrane; ONM, outer nuclear membrane.

1B and its downstream effectors promotes reprogram-
ming to cardiomyocytes in adult mouse fibroblasts [63].
Inhibition of this pro-inflammatory cascade improves
reprogramming of post-natal and adult fibroblasts but
has no effect on embryonic fibroblasts. The existence of
divergent inflammation responses based on develop-
mental stage suggests that additional layers of regulation
via native signaling can prevent reprogramming of
mature cell types. Senescent cells secrete IL.-6 which
augments the generation of iPSCs non—cell-autono-
mously (i.e. through multicellular interactions) [64,65].
Putatively, the IL.-6/STAT?3 signaling pathway induces
expression of the transcription factor NKX3-1, which

activates expression of endogenous Oct4 [66]. The
impact of Wnt signaling on reprogramming is highly
context-dependent. Activation of the Wnt signaling
pathway increases reprogramming of fibroblasts to iPSCs
[61]. In addition, Wnt signaling triggers proliferation
and conversion of Miller glial cells to neurons [67].
However, Wnt inhibition promotes reprogramming to
cardiomyocytes [63]. Given the diverse, cell-specific
functions of native signaling pathways, connecting
signaling to mechanisms of reprogramming remains an
important objective. Moreover, tools for connecting
signaling to regulation may enable genetic control that is
tuned to pathway activity. There exists enormous
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potential for synthetic biology approaches to modulate
and redirect these pathways (e.g. generating pathway-
responsive transcription factors [52]), providing selec-
tive, responsive, single-cell control of reprogramming
within heterogenous cell populations. The potential of
these strategies is discussed in further detail in section
A vision for the future of synthetic biology in
reprogramming.

Native signaling pathways, the epigenetic state, and
cellular identity all connect with the cytoskeleton and
ECM by mechanotransduction [68]. In addition to
providing mechanical support, the cytoskeleton enables
cells to sense and respond to changes in their environ-
ment’s mechanical properties through mechano-
transduction (Figure 2c and d). Furthermore, stages of
reprogramming correlate with changes in cell stiffness
[69]. Emerging studies demonstrate that leveraging
mechanical cues to affect cellular changes may enhance
reprogramming efficiency and cellular maturity.

Mechanical properties of substrates affect both directed
differentiation and iPSC reprogramming. For example,
substrate stiffness can interact with soluble induction
factors to direct differentiation and dictate lineage
commitment of PSCs/iPSCs [70,71]. Current methods
to improve reprogramming by modulating cell stiffness
either target the actin cytoskeleton or change the sub-
strate’s mechanical properties. Softer substrates result
in less stiff actin fibers and facilitate reprogramming of
mesenchymal stem cells into iPSCs [72]. Recent evi-
dence demonstrates that cell stiffness can block chro-
matin accessibility and full pluripotency [69].
Mechanotransduction signaling can also influence
reprogramming non—cell-autonomously. For instance,
overexpressing the Yes-associated protein (YAP), a
mechanosensitive transcriptional co-activator, increases
reprogramming of co-cultured cells but does not in-
crease reprogramming of YAP-expressing cells [73]. The
complex interplay of signaling and mechanical cues and
their feedback into GRNs necessitates an integrated
approach to modeling and probing pathways and pro-
cesses in cellular fate transitions.

Given the highly intertwined cellular processes and
competition to define cellular properties, repressing
competing GRNs via microRNAs (miRNAs) represents
an important tool in reprogramming (Figure 2b). Over-
expression of cell type-specific miRNAs alone or in
combination with transcription factors enables reprog-
ramming to iPSCs [27], cardiomyocytes [74], and neu-
rons [75]. miRNAs alleviate the barriers to
reprogramming by directly repressing donor cell GRNs
and derepressing the target cell GRNs. In reprogram-
ming fibroblasts to cardiomyocytes, supplementing the
cardiomyocyte transcription factor cocktail with miR-
133 has been reported to directly repress the fibroblast
transcription  factor  Snail  [76]. In  neuronal
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reprogramming, miR-9/9*-124 expression depletes
restrictive element-1 silencing transcription (REST)
[77]. REST represses expression of neuronal genes in
non-neuronal cells. miRNA-mediated depletion of
REST increases chromatin accessibility at REST-bind-
ing sites to generate neurons primed for subtype spec-
ification [78,79]. Beyond influencing DNA-binding
proteins and chromatin architecture, the feedback be-
tween miRNAs and RNA-binding proteins regulates cell
identity. In non-neuronal cells, polypyrimidine tract
binding (PTB) binds to RNAs targeted by miR-124,
blocking the binding of miR-124. In the absence of
miR-124—mediated targeting and downregulation,
expression of REST and other non-neuronal factors in-
crease, repressing expression of miR-124 [80]. By
exploiting this circuit architecture, knockdown of PTB
induces expression of miR-124 to convert astrocytes to
neurons z vivo [28]. miRNAs may also exhibit a syner-
gistic effect with RNA-binding proteins to promote
conversion [81]. Through post-transcriptional and
downstream post-translational effects, miRNA expres-
sion directly influences the epigenetic barriers and
donor-cell GRNs to promote reprogramming.

The combination of signaling pathways, GRNSs, epige-
netic state, and cytoskeletal elements defines the mo-
lecular determinants of cellular identity that confer
unique cellular forms and functions. Whereas single
molecular determinants may coordinate individual pro-
cesses, multiple layers of regulation support the main-
tenance of stable identities, buffering cells against cell-
fate transitions. The highly integrated nature of these
molecular networks requires a systems-level approach
and precise tools to dissect the multiple regulatory
layers that reinforce cellular identity.

From tools to systems: insights from the
systems biology of reprogramming

Operating on the paradigm that reprogramming is
limited by delivery modes, latent donor identity, and the
epigenetic state, synthetic biology efforts have focused
on developing tools to overcome these barriers. Going
forward, engineered systems-level tools will be needed
to robustly regulate proliferation, maintain transgene
activity, and facilitate chromatin rewiring (Figure 3).
Much as the first wave of synthetic biology pioneered
tools in bacteria that paved the way for sophisticated
systems, the next wave of synthetic biology in reprog-
ramming will transition from tools to systems.

The rarity of reprogramming suggests that ‘privileged’
populations exist and preferentially reprogram. Lineage
tracing experiments confirm that elite clones dominate
successful reprogramming events [82]. Recently,
mechanisms that mark privileged cells have been iden-
tified [58,83]. Fast-cycling cells preferentially reprogram
into iPSCs [83]. Beyond iPSCs, hyperproliferation
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Figure 3
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A range of inputs induce molecular dynamics to guide cells to their reprogrammed state. Cellular reprogramming requires dynamic integration
across multiple scales from biomolecules to gene regulatory networks (GRNs). (a) To induce reprogramming, reprogramming factors including tran-
scription factors, microRNAs, and small molecules are introduced to donor cells through a range of delivery methods. (b) The process of reprogramming
induces epigenetic remodeling to close donor loci and silence donor GRNSs, while new loci open and GRNs for the alternate identity activate. Cell division
promotes reprogramming and may facilitate dilution of latent donor identity [109]. Sustained transgene activity in hyperproliferative cells is limited, but rare
hyperproliferative cells capable of sustaining transgene activity reprogram efficiently [58]. At the molecular level, high rates of transcription and prolif-
eration induce genomic stress during reprogramming by increasing in supercoiling, R-loop formation, and polymerase collisions. Transcription generates
forces capable of evicting nucleosomes, enabling some epigenetic remodeling. (c) Cells capable of mitigating genomic sources of stress reprogram at
near-deterministic rates into a broad range of cells. DNAP, DNA polymerase; RNAP, RNA polymerase.

promotes reprogramming into multiple, post-mitotic
lineages, suggesting transient hyperproliferation
broadly enhances reprogramming [58]. In the context of
conversion, rapid replication may facilitate dilution of
highly stable mRNAs, miRNAs, and proteins that may
otherwise limit full adoption of an alternative identity.
Designing reprogramming protocols to facilitate the
dilution of molecular components may improve reprog-
ramming efficiency and maturity of the derived cells.

Maintaining transgene expression in hyperproliferative
cells may present a challenge for improving reprogram-
ming induced via retroviral delivery. Silencing of trans-
gene expression from retroviruses occurs at a greater
frequency in hyperproliferative cells [58]. In addition,
retroviral silencing appears to be dependent on the
presence of particular sets of reprogramming factors and
may occur independently of reprogramming [32]. For
instance, Sox2 and Myc coexpression activates

retroviral-silencing machinery in somatic cells before
induction of key markers of pluripotency [32]. Some-
what paradoxically, retroviral silencing in cells express-
ing a fluorescent marker correlates with higher rates of
reprogramming [84]. However, retroviral-delivered
transgene silencing (e.g. loss of marker expression)
may simply correlate with proliferation rather than serve
as a sign of successful reprogramming. We have recently
demonstrated that sustained transgene activity distin-
guishes complete from partial reprogramming [58].
Thus proliferation-mediated processes may generate a
tradeoff in factors influencing reprogramming by pro-
moting higher rates of reprogramming while silencing
transgene expression. Based on our findings, we expect
that proliferation promotes loss of latent donor identity
and simultaneously induces cell cycle—mediated trans-
gene silencing. Expanding the population of hyper-
proliferative cells capable of sustaining transgene
activity increases reprogramming efficiency and
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maturity of derived cells [58]. Although transgene
silencing is well-established for retroviruses, it remains
unclear whether other delivery mechanisms are limited
by cell cycle-mediated silencing or could eliminate
tradeoffs between  proliferation and transgene
expression.

Beyond hyperproliferation and transgene expression,
nuclear organization and differential rates of transcrip-
tion have been identified as important markers of
reprogramming potential [44,45,58,85,86]. Changes in
the structure around noncoding regulatory regions such
as enhancers may facilitate changes in nuclear structure
and gene expression that promote reprogramming
[44,86]. In addition, transcription drives changes in
chromatin structure and nuclear organization [87,88].
Thus, higher transcription rates may facilitate more
rapid chromatin remodeling and induction of nuclear
organization that facilitates the establishment of new
GRN:E. As yet, it remains unclear whether the process or
the products of high rates of transcription enhance
reprogramming.

A vision for the future of synthetic biology
in reprogramming

Enabling precise, temporal control of gene expression
via gene circuits is a hallmark of synthetic biology. High-
gain feedback controllers may enable precise control of
transcription factor expression [89]. While the theory
and tools to engineer genetic controllers have rapidly
expanded in mammalian systems, the key control ob-
jectives in reprogramming remained poorly defined until
recently. Our recent work illuminates opportunities for
tailoring transcription factor expression within asyn-
chronously reprogramming cells through dynamic ob-
jectives [58].

While transcription drives changes in the cellular state,
high transcription rates early in reprogramming inhibit
proliferation and stall reprogramming [58]. Conse-
quently, hypertranscription and hyperproliferation
represent dynamic objectives. Developing strategies to
reduce transcription from donor GRNs and tune
expression of reprogramming factors may facilitate more
rapid, efficient reprogramming. To effectively balance
both processes, reprogramming vectors tailored to scale
transcription with the capacity of individual cells may
improve reprogramming strategies by limiting tran-
scriptional strain on the genome. Simple selection of
promoters to regulate transcription factor expression
may be sufficient to improve expression scaling from
transgenic constructs (Figure 4a). Recently developed
libraries of cell state-specific promoters offer a diverse
array of elements for tuning gene expression [90]. In
addition, given the role of signaling pathways to induce
cell-fate changes, signaling-responsive genetic control-
lers may enhance reprogramming by coordinating
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signaling, the cell cycle, and transcription factor
expression [52]. Alternatively, more complex feedback
control systems such as bandpass filters and pulse gen-
erators may provide temporally-defined pulses of gene
expression [91,92]. Linking these regulatory tools
together would generate controllers capable of sensing
cell state and coordinating the optimal actuated re-
sponses that guide each cell to its new identity.

While reprogramming has primarily focused on cell-
autonomous engineering, non—cell-autonomous in-
teractions contribute to a range of cellular behaviors
[73,93,94]. Development of synthetic multicellular in-
teractions may facilitate precise cell-cell communication
for sophisticated spatiotemporal coordination and
enable complex maturation processes. For example,
YAP-expressing cells increase the reprogramming rate of
YAP-negative cells via intercellular signaling [73].
Similarly, IL.-6 secretion augments the generation of
iPSCs non—cell-autonomously [64,65]. Non—cell-
autonomous Pprocesses represent opportunities to
segregate engineered systems into well-defined ‘sender’
cells and ‘receiver’ cells (Figure 4b). Developing
multicellular reprogramming niches composed of sender
and receiver cells may enable coordination of multicel-
lular processes as well as restrict specific genetic ma-
nipulations to one subset of cells. For example,
overexpression of mutant RAS induces proliferation in a
non-cell-autonomous manner [95]. Given proliferation
is a key determinant of reprogramming, oncogenic pro-
grams that promote proliferation can be restricted to
sender cells, preserving an oncogene-free profile for
reprogrammed receiver cells. The development of syn-
thetic reprogramming consortia may accelerate the

translation of reprogrammed cells by enhancing
reprogramming  efficiency with limited genetic
manipulation.

Beyond the development of synthetic reprogramming
consortia, complex patterning may be facilitated by
synthetic receptor systems to enable spatiotemporal
control of cell fate [96]. Synthetic receptor systems
provide an orthogonal mechanism by which to coordi-
nate expression of reprogramming factors with extra-
cellular signaling [96—98]. For example, modular
extracellular sensor architecture (MESA) receptors
respond to soluble extracellular signals by releasing a
tethered transcription factor to induce gene expression
[97]. Similarly, synthetic Notch receptors (synNotch)
release tethered transcription factors in response to
cell—cell contacts [96]. By engineering synNotch-
controlled expression of cadherins, cells of varying
adhesivity can be programmed to form self-patterning
multicellular structures [96]. Combining integrated
multicellular consortium approaches with synthetic re-
ceptor systems that regulate diverse cells fates will
provide a unique context to study and build multicel-
lular tissues.
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Circuits represent small-scale transcriptional networks
that can be used to model large-scale networks. The
impact of these ‘small-scale’ systems to label and iden-
tify unique populations and cellular states will be
magnified by connection to ‘large-scale’ system biology
techniques including genomics, epigenomics, and
genome architecture. While large-scale systems provide
high-dimensional profiling at single timepoints, small-
scale systems such as circuits enable dynamic tracking
from low-dimensional, integrated metrics such as circuit
activity. By connecting experimental designs across
these scales, we can enhance the ‘design-build-test”

workflow to develop live-cell reporters of unique cell
states, to optimize genetic controllers, and to develop
strategies for assessing and enhancing the maturity of
reprogrammed cells (Figure 4c¢).

Lineage tracing tools provide a method for examining
how individual clones contribute to reprogramming
(Figure 4d). Given the rarity of reprogramming and the
heterogeneous nature of cellular responses, synthetic
biology approaches to reconstruct reprogramming line-
ages and isolate progenitors of successfully reprog-
rammed cells may clarify the role of donor cell-intrinsic
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Future perspectives on the synthetic biology of reprogramming. (a) Newly developed synthetic biology tools will enable more sophisticated control
over cells during reprogramming. Synthetic molecular sensor devices such as the signaling pathway-responsive generalized engineered activation
regulators (GEAR) [52], or the ligand-sensitive receptors modular extracellular sensor architecture [97] and synthetic notch receptors (synNotch) [96],
transmit intracellular signaling and extracellular binding events, respectively, into release of transcription factors. Sensor devices are important tools in
developing genetic feedback controllers. Molecular sensor devices may be coupled with synthetic transcription factors which are composed of two do-
mains: a DNA-binding domain (confers sequence specificity) and an activation domain (induces site-specific induction of gene expression)
[46—-49,55,56,110]. In addition, transcriptional control through cell state-responsive promoters such as synthetic promoters with enhanced cell-state
specificity (SPECS) profile a facile mechanism for composing feedback controllers that can be layered to enable precise and dynamic control [90,91,112].
(b) Future reprogramming strategies will exploit non-cell autonomous effects to facilitate cell-fate transitions by constructing multicellular systems that
interact synergistically to enhance reprogramming. Notably, oncogenic circuits could be engineered in ‘sender’ cells that promote reprogramming in
minimally genetically modified ‘receiver’ cells via intercellular signaling [64,65,73,95]. Furthermore, cell-cell contact signaling responsive tools (e.g.
synNotch) can be integrated to build self-patterning multicellular tissues during reprogramming [96]. (¢) Synthetic biology provides a host of tools to
control gene regulatory networks during reprogramming. By following a design-test-build strategy, synthetic circuits may enable the identification and
targeting of dynamic objectives during reprogramming [58]. (d) Recently developed lineage tracing and barcoding tools will be essential in identifying traits
and events that allow cells to reprogram efficiently by combining longitudinal live tracking with next generation sequencing methods, such as single-cell

RNA sequencing (scRNA) [99,104].
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barriers to reprogramming. Lineage tracing via uniquely
barcoded starting cell populations has identified that a
relatively small set of elite clones reprogram from MEFs
to iPSCs [82]. Recent methods for retrospectively
identifying clones expand the potential of barcoding.
The CRISPRa tracing of clones in heterogeneous cell
populations (CaTCH) system relies on split populations
of cells labeled with a barcode upstream of a reporter
gene. Clones selected by phenotype are enriched and
identified by sequencing. Introduction of a guide RNA to
the unique barcode of the enriched clone activates re-
porter expression, enabling live tracking of the clone
through various perturbations [99]. With this method, it
is possible to ask questions about clonal determinism and
ergodicity in cell-fate transitions.

Building on these static barcoding strategies, newly
developed tools implement dynamic barcoding, allowing
not only identification of a progenitor clone, but recon-
struction of the entire cell lineage [100,101]. Dynamic
barcoding relies on stochastic recombination events via
Cas9 or other DNA recombinases to uniquely mark cells
during reprogramming [100,101]. To improve tracking,
barcodes can be read out  situ, preserving spatial and
morphological data [100—102]. Importantly, barcodes
may also be used in conjunction with single-cell RNA
sequencing methods by placing the barcode in the un-
translated region of a transgene to map the transcrip-
tional profile to unique cells and populations [103,104].
While lineage tracing requires constitutive action of
DNA editing machinery (Cas9, sgRNA), event recording
is enabled by linking editing to cellular events such as
signaling [100]. Parallel implementation of lineage
tracing and event-recording circuits may elucidate tran-
sient events that enable or inhibit reprogramming.
Furthermore, event-recording circuits that activate live-
cell reporters will provide enhanced temporal resolution
of subcellular events during longitudinal tracking of
reprogramming populations and may also be read using
sequencing technologies [105]. Understanding the mo-
lecular barriers to various cell states in reprogramming
may facilitate strategies to promote maturation.

By connecting lineage and event information with
single-cell transcriptomics, synthetic biology enables
the connection of ‘small-scale’ events to ‘large-scale’
systems data and may elucidate mechanisms by which
elite cells overcome the barriers to reprogramming and
maturation (Figure 4c). Incorporating genomics data
into the ‘design-build-test” cycle will significantly
improve our understanding and engineering of synthetic
genetic controllers of cell-fate transitions.

Although pioneered in single-cell organisms, synthetic
biology’s recent expansion to mammalian systems pro-
vides a rich landscape of cell fates to examine and en-
gineer [36,52,91,106,107]. As novel tools for studying
signaling, chromatin structure, and gene regulation in
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mammalian systems continue to develop, synthetic
biology will enable an unprecedented insight into the
mechanism of reprogramming and expand our power to
engineer reprogrammed cells.
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