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Highlights
Cell-type references generated

from collections of single-cell RNA

sequencing data can accelerate the

functional characterization of

diseases.

Computational methods process

and analyze sequencing data for a

detailed characterization of cellular

phenotypes.

Single-cell profiling of different

molecular layers can give further

functional context to cell-type

identity.

The addition of spatial information

can reveal immune cell function in

tissue contexts.
The immune system encompasses a large degree of phenotypic diversity and plasticity in its cell

types, and more is to be uncovered. We argue that large, multiomic datasets of single-cell reso-

lution, in conjunction with improved computational methods, will be essential to resolving im-

mune cell identity. Existing datasets, combined with ’big data’ methodologies, can serve as a

platform to support future studies in immunology. Technical and analytical advances in multio-

mics and spatial integration can provide a reference for gene regulation and cellular interactions

in spatially structured tissue contexts. We posit that these developmentsmay allow guided func-

tional studies of immune cell populations and lay the groundwork for informed cell engineering

and precision medicine.

Unraveling the Immune System One Cell at a Time

The human immune system is one of themost complex; further understanding these complexities can

have a significant impact on preventing and curing a variety of diseases. A large number of cell types

and states, many of which remain to be further characterized, underlie the many types of immune re-

sponses. Many gene products have also been studied over the years; however, owing to the low num-

ber of available high-throughput approaches, many more are either unstudied or have undetermined

functions.

We discuss here the most recent developments in single-cell technology and analysis, and what they

can mean for immunology. Advances in single-cell RNA sequencing (scRNA-seq; Glossary) data an-

alyses are poised to result in a complete census of human cell types [1,2]. This growth in datasets has

been accompanied by the development of experimental methods that capture the ‘states’ of

different molecules (DNA, RNA, and protein) in individual cells, revealing many of the regulatory un-

derpinnings of cellular immunity, as well as virulence mechanisms of pathogens. Methods for whole-

transcriptome spatial mapping are also emerging and reaching single-cell resolution, enabling for

the first time the construction of an atlas of cellular interactions in complex tissues during health

and disease. Supporting these advances have been developments in computational methods. In

particular, the wide adoption of cutting-edge machine learning and artificial intelligence methods

are set to improve our modeling and predictive power by deconvoluting gene expression networks

and creating informative, integrated models of immune cells in disease. We therefore posit that sin-

gle-cell approaches will, in the near future, be one of the tools most widely used for characterizing

many aspects of the immune system.
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Multiple Windows into the Molecular Machinery of the Cell

The earliest single-cell methods relied on protein expression to determine cell types and discern

mechanisms underlying biology and disease [3]. Recently, RNA has been used as a defining molecule

for single-cell phenotyping; nonetheless, important information about cellular heterogeneity can still

be found at the level of DNA and proteins (Figure 1A).

Methylation patterns govern gene expression [4], and single-cell methylation profiling has been

used to distinguish rare hematopoietic stem cell subpopulations [5]. At the single-cell level, howev-

er, open chromatin regions are easier to profile, and are associated with regulatory and active ele-

ments in the genome, which can also be used to define cell types [6]. These are more efficiently pro-

filed by the assay for transposase-accessible chromatin (ATAC-seq) protocol [7,8]. ATAC-seq can

effectively separate immune cell populations based on transcription factor motifs detected in

open chromatin peaks [9]. It has also been possible to obtain information on the genome
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Figure 1. An Integrative Approach for Single-Cell Multiomic Data.

(A) Multiple measurements, such as proteome, genome, transcriptome, methylome, and spatial expression, can be

taken from a given tissue and later be integrated using computational methods to gain biological insight. (B) These

measurements can be used to answer multiple questions for a given system or to study different aspects of a

complex process such as host–pathogen interactions.

Glossary
Assay for transposase-accessible
chromatin (ATAC-seq): uses the
Tn5 enzyme to detect open chro-
matin regions.
Autoencoders: single-layer neural
networks that learn the optimal
way to compress and regenerate
data. They can be especially use-
ful for non-linear dimensionality
reduction and data denoising, a
case where variational au-
toencoders (VAEs) are mostly
used.
Batch alignment methods:
computational algorithms to
combine datasets generated with
large batch effects, eliminating
their technical differences.
Capsule networks (CapsNet):
artificial neural networks designed
to better model hierarchical re-
lationships between data by add-
ing ’capsules’ to reuse the output
from different layers of the neural
network.
Cellular indexing of tran-
scriptomes and epitopes by
sequencing (CITE-seq): a method
to quantify protein presence using
sequencing via antibodies car-
rying a molecular barcode. It can
also be used for cell hashing –
barcoding the cells to allow mul-
tiplexed cell capture from
different samples or donors.
Classifiers: machine and statistical
learning algorithms used, in the
context of single cells, to attribute
a label (such as cell type and
treatment) to a cell according to
gene expression.
Copy-number variation (CNV):
genomic segments of variable
length that differ in the number of
copies per cell.
Generative adversarial networks
(GANs): neural network algo-
rithms where one neural network
that generates outputs of one
type has its performance evalu-
ated by another discriminative
neural network.
Generative model: a machine
learning method that models the
conditional probability of an
observable variable given a
target. The generative model can
produce random outcomes of
either the observation or target.
scANVI and scGen are two
frameworks developed specif-
ically for single-cell sequencing
data.
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conformation of single cells by using single-cell Hi-C (scHi-C) [10]. Histone modifications in individual

cells have only recently been effectively profiled [11,12]. This development may significantly advance

the study of transcriptional regulation in different cell types. We also envisage that other sequencing

methods previously performed in cells ’in bulk’ might attain single-cell resolution in the not so

distant future.

Protein profiling in single cells has seen important advances using mass spectrometry, such as

SCoPe-MS [13]; however, more reliable approaches use a panel of barcoded antibodies whose

signal can be amplified by sequencing [14,15]. An exciting example is cellular indexing of transcrip-

tomes and epitopes by sequencing (CITE-seq), which has greatly improved the identification of

known immune subsets by combining scRNA-seq with surface protein profiling [14].

To properly understand cellular mechanics, it is necessary to combine multiple measurements

from RNA, DNA, and protein (Figure 1B). Integrating these molecular layers can show how regula-

tory networks in cells contribute to shaping the immune system. Methods have been developed for

using single-cell sequencing data to infer these networks [16–18] and to integrate the different mo-

lecular profiles of single cells [19,20]. Combining these with pseudotime inference can inform on the

regulation of dynamic processes in immunology, such as infections and development.

Single-cell CRISPR/Cas9 screens can help us to learn about variation and robustness in cellular re-

sponses. These have been used to dissect T cell receptor (TCR) signaling and response to lipopoly-

saccharide (LPS) in dendritic cells [21,22]. The use of these technologies is still in its infancy, but we

predict that they will be key in elucidating the molecular mechanisms behind complex diseases.

CRISPR/Cas9 screens have been accompanied by significant breakthroughs in computational anal-

ysis, and further combination with DNA or protein profiling should propel the development and vali-

dation of causal inference methods [23], yielding interpretable and actionable models of

immunobiology.
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Latent space vector arithmetics:
mathematical operations in a
reduced dimension space that,
through generative processes,
can be translated into new artifi-
cially generated data.
Lineage tracing: methods to infer
cellular lineages by tracking arti-
ficial constructs or endogenous
sequences.
Long-/short-term memory
(LSTM) neural networks: artificial
neural networks containing both
forwards and backwards connec-
tions. LSTMs can process se-
quences of datapoints such as
nucleotide sequences or time-se-
ries expression datasets.
Proteomics: the study of all the
proteins produced in a cell. At the
single-cell level, this can be ach-
ieved using SCoPE-MS, a mass
spectrometry-based method.
Pseudotime inference: a compu-
tational approach to infer a
continuous trajectory for single-
cell data, often ordering time-
course experiments to reflect
temporal changes in gene
expression.
RNA velocity: a concept repre-
senting the dynamic change in the
transcriptome of a cell, as
modeled based on spliced (cur-
rent) versus unspliced (novel)
transcripts.
Single-cell CRISPR/Cas9 screens:
CRISPR screens at the single-cell
level can evaluate the cell type-
specific response to a perturba-
tion at the transcriptome level.
Single-cell Hi-C (scHi-C): a high-
throughput sequencing and
chromatin conformation capture
(Hi-C) method to detect chro-
matin contacts in individual cells.
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Cell-Type References to Study Disease

Since the first scRNA-seq study on five mouse blastomeres [24], the use of single-cell sequencing

technologies has seen exponential growth [1]. scRNA-seq is currently the method of preference

to define cell states, study developmental trajectories, and characterize unknown cell populations.

The rapid acquisition of large datasets surveying multiple organs [25,26], from different organisms

[27] and at different stages of development [28], can allow us to perform informed experimental

designs to answer outstanding questions in the field of immunobiology. This increase in throughput

has been achieved partly thanks to a reduction in sequencing costs, but mostly due to improve-

ments in cost-effective cell isolation (discussed in detail in [1]). Experimental innovations such

as cell hashing [29] and split-pool approaches [30,31] can enable significant increases in the number

of cells and donors profiled with scRNA-seq. Multidonor designs hold the promise of linking

cell type-specific expression to specific diseases or variants, as recently reported in human blood

cells [32].

As more single-cell studies move towards unraveling cell-specific responses in the immune system,

cell-type annotation has been facilitated by computational methods matching cell populations

across samples, tissues, and species [33] (Figure 2A); some classifiers, such as Moana [33] and Garnett

[34,35], have added a layer of hierarchical stratification of cellular identity [34,35]. Recent work [36]

has taken the predictive approach a step further by combining variational autoencoders and latent

space vector arithmetics to build computational models that are capable of predicting cell type-spe-

cific responses based on how other cells types respond to the same stimulus. This method has

accurately predicted the transcriptional responses of different human peripheral blood mononuclear

cells (PBMCs) to IFN-b stimulation in culture, based on gene expression variations of the remaining

unrelated cell types; it has also predicted species-specific responses of phagocytes to LPS. Strategies

based on connectionist systems, such as artificial neural networks (Box 1), might soon provide accu-

rate predictive models that could potentially facilitate large-scale, transcriptome-wide studies of

immune responses in silico (Figure 2C).

Pairwise correspondence of datasets can be useful to dissect specific immune processes. However,

systems-level insights will come from integrated cross-tissue datasets. The vast data collections

that will make up the Human Cell Atlas [36] will necessarily include an Immune Atlas of our species

[37]. Comparing novel data with inclusive references might also accelerate interpretation, allowing

parallels to be immediately drawn across profiled tissues at steady-state or under disease conditions,

and can eliminate the need to profile healthy subjects for disease studies. Establishing such refer-

ences requires the development of global cell-identity models and the adoption of curated hierarchi-

cal cell-type annotations [38,39]. Nonetheless, immune cell phenotypes are also reflected in DNA

modifications and protein expression, thus requiring computational methods to define cells beyond

RNA molecule expression.

Single-cell RNA sequencing
(scRNA-seq): methods for ob-
taining the transcriptome of indi-
vidual cells. They vary in cell cap-
ture methods and portions of
transcripts sequenced. The most
widely used methods are Smart-
seq2 (full-length transcripts,
plate-based) and Chromium (30 or
50 ends, droplet-based).
Single-nucleotide polymorphisms
(SNPs): differences in individual
genomic bases across pop-
ulations (and cells).
Spatial transcriptomics (ST):
methods to unbiasedly capture
gene expression samples while
maintaining their spatial
resolution.
Hidden Molecular Layers of Cellular Phenotypes

Most cellular heterogeneity is reflected at the level of RNA expression, which can be used to charac-

terize cell states based on markers and functional pathways. Nevertheless, multiple efforts have

further probed the data for other features that can expand cellular phenotyping.

High-throughput sequencing reads are at the base of expression measurements. Isoform analysis

has also been an important parameter in transcriptomics but, aside from a small number of studies

[40,41], remains understudied at the single-cell level. Even so, splicing variability can be highly infor-

mative in the context of an immune response. For instance, using logistic regression for differential

expression analysis of scRNA-seq data has identified different isoforms of CD45 in human T cells

[42], and scRNA-seq using long-read sequencing methods has added more detailed information

regarding the importance of splicing in cell identity and disease [41]. Differential detection of spliced

and unspliced reads can also reflect transcriptional changes in the developmental trajectories of cells,

with the assumption that unspliced transcripts are located in the nucleus and are more recently tran-

scribed than those in the cytoplasm. This application of RNA kinetics to scRNA-seq data is termed
Trends in Immunology, November 2019, Vol. 40, No. 11 1013



Split-pool approaches: combina-
torial barcoding methods used to
provide probabilistically unique
barcodes to each cell.
V(D)J recombination: genomic
rearrangements between the var-
iable (V), diversity (D), and joining
(J) regions in the B cell receptor
(BCR) or T cell receptor (TCR) loci,
that generate variability in recep-
tor chain peptides. These re-
arrangements can captured by full
transcript sequencing methods or
VDJ-seq, and used as endoge-
nous genetic barcodes for lineage
tracing of immune cells. Compu-
tationally, they can be deconvo-
luted from single-cell RNA-seq
data using the TraCeR program.
BCR sequences have additional
variability generated by somatic
hypermutation which introduces
random mutations in the BCR lo-
cus and can generate receptors
with increased affinity for specific
antigens.
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RNA velocity [42] and, among other uses, has been combined with pseudotime inference to confirm

the direction of adaptation of murine T regulatory cells from a lymph node to a barrier tissue [43].

Early approaches such as TraCeR have been devised to reconstruct expressed TCRs from scRNA-seq

reads and determine cell clonality [44]. This method has further been extended to B cells [45], incor-

porating an additional lineage reconstruction step to account for somatic hypermutation events at

the B cell receptor (BCR) locus. These methods were initially designed for full transcript sequencing

approaches such as Smart-seq2 [46], but they can also be applied to droplet-based protocols,

including 10X Genomics VDJ-seq. The combination of VDJ and RNA-seq at a large scale has given

new insights into the relationship between activation and TCR sequences of clonotypes in the breast

tumor microenvironment [47]. Moreover, increased resolution of TCR and BCR clonality has also been

achieved by long-read sequencing, providing detailed descriptions of immune repertoires in various

cancers [48]. Ultimately, exploration of adaptive immunity repertoires can advance our understanding

of the bias and selection of TCR and BCR chain pairs, and, together with single-cell profiling of anti-

gen specificity, aid in inferring the association between sequence motifs and specific antigens, and

presumably diseases [49,50].

V(D)J recombination at the TCR and BCR loci can also be treated as barcodes for clonally related cells

and used to track clonotype expansion or migration [43,51]. In other cell types, however, different

lineage tracing approaches must be employed. For model organisms, artificial barcoding systems

can be combined with single-cell transcriptome profiling to track and characterize cell lineages

[52,53]. Tracking cell-type lineages can enable mapping the ontogeny of immune cell types, as

well as other phenomena such as cell trafficking to different tissues or tumors.

Heterogeneity in single-cell data can also be found at the genome level. Transcriptomic reads can be

used to call transcript variants, such as single-nucleotide polymorphisms (SNPs) or fusion genes,

although comparing them to the original genome is recommended. This principle has been used

to study the human maternal–fetal interface to assign a maternal or fetal origin to immune cells in

the placenta [54]. Other methods focus on studying larger copy-number variation (CNV) patterns,

and deduce these variations from expression data [55]. Under circumstances where genes are highly

mutated, such as cancer, a full cell lineage can be reconstructed and directly compared to its expres-

sion profile. Recently, computational approaches have converged on leveraging naturally occurring

somatic mutations to undertake lineage tracing in unmodified human cells [56,57]. In particular, mito-

chondrial DNA is present in an elevated number of independent and heterogeneous copies per cell.

Thus, a high number of mitochondrial reads obtained from scATAC-seq and scRNA-seq can be used

to establish clonal relationships in cells from healthy individuals [58,59]. Lineage tracing in wild-type

human cells can add an informative layer about cellular origin to gene expression studies, and be

broadly applied to track lineage relationships between any cell types.

Relationships between the presence of specific immune cell types and disease have been demon-

strated [60], and disease-associated variants have been linked to immune cell type marker genes in

diseases such as asthma [61]. In the short term, combining scRNA-seq and genotyping may enable

studies on the impact of genetic diversity on cell-type abundance and on specific immune responses.
Host–Pathogen Interactions at the Cellular Level

With the latest advances in single-cell omic technologies, we can now study host–pathogen interac-

tions at single-cell resolution. Recent studies identified marker genes that defined populations of

human CD4+ T cells that were more prone to HIV-1 infection than others [62]; moreover, transcrip-

tional programs defining HIV-1 latency and reactivation in host cells were analyzed simultaneously,

revealing that not all cells were infected in the same way, and that the rate of CD4+ T cell invasion

could be affected by the virus genotype [63]. Viral molecules can also be sequenced together with

the host transcriptome to quantify viral loads of infected cells, which can have a significant impact

in the interpretation of immune responses to intracellular pathogens [64–67].
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Figure 2. Artificial Intelligence Meets Immunobiology.

(A) Machine learning-based methods of classification – such as logistic regression – can be used to learn the transcriptional features of different cell states

and use these learned models to recognize these cell types in new tissues and under multiple conditions. (B) Multilayer neural networks can identify

relationships between expression datasets (scRNA-seq) and transcriptional regulation (scATAC-seq) to predict regulatory circuits under different cellular

conditions. (C) Generative adversarial networks can model single-cell data produced from animal models and evaluate how different perturbations (i.e.,

infection) may alter cellular states in the model under study or in other models. (D) Expression data from individual cells and whole tissues can be

integrated using an autoencoder to map expression trajectories to tissue coordinates. Abbreviations: scRNA-seq, single-cell RNA deep sequencing;

scATAC-seq: single-cell assay for transposase-accessible chromatin combined with deep sequencing.
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scRNA-seq has already been applied to studying the transcriptional heterogeneity of parasites

from the Plasmodium genus [68], and can be used as a method to uncover putative diagnostic

markers in other parasitic diseases [69]. Unicellular pathogens, such as Kinetoplastids, change

their genomes to increase their repertoire of surface molecules to evade the host immune
Trends in Immunology, November 2019, Vol. 40, No. 11 1015



Box 1. Artificial Neural Networks for Single-Cell Data Analysis

The large scale of recently generated single-cell datasets [28,97] suggests that traditional analytical methods

may not be enough to fully understand a system, and complementary methods to fully exploit these data may

be needed. This has led researchers to apply methods from other fields such as physics, artificial intelligence,

and machine learning to the study of single-cell multi-omic data (Figure 2). Most methods from artificial

intelligence are derived from connectionist systems, and these include autoencoders and deep neural net-

works [98].

Machine learning uses pattern recognition and statistical inference algorithms for finding relationships or

patterns in large collections of data with (supervised learning) or without (unsupervised learning) the use of

explicit instructions [99]. Supervised learning methods require a set of examples for use as training data

such that the algorithm can later try to fit this model to new datasets. Unsupervised methods are applied

without any previous training step and try to learn patterns in the data.

Both autoencoders and neural networks can be used in a supervised or unsupervised way, and this decision

should be based on the problem that the algorithm is intended to solve.

One of the main problems of single-cell data is the experimental ’noise’ that accompanies them, and one

appealing way to deal with this issue is to ’clean’ the data using an autoencoder. The autoencoder uses one

or multiple datasets to identify features in the data that are common to all datasets, and assigns a probability

of which feature does or does not represent the original data [100]. The latent variable obtained by the autoen-

coder can then be used to reconstruct the data but without the noise or batch effects (Figure 2C).

Artificial neural networks have become an attractive tool to study single-cell omic data. In a standard neural

network each artificial neuron is arranged in a layer and connected to other artificial neurons within or between

layers. The first layer captures different types of inputs that are then passed on to the underlying layers for data

abstraction; the final layer collects these results to produce an output [87]. Depending on the design, the neural

network can have only a few or thousands of layers. In this way, an artificial neural network can be used to take

multiple data inputs, such as expression values, protein abundance, and tissue localization, to identify a spe-

cific cell type (Figure 2D).
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response; thus, it is of interest to simultaneously study changes in both pathogen genome and tran-

scriptome, which might be achieved using simultaneous genome and transcriptome sequencing

(G&T-seq) [70,71].

Microbiology has relied on the study and characterization of bulk cultured isolates, although these

stocks are highly heterogeneous [72]. Single-cell technologies can measure this heterogeneity to

gain better insights into pathogen population dynamics and the molecular mechanisms involved

in their antigenic variation. CITE-seq can be used to measure pathogen surface virulence factors

and the receptors expressed by immune cells to identify clonal, stage-specific pathogen antigens

together with immune subpopulations needed for the control of infection. However, the use of

single-cell proteomics for pathogens is hampered by the limited repertoire of antibodies against

conserved regions of many surface virulence factors.

The integration of multiomic datasets is certain to change the field of infectology [73], but first it is

crucial that single-cell datasets of well-characterized isolates are generated to explore the level of

heterogeneity and plasticity of different pathogens. Because many pathogens rely on genomic poly-

morphisms to evade the immune system, advancing technologies to capture this feature as accurately

as possible is also imperative [74].

High-Resolution Spatial Tissue Maps

The underlying molecular complexity of cells makes them remarkably adaptable machines that are

fully equipped to sense and react to the surrounding environment. This is key for immune cells

that not only drive specialized responses to pathogens but also fulfill particular homeostatic roles

in tissue development and maintenance.
1016 Trends in Immunology, November 2019, Vol. 40, No. 11
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In sum, context matters. The neighbors of a cell can influence its function via cell–cell interactions,

established through receptor–ligand pairs. For scRNA-seq, these relationships can be assessed

using CellPhoneDB (www.cellphonedb.org) [54]. Approaches such as this can be used to characterize

cell–cell communication not only in homeostatic tissues but also under pathological conditions. It

has recently been used in lung-derived scRNA-seq to reveal unique interactions between type 2 T

helper (Th2) cells and mesenchymal cells in asthmatic human donors [61]. Despite advances such

as this example, the inference of cell interactions from transcriptomic data is still in its infancy,

and methods that can integrate known interactions and expression data will be important in under-

standing coordinated cellular responses in the context of disease; they may also aid in unraveling a

wide array of immune cell functions across tissues.

Cell–cell contacts are key to understanding how cells organize into tissues. A bone marrow study

used mild tissue dissociation followed by microdissection, and recorded the interactions of cell pairs

before sequencing, revealing stable interactions unique to neutrophils [75]. Spatial transcript

profiling methods have indeed seen steady progress in resolving RNA map associations and hetero-

geneities in tissue slices. Approaches with fluorescent probes have been designed and scaled to work

with thousands of transcripts [76]. Sequencing-based spatial transcriptomics (ST) methods have also

been developed to combine histology and unbiased transcriptome profiling [77]. Recently, two pro-

tocols achieved single-cell resolution of tissue slices, giving tissue-wide transcription patterns a direct

link to the cells generating them [78,79]. Although improvements in cellular spatial profiling are

following this direction, it is also computationally possible to match scRNA-seq data with spatial

data from different sources. Such approaches have relied on adaptations or improvements of batch

alignment methods that are used to integrate different scRNA-seq datasets [80–82], but the field is

still exploring novel methods to increase accuracy across different platforms andmodalities. A recent

approach applying multimodal intersection analysis successfully integrated cell populations – iden-

tified with scRNA-seq – with tissue architecture – defined using ST [83]. These advances are relevant

because spatial profiling of transcriptomes and TCR/BCR sequences could inform how immune cells

can regulate tolerance and immune reactions in different contexts – for instance, within tumor

microenvironments.
Artificial Intelligence for Single-Cell Omic Studies

The sheer size of single-cell data indicates that standard data analysis techniques that researchers

have previously used for small experiments may not be able to fully take advantage of these datasets.

Nevertheless, techniques from the field of artificial intelligence and machine learning can allow not

only the processing of large, complex datasets but also the identification of hidden patterns and re-

lationships that are not obvious to the human analyst (Figure 2B).

Generative models such as scANVI [84] and scGen [36] allow data integration, clustering, and marker

identification of single-cell datasets; however, these deep generative models can also be used to pro-

duce data simulations to predict how a given cell population might react to a given stimulus or insult.

Generative adversarial networks (GANs) have been successful in other tasks in biomedicine, such as

the accurate diagnosis of skin cancer [85], and are starting to be used to analyze single-cell datasets

[86]. These generative methods are useful in that they provide a powerful tool to study a system by

taking advantage of single-cell datasets from healthy individuals, as well as from vast bulk datasets

already generated frommultiple conditions and perturbations; they can then generate perturbed sin-

gle-cell datasets for dissection of condition-specific transcriptional circuits that can be subsequently

validated in vitro [86].

The use of deep learning algorithms [87] for image analysis can facilitate large-scale single-cell

transcriptomics integrated with spatial information [88]. Indeed, the integration of these datasets us-

ing deep autoencoders has provided important insights into (i) morphological profiling of an entire

tissue, (ii) the interrogation of regulatory and transcriptional landscapes of any given tissue [89,90],

and (iii) the classification of cell types using their subcellular structures [91]. Some of these methods

rely on neural networks, and have been optimized to visualize large-scale single-cell datasets,
Trends in Immunology, November 2019, Vol. 40, No. 11 1017
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Outstanding Questions

How can single-cell data be reused

and made easily available? Current

repositories for sequencing data

have not been designed to deal

with large numbers of individual

files, or associated metadata. New

data archives should allow data and

metadata to be obtained in a

seamless and structured way.

Can data from scRNA-seq, open

chromatin, and other elements

show us the boundaries of cell

identity and plasticity? How flexible

are those boundaries in the context

of the underlying regulatory net-
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allowing the mapping of new datasets onto references; they can then be used to visualize millions

of cells [92]. A new exciting concept that has been developed recently is that of capsule networks

(CapsNet); here, neural networks are designed to model hierarchical relationships in data, and can

be used directly in single-cell datasets to identify cell types and cell states and how they might

interact [93].

The most exciting aspect of artificial intelligence methods is that we can now use a combination of

new single-cell reference datasets and the vast amount of data that has been generated in the

past decade to gain insight from biological systems. The use of deep learning to classify cell types

using multiple types of data, and the potential to use long/short-term memory (LSTM) neural net-

works for text mining using transcriptional signatures, means that we might be able to analyze bio-

logical systems in depth using publicly available resources. These could later be used as the input for

generative models to identify putative transcriptional circuits that are activated or disrupted

following, for example, exposure of an immune cell to a new antigen, or when a pathogen might

attempt to evade a host immune system.
works?

What is the relationship between

cell identities inferred from

different layers of information?

How much functional information

does the combination of data from

different layers of cell identity pro-

vide?

How much of a cellular phenotype

can be explained by genetics?

What populational heterogeneities

exist in cell-type composition and

plasticity?

What are the distinctive spatial

patterns in which immune cells

accumulate in tissues? Do they

establish specific stable interac-

tions in the steady-state?
Concluding Remarks

The growth in the size, depth, and breadth of single-cell sequencing experiments over the past 10

years has achieved remarkable proportions. scRNA-seq has allowed us to unbiasedly probe cell iden-

tity for the first time, and gain knowledge on sets of transcripts that define a particular cell population.

Multimodal data are further expanding the borders of cell identity to the regulatory realm, while

spatial approaches are preserving information on the in vivo context and contacts of cells.

There is still room for improvement in the throughput of single-cell experiments, which is crucial for

profiling cell populations frommany individuals. Although newmethodologies have focused on a cell

throughput increase, this can come at a cost of lower numbers of genes profiled per cell. Expression

sparsity can be dealt with computationally [94,95]; nonetheless, improvements in measuring gene

numbers per cell should be a medium-term goal for developing improved protocols. In addition,

more standardized approaches might be more quickly adopted than custom pipelines, and it is

possible that the real impact of cheap high-throughput split-pool methods [30] might come only after

these become commercially available.

Most single-cell data produced to date have been analyzed for specific projects, generating publica-

tions, but mining such resources to perform more comprehensive meta-analyses might enable the

extraction of more biologically relevant information from them. Structuring stored data is a key chal-

lenge, not only for modern biological data repositories but also for large consortiums associated with

the generation of large datasets – in this particular case, the Human Cell Atlas and similar initiatives.

scRNA-seq offers a static, descriptive snapshot of the transcriptome, and it is in this context that

inferred cell identity should be understood. Nevertheless, cell identity can be seen from many per-

spectives, and perhaps the chief among them relates to cell function. There is a correlation between

the transcriptome and cellular function, but other layers of complexity can greatly influence it. This

underscores the importance not only of surveying cell heterogeneity at the DNA, RNA, and protein

levels but also of how best these should be combined with methods to functionally phenotype cells

at a large scale (Figure 2B) [96]. Methods recording the spatial environment are a step in this direction

because they may give clues to the effects a cell has on its microenvironment (and vice versa).

The coming challenges in immunology will require acquiring more detailed data on immune cells,

with a deeper vision into disease and immune response mechanisms (see Outstanding Questions).

The fine resolution of scRNA-seq and related methods requires bridging immune cell biology with

systems biology. New data collected and computational approaches developed should focus on

enhancing our predictive capabilities of immune reactions, and on assessing how our knowledge

of the molecular workings of the immune system can be leveraged to fine-tune novel candidate

therapies, moving towards precision medicine for a variety of ailments.
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