

1 **Untangling structural factors and evolutionary drivers in nascent polyploids**

2

3 Julie Ferreira de Carvalho¹, Solenn Stoeckel¹, Frédérique Eber¹, Maryse Lodé-Taburel¹, Marie-
4 Madeleine Gilet¹, Gwenn Trotoux,¹ Jérôme Morice¹, Cyril Falentin¹, Anne-Marie Chèvre¹, Mathieu
5 Rousseau-Gueutin¹

6

7 **Author affiliation:**

8 ¹ IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France

9

10 **Corresponding authors:**

11 Dr. Julie Ferreira de Carvalho

12 Address: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France

13 Phone : +33(0)2 232 359 97

14 E-mail : julie.ferreira-de-carvalho@inrae.fr

15 ORCID: [0000-0001-6200-3344](https://orcid.org/0000-0001-6200-3344)

16

17 Dr. Mathieu Rousseau-Gueutin

18 Address: IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France

19 Phone: +33(0)2 232 351 31

20 E-mail: mathieu.rousseau-gueutin@inrae.fr

21 ORCID: [0000-0002-1130-1090](https://orcid.org/0000-0002-1130-1090)

22

23 Total word count: 6498

24 Word count Summary: 199

25 Word count Introduction: 1039

26 Word count Materials and Methods: 1954

27 Word count Results: 1682

28 Word count Discussion: 1823

29 Word count Acknowledgments: 117

30 Number of Figures: 4 (including Fig.2 and Fig.4 to be published in color)

31 Number of Table: 1

32 Number of Supporting Information: 7 (Fig. S1-S4; Table S1-S3)

33

34

35

36 SUMMARY

37 (1) Allopolyploids have globally higher fitness than their diploid progenitors however, by
38 comparison, most resynthesized allopolyploids have poor fertility and highly unstable genome.
39 Elucidating the evolutionary processes promoting genome stabilization and fertility is thus
40 essential to comprehend allopolyploid success.

41 (2) Using the *Brassica* model, we mimicked the speciation process of a nascent allopolyploid
42 species by resynthesizing allotetraploid *B. napus* and systematically selecting for euploid
43 individuals over eight generations in four independent allopolyploidization events with
44 contrasted genetic backgrounds, cytoplasmic donors and polyploid formation type. We
45 evaluated the evolution of meiotic behavior, fertility and identified rearrangements in S1 to
46 S9 lineages, to explore the positive consequences of euploid selection on *B. napus* genome
47 stability.

48 (3) Recurrent selection of euploid plants for eight generations drastically reduced the percentage
49 of aneuploid progenies as early as the fourth generation, concomitantly with a quasi
50 disappearance of newly fixed homoeologous rearrangements. The consequences of
51 homoeologous rearrangements on meiotic behavior and seed number strongly depended on
52 the genetic background and cytoplasm donor.

53 (4) The combined use of both self-fertilisation and outcrossing as well as recurrent euploid
54 selection, allowed identification of genomic regions associated with fertility and meiotic
55 behavior, providing complementary evidence to explain *B. napus* speciation success.

56

57 Keywords: *Brassica napus* (oilseed rape), euploid selection, fertility, genome stability, homoeologous
58 exchanges, meiotic behavior, polyploidy.

59

60 **INTRODUCTION**

61 All living plants have experienced at least one episode of Whole-Genome Duplication (WGD) during
62 their evolutionary history (Jiao *et al.*, 2011; One Thousand Plant Transcriptome Initiative, 2019). This
63 process tends to increase genetic and phenotypic diversity at various levels, and has been associated
64 with greater fitness and more diverse ecological niches in polyploids compared to their diploid relatives
65 (Selmecki *et al.*, 2015; Baniaga *et al.*, 2019). These observations are based on the successful outcomes
66 of millions of years of evolution, however immediately after WGD, polyploids have to overcome
67 several challenges due to bearing more than two sets of each chromosome. These sets of
68 chromosomes can be more or less divergent depending on the occurrence of intra or interspecific
69 hybridization before WGD leading to creation of auto or allopolyploids, respectively. To increase its
70 chance of speciation, complex genome stabilization processes must occur rapidly after the formation
71 of an allopolyploid species. First, strict bivalent formation is required for the formation of balanced
72 gametes. However, in the case of allopolyploidy, redundant chromosomes coming from related
73 parental species (homoeologous chromosomes) may pair with each other, and impact meiotic
74 behaviour and plant fertility. Interestingly, the predominance of these events differs greatly among
75 allopolyploids. Generally, multivalent associations are prevented during meiosis in most of natural
76 allopolyploids (Grandont *et al.*, 2013). To explain this mechanism, different hypotheses were
77 proposed: either pre-existing genomic divergence between constitutive diploid progenitors impedes
78 homoeologous pairing, or the presence of a genetic control in progenitors lead to a regulating
79 mechanism of homoeolog pairing in the polyploid context (Mason & Wendel, 2020). For instance,
80 genetic factors were shown involved in complete or partial homoeologous pairing control respectively
81 in natural wheat allopolyploids and oilseed rape (for review Jenczewski & Alix, 2004; Griffith *et al.*,
82 2006; Gonzalo *et al.*, 2019). Contrastingly, in resynthesized allopolyploids (such as *Brassica* and
83 *Tragopogon*), illegitimate pairing between homoeologous chromosomes is observed as soon as the
84 first meiosis (Tate *et al.*, 2006; Szadkowski *et al.*, 2010). After numerous recombination events
85 between homoeologs, their global genomic similarity tends to increase, leading to even more
86 illegitimate COs as formulated by Gaeta & Pires (2010) under the term ‘polyploid ratchet’. As expected,
87 because of the presence of univalents and multivalents in various germ cells, viable balanced gametes
88 and fertility are extremely low in resynthesized allopolyploids exhibiting mispairing behaviour. Yet, the
89 early structural dynamics linked to rearrangements between homoeologous genomes and their impact
90 on meiotic instability and fertility stay unexplored in newly formed allopolyploids. Thus, deciphering
91 the evolutionary processes that generated genome stabilization in natural allopolyploids and how this
92 could be achieved in resynthesized ones is essential to fully comprehend early polyploid speciation
93 processes.

95 *Brassica napus* L. (AACC, 2n=4x=38) is an allotetraploid resulting from the interspecific hybridization
96 that took place ca. 7500 years ago (Chalhoub *et al.*, 2014) between two closely related diploid species
97 *B. rapa* (AA, 2n=2x=20) and *B. oleracea* (CC, 2n=2x=18). Spontaneous populations of *B. napus* were so
98 far never uncovered. Recent studies have nonetheless identified the European origin of both A and C
99 subgenomes of *B. napus* (Ha *et al.*, 2019; Song *et al.*, 2020). Although homoeolog pairing is limited in
100 natural *B. napus*, different studies have repeatedly demonstrated the presence of numerous
101 homoeologous translocations, limited in size but contributing to intraspecific diversity in *B. napus*
102 (Chalhoub *et al.*, 2014; Samans *et al.*, 2017; Higgins *et al.*, 2018; Song *et al.*, 2020). Resynthesized
103 crosses between the diploid *Brassica* species have been created to mimic the first steps of allopolyploid
104 speciation to inform on the role of homoeologous rearrangements in meiosis control, genome
105 stabilization and seed production. Homoeologous rearrangements and high levels of aneuploids have
106 been observed in different resynthesized lines of *B. napus* (Song *et al.*, 1995; Gaeta *et al.*, 2007;
107 Szadkowski *et al.*, 2010; Xiong *et al.*, 2011; Rousseau-Gueutin *et al.*, 2017). Homoeologous
108 rearrangements promote drastic genome instability as 50% of gametes may present homoeologous
109 exchanges as soon as the first meiosis (Szadkowski *et al.*, 2010). Depending on progenitors and type of
110 gamete formation used in resynthesized crosses, homoeologous rearrangements amplify in a non-
111 random fashion in the first generations (Szadkowski *et al.*, 2011; Rousseau-Gueutin *et al.*, 2017) and
112 alter meiosis and seed production (Szadkowski *et al.*, 2010, 2011; Girke *et al.*, 2012; Jesske *et al.*, 2013;
113 Rousseau-Gueutin *et al.*, 2017). Thus, it is paramount to investigate how the presence of non-
114 reciprocal homoeologous exchanges impact meiosis and fertility: either by the size and position of
115 these rearrangements along the genome, disturbing homoeologous pairing; or by modifying allele
116 dosage and genetic mechanisms controlling meiosis and homoeologous pairing. Additionally, in the
117 first generations, a significant proportion of aneuploid individuals were described causing
118 supplementary instability (Xiong *et al.*, 2011). These aneuploids result from chromosome mispairing
119 and can alter gamete viability and consequently seed yield (Gaeta & Pires, 2010; Xiong *et al.*, 2011).
120 Selection of euploid individuals might thus, allow disentangling the consequences of aneuploidy from
121 those of homoeolog rearrangements on meiotic behaviour and fertility.
122 So far, only rearrangements in the first generations after allopolyploidization have been studied in
123 resynthesized *B. napus* without replicated lineages from the same S0 and without distinguishing
124 aneuploids from euploid individuals. Here, we aim to unravel the fate of these genomic exchanges in
125 selected euploid generations of different resynthesized *B. napus* allopolyploids. By eliminating all
126 aneuploid individuals, we can disregard the effect of aneuploidy on meiosis and seed production to
127 focus on the structural and functional impact of homoeologous rearrangements. The extent and
128 consequences of these homoeologous rearrangements in *B. napus* were followed in four resynthesized
129 lines resulting from different genetic backgrounds, reciprocal parental crosses and different mode of

130 alloploid formation. For each cross, several independent S1 lines were created in order to follow
131 the dynamics of fixed homoeologous rearrangements over eight generations propagated by single
132 seed descent (SSD). We assessed meiotic behaviour and fertility and explored the role of fixed non-
133 reciprocal homoeologous exchanges on these traits in 358 individuals. Overall, our results highlight
134 that selection of euploid individuals led to the disappearance of newly fixed homoeologous
135 rearrangements. We described homoeologous rearrangements having variable functional and
136 structural impact on meiotic stability and seed production depending on the genetic background and
137 cytoplasmic donor. We finally propose a model to explain genome stabilization process in natural *B.*
138 *napus*.

139

140 MATERIAL AND METHODS

141 **Production of resynthesized *B. napus* populations through repeated selection of euploid individuals**

142 Resynthesized *B. napus* lines were created by crossing two different *B. oleracea* and *B. rapa* cultivars.
143 For *B. oleracea* ($2n=2x=18$, CC), we used the doubled haploid lines 'RC34' (*B. oleracea* var. *alboglabra*)
144 and 'HDEM' (*B. oleracea* var. *botrytis italicica*). For *B. rapa* ($2n=2x=20$, AA), we used 'Z1' (*B. rapa* var.
145 *trilocularis*) and 'C1.3' (belonging to a fodder variety named 'chicon' var. *rapifera*). A resynthesized *B.*
146 *napus* named 'RCC' was created by first crossing the *B. oleracea* 'RC34' (mother plant) and *B. rapa*
147 'C1.3' (father plant) lines, resulting in the amphiploid 'F1 hybrid RCC' ($2n=2x=19$, AC) (Fig. 1). This F1
148 hybrid was subsequently somatically doubled using colchicine (Chèvre et al. 1989), leading to the
149 resynthesized *B. napus* 'RCC-S0' ($2n=4x=38$). A reciprocal cross between the *B. rapa* 'C1.3' and the *B.*
150 *oleracea* 'RC34' lines was also performed, leading to the amphiploid 'F1 hybrid CRC' and to the
151 resynthesized *B. napus* 'CRC-S0' (after colchicine treatment). The two resynthesized 'RCC' and 'CRC'
152 lines were selfed (hand pollination of floral buds before anthesis), producing the 'RCC-S1' and 'CRC-S1'
153 progenies (Fig. 1). Thereafter 11 'RCC-S1' and 10 'CRC-S1' were selfed. These lineages were advanced
154 by SSD until the eighth generation. At each generation, only one plant with 38 chromosomes (euploid)
155 was randomly chosen from the set of euploid offspring. In some cases, lines did not produce any
156 progeny, leading to the extinction of such lineage. In addition to 'RCC' and 'CRC', we produced
157 resynthesized *B. napus* lines by firstly crossing the *B. oleracea* 'HDEM' line with the *B. rapa* 'Z1' line.
158 From this cross, we obtained three amphiploid F1 hybrids (named 'EMZ1', 'EMZ2' and 'EMZ3') that
159 were somatically doubled using colchicine, producing the EMZ1-S0', 'EMZ2-S0' and 'EMZ3-S0'
160 resynthesized lines. These three genetically identical EMZ lines were self-fertilized, producing the
161 'EMZ1-S1', 'EMZ2-S1' and 'EMZ3-S1' progenies. Then, five to eight plants from each lineage were
162 advanced by SSD until S8 generation (Fig. 1). The resynthesized 'UG EMZ' *B. napus* populations were
163 produced by crossing the F1 hybrid 'EMZ1, 2 or 3' with the corresponding resynthesized *B. napus*
164 'EMZ1, 2 or 3 S0', leading to the formation 'UG EMZ1, 2 or 3 S0' *B. napus* lines. Resulting polyploids

165 are thus the result of a cross between a female unreduced gamete of the F1 hybrid 'EMZ1' and a male
166 reduced gamete of 'EMZ1-S0' (Fig. 1). After selfing these lines, 4 to 15 S1 plants from each line were
167 advanced by SSD to the S8 generation.

168

169 **Meiotic behavior and chromosome counting**

170 The meiotic behavior and chromosome counting of all the produced material was studied by fixing
171 floral buds in Carnoy's solution (ethanol-chloroform-acid acetic, 6:3:1) for 24 hours and then stored in
172 50% ethanol. The anthers were squashed and stained in a drop of 1% acetocarmine solution: at least
173 20 pollen mother cells (PMCs) per plant were observed at metaphasis I.

174

175 **Fertility in resynthesized *B. napus* individuals**

176 The fertility (number of seeds per 100 pollinated flowers) of the different resynthesized *B. napus* was
177 calculated by counting the number of pods per pollinated flowers at the bud stage (preventing the
178 impact of potential self-incompatibility in the parental lines, as notably already known for HDEM,
179 Belser *et al.*, 2018) and the number of seeds per pod allowing assessment of the number of seeds per
180 pollinated flower. As a control, natural *B. napus* variety 'Darmor' was included in the experimental set-
181 up.

182

183 **DNA extraction and SNP genotyping**

184 Genomic DNA of 157 individuals was extracted with the maxi plant kit (LGC Genomics, Teddington
185 Middlesex, UK) at the GENTYANE platform (INRAE, France). For all four resynthesized crosses, only
186 generations S0, S1, S3, S6 and S8 were genotyped. Specifically, DNA was extracted from 42 individuals
187 for the 'RCC' resynthesized population including the two diploid parents, the F1 hybrid, 'RCC-S0', and
188 38 resynthesized progenies (11 S1, 11 S3, nine S6 and seven S8). For 'CRC', DNA from 38 individuals
189 was extracted including the F1 hybrid, 'CRC-S0', and 36 resynthesized progenies (ten S1, nine S3, nine
190 S6 and eight S8). For the different 'EMZ' populations, 61 individuals were submitted to DNA
191 extractions; the diploid parents, three F1 hybrids, three 'EMZ-S0', and 50 resynthesized progenies (18
192 S1, 16 S3, nine S6 and seven S8). Finally, DNA extractions on resynthesized lines created via female
193 unreduced gamete pathway were performed on 16 individuals from 'UG EMZ1-S0' cross, 43 individuals
194 from 'UG EMZ2-S0' cross and 16 individuals from the 'UG EMZ3-S0' cross.

195 Genotyping was then performed using the Illumina[®] (<http://www.illumina.com/>) *Brassica* 60K Infinium
196 SNP array (Clarke *et al.*, 2016). Hybridizations were performed according to the standard procedures
197 provided by the manufacturer. The obtained genotyping data were visualized using Genome Studio
198 V2011.1 (Illumina, Inc., San Diego, CA, USA) and processed with a manually adapted cluster file.

199

200 **SNP data analyses**

201 This *Brassica* 60K array is composed of 52,157 SNP markers that may either specifically hybridize to *B.*
202 *rapa* or to *B. oleracea* or that may hybridize to both species. These latter markers thus hybridize to
203 two distinct genome locations on *B. napus* (on the homoeologous A and C chromosomes). The
204 positions of the SNP markers on the *B. napus* chromosomes derived from Rousseau-Gueutin *et al.*,
205 (2017) and were obtained by blasting the 52,157 sequence contexts (minimum of 90% global overlap
206 and 90% identity) against the *B. napus* Darmor reference genome assembly (version 4.1 in Chalhoub
207 *et al.*, 2014). Only the markers presenting no more than one blast hit on each subgenome (A and C)
208 were retained, enabling to discard SNPs potentially hybridizing at paralogous regions.

209

210 **Identification of deleted regions resulting from non-reciprocal homoeologous exchanges in each**
211 **resynthesized *B. napus* line**

212 To identify non-reciprocal homoeologous exchanges in the 'RCC' and 'EMZ' resynthesized populations,
213 we used two types of markers: i) homoeo-SNP markers (Mason *et al.*, 2017) that were homozygous
214 and polymorphic (AA vs. BB) between the two diploid parental lines (*ie* 'HDEM' and 'Z1' or 'RC' and
215 'C1.3') and heterozygous in the S0 *B. napus* and ii) markers that only hybridized in one diploid parental
216 line of the *B. napus* resynthesized population (*i.e.* "AA" in 'HDEM' versus "--" in 'Z1'). These markers
217 specific to either *B. rapa* or *B. oleracea* are referred as dominant markers. Only the markers presenting
218 identical genotype data for all four technical replicates were considered for further analyses.
219 Thereafter, putative deletions in each resynthesized individual were identified by searching the loss of
220 one parental allele in the polymorphic homoeo-SNP markers ('AB' in the S0 and 'AA' or 'BB' in the
221 resynthesized *B. napus* progenies) or in the dominant markers ('A-' or 'B-' in the S0 and '--' in the
222 resynthesized *B. napus*). To avoid false positive results, deleted regions were only considered if at least
223 three consecutive markers displayed the loss of one parental allele (from the same parent).
224 Additionally, within a genealogy, deletions (with identical start and end positions, or extended start
225 and/or end positions) had to be inherited from parents to offspring. This method allows for the
226 detection of deleted regions from fixed non-reciprocal homoeologous DNA exchange in resynthesized
227 *B. napus* polyploids (Rousseau-Gueutin *et al.*, 2017). To perform these analyses, we developed a SQL
228 database using pgAdminIII (v1.22.1) that was saved in postgresql v9.5 (DataBase Management
229 System). The size and gene content of each deleted region was thereafter determined. We also
230 evaluated whether the deletions were present in the distal region of a chromosome arm (last 30% of
231 a chromosome arm) or close to the pericentromere (Mason *et al.*, 2016).

232

233 **Statistical analyses**

234 *Multi-variable analyses and comparisons of means*

235 In order to discriminate the different factors influencing both phenotyping (meiotic behavior and
236 fertility) and genotyping variables (number, size and position of homoeologous rearrangements), we
237 first conducted a Redundancy Analysis to summarize linear relationships between dependent variables
238 and independent factors. Following this global analysis, statistical comparisons of means between
239 crosses and between generations were performed using Anova and t-test with permutations when
240 necessary. These statistical analyses and graphics were achieved using R language (R Core Team, 2017)
241 and the RStudio environment (RStudio Team, 2015).

242

243 *Probability distributions of typical measures of stability of meiosis and seed formation in newly*
244 *resynthesized B. napus individuals*

245 To statistically identify individual plants with extreme values of stability of meiosis and seed formation,
246 we fitted probability density functions to the full cohort of observational data measured on the 358
247 resynthesized plants. The resulting probability distributions allowed weighting the probability of
248 individual measure to conform or not to the expected pattern of meiosis and seed formation in newly
249 resynthesized *B. napus*. Probability distributions were fitted using a classical approach of maximum
250 likelihood estimate of parameters, by maximizing a log-likelihood function, with penalty applied for
251 samples outside of range of the considered distribution. Considering the type and interval of measures,
252 we fitted beta distributions for percentage measures (percentage of cells with 19 bivalents, with
253 multivalents and percentage of male sterility), gamma distributions for mean positive measures
254 (average number of univalent, bivalent and multivalent per PMC), binomial distributions for the ability
255 to produce seeds and log-normal distribution for the number of seeds per 100 flowers.

256

257 *Genome scan for linking extreme phenotypic measures and deleted sites*

258 To identify putative genomic areas implied in the stability of meiosis and seed formation, we scanned
259 the genome for deleted SNPs included in structural rearrangements (i.e deleted regions from one
260 subgenome that most presumably result from homoeologous exchanges). We hypothesized that
261 plants measured with extreme phenotypes may present specific deleted genomic areas involved in the
262 stability of meiosis and seed formation. We thus classified for each SNP position, all studied plants in
263 two groups: plants with or without this particular deleted SNP, and analyzed their phenotypic
264 measures. We compared phenotypic measures of plant with and without deletions, and then
265 computed the probability of overrepresentation of each identified deletion in plants with extreme
266 phenotypic values.

267 In the first step, we tested if the two groups of plants, with and without deletion, differed for their
268 phenotypic measures using classical Mann-Whitney rank tests. The advantage of such non-parametric
269 test is to be less likely to find false significant differences than using parametric test, and thus

270 identifying robust candidate regions. When such identified deletions occurred in different lineages
271 with different genetic backgrounds, it strengthened our confidence that such deletion may include
272 candidate genes involved in the stability of meiosis or seed formation. Indeed, different genetic
273 backgrounds with the same deletion and the same phenotypic measures decrease the probability that
274 identified extreme measures could be due to another deleted site co-inherited by descent from a
275 common ancestor. We thus performed two complementary variations of this approach: one *overall*
276 *data* and one *within each genetic cross*. First, we review each deletion regardless of their genetic
277 background and tested if plants with deletion conformed to the standard distribution of phenotypic
278 measures or not. Second, in each of the genetic combination, we tested if plants with deletion
279 conformed to the standard distribution of phenotypic measures or not for each deletion, allowing to
280 identify cross-specific loci that may be co-localized.

281 In the second step, we identified plants with extreme phenotypic measures when their measures lied
282 outside the 99% confidence interval of each phenotypic measure, considering the appropriate fitted
283 probability distributions (see above). Then, for each genomic site i , we counted the number of time k_i
284 this one was deleted among the n_i abnormal plants. We computed the probability to observe k_i
285 deleted sites among n_i by chance $P(k_i/n_i, p_i)$ as the probability mass function of a binomial
286 distribution of success probability in each trial as the overall ratio of deleted sites on the number of
287 successfully genotyped sites. A SNP candidate was considered as involved in the phenotype if its
288 probability $P(k_i/n_i, p_i)$ was inferior to 10% in at least six individuals in different genetic backgrounds.
289

290 RESULTS

291 The dataset presented in this study comprises phenotypic measures of SDD individuals over eight
292 generations for four independent nascent lineages of allopolyploid *B. napus*. The impact of repetitive
293 euploid selection was visible as soon as the fourth generation and forward, as only 0 to 2.94% of
294 aneuploid individuals were found in the resynthesized S4 to S8 generations compared to 11.46-11.27%
295 in S1-S3 (Supporting Information Fig. S1). In total, we assessed the meiotic behavior and seed yield of
296 358 individuals including 73 individuals for each 'RCC' and 'CRC' lines, as well as 91 and 121 'EMZ' and
297 'UG EMZ' individuals, respectively. All individual measurements included number of seeds per 100
298 flowers, percentages of cells with multivalents and bivalents as well as, mortality in the next generation
299 (Supporting Information Table S1). This valuable dataset was then analysed in regards to a genotyping
300 dataset performed on the four lines at generation S1, S3, S6 and S8. Each resynthesized *B. napus*
301 lineage is represented by 35, 37, 40 and 62 'RCC', 'CRC', 'EMZ' and 'UG EMZ' individuals, respectively.
302 Description (number, size, position) of the identified homoeologous rearrangements was included in
303 Supporting Information Table S1. Overall, variability of the dataset was well explained (68%, $p<0.001$)

304 by the factors 'cross' and 'generation', as well as by the interaction of 'cross' and 'generation' ($p<0.001$;
305 Supporting Information Table S2). We thus mined the datasets to identify the factors explaining the
306 phenotypic and genomic variations between genetic backgrounds as well as the dynamics in the first
307 eight generations after allopolyploid speciation.

308

309 **Fertility**

310 The fertility of the resynthesized *B. napus* populations was assessed based on the number of seeds per
311 100 flowers in all four nascent lines of *B. napus* 'RCC', 'CRC', 'EMZ' and 'UG EMZ'. Means for the nascent
312 lines were 270.8, 158.8, 62.6 and 55.1, respectively. By comparison, variety 'Darmor' has on average
313 2067 seeds per 100 flowers (SD=516) which is significantly 10-fold higher than what is observed in
314 resynthesized *B. napus* (t-test with permutation, $p=0.0025$, Supporting Information Fig. S2). Overall,
315 differences in seed yield were significant between all lines (t-test, $p<0.01$) except between 'EMZ' vs
316 'UG EMZ' (Supporting Information Fig. S2). In 'RCC', fertility significantly decreased from the 1st
317 generation to the 4th (t-test, $p<0.01$) and again from the 5th to the 8th generation (t-test, $p<0.01$) with
318 a high fertility (mean=572.2) observed in the 5th generation (comparable to the yield observed in S1)
319 (Fig. 2). In 'CRC', fertility increased in the 2nd generation compared to the first generation (162.5 to
320 395.8 seeds per flower, $p<0.05$) to drastically decrease until the 8th generation (t-test, $p<0.05$) (Fig. 2).
321 In 'EMZ', compared to S0 all following generations presented a lower number of seeds. Similarly, 'UG
322 EMZ' individuals exhibited equal or lower number of seeds in the generations following
323 allopolyploidization, only a slight significant decrease was observable from generation S1-S2 to S3 (t-
324 test, $p<0.05$) (Fig. 2).

325

326 **Meiotic behavior**

327 Meiotic behavior was characterized using various descriptors. First, as solely euploid *B. napus*
328 individuals (with $2n=38$) were assessed, it was expected that such plants presented a better meiotic
329 stability compared to its aneuploid siblings. Despite having 38 chromosomes, meiosis was affected in
330 our plants with 49.4%, 41.0%, 41.1 and 38.1% of cells exhibiting 19 bivalent structures in 'RCC', 'CRC',
331 'EMZ' and 'UG EMZ', respectively overall generations (Supporting Information Fig. S2). Percentage of
332 cells with 19 bivalents was significantly higher in 'RCC' compared to the three other nascent lines
333 (Supporting Information Fig. S2, t-test, $p<0.01$).

334 S0 individuals in all nascent lines exhibited overall higher percentages of cells with proper bivalents
335 (80.0% in RCC, 75.0% in CRC, 71.6% in EMZ and 76.3% in UG EMZ) compared to subsequent
336 generations. Percentage of cells with 19 bivalents was consistent across generations S1 to S8 in 'RCC'
337 whereas significant differences between generations were visible in the crosses 'CRC', 'EMZ' and 'UG
338 EMZ' (Fig. 2). In 'CRC', percentage of cells with 19 bivalents tended to increase in S3 compared to S1

339 (from 21.1% to 44.8%, t-test, $p<0.05$, Fig. 2) and stabilized in subsequent generations. In 'EMZ',
340 percentage of cells with 19 bivalents decreased drastically from S1 to S2 (t-test, $p<0.05$, Fig. 2) followed
341 by a slight increase from S2 to S7. In 'UG EMZ', after the drop from S0 to S1, percentage of cells with
342 19 bivalents was found constant with a slight increase in S8 (Fig. 2).

343 Finally, we assessed the percentage of cells exhibiting multivalents in the nascent allopolyploids. A
344 similar percentage of cells with multivalents was observed among all lines (27.3% in 'RCC', 28.8% in
345 'CRC', 29.7% in 'EMZ' and 29.1% in 'UG EMZ', Supporting Information Fig. S2). This trend was also found
346 consistent across generations for all resynthesized lines except for 'UG EMZ' where a slight increase in
347 the percentage of multivalents was observed from S1 to S4-S5 (23.4% to 34.7%, t-test, $p<0.05$, Fig. 2).
348 After that, the predominance of multivalents decreased from S5 to S8.

349

350 **Identification of fixed non reciprocal structural rearrangements**

351 To identify the putative presence of fixed homoeologous rearrangements in each genotype, we used
352 the polymorph markers between the diploid parental lines of resynthesized *B. napus*. For the 'RCC'
353 and 'CRC' populations, a total of 12,218 markers including 2,274 co-dominant and 9,944 dominant
354 markers were included in the analysis (one marker every 68.8kb along the assembled *B. napus*
355 genome). Similarly, 15,180 markers were analysed in the 'EMZ' and 'UG EMZ', including 13,501
356 dominant markers and 1,679 co-dominant markers (one marker every 55.3kb along the assembled *B.*
357 *napus* genome).

358 We then evaluated size, number and position on the chromosomes and on the subgenomes of fixed
359 homoeologous rearrangements in a population per resynthesized line and per generation (Supporting
360 Information Table S1), using the physical localization of SNP markers on *B. napus* genome (Rousseau-
361 Gueutin *et al.*, 2017). Average number of identified regions ranged between 5.2, 6.1, 8.1 and 11.2 per
362 individual per generation in 'RCC', in 'CRC', in 'EMZ' and 'UG EMZ' respectively (Fig. 3). Globally,
363 individuals from the 'UG EMZ' line showed significantly higher number of rearranged regions than
364 'CRC' and 'RCC' lines (t-test, $p<0.01$, Fig. 3). The average size of the homoeologous rearrangements
365 was estimated at 1.88, 3.79, 2.43 and 3.06Mb in 'RCC', in 'CRC', in 'EMZ' and 'UG EMZ' respectively
366 (Fig. 3). A significant difference was only observed between 'RCC' and 'UG EMZ' (t-test, $p<0.01$, Fig. 3).
367 We observed a limited number of homoeologous rearrangements in 'RCC' and 'CRC' compared to
368 other crosses, with the exception of one individual in 'CRC' having a larger number of rearrangements
369 in S6 and S8 (Fig. 3). By contrast, number of homoeologous rearrangements is higher as soon as the S1
370 generation in 'UG EMZ' and to a lesser extent in 'EMZ'. We observed a low number of individuals in
371 generations S8 in both 'EMZ' and 'UG EMZ' compared to 'RCC' and 'CRC'. Interestingly, by decomposing
372 the nature of these homoeologous rearrangements for each individual compared to previous
373 generation, we could infer the drastic decrease of new homoeologous rearrangements appearing in

374 the different lineages at S3 for 'RCC' and at S6 for 'CRC', 'EMZ' and 'UG EMZ' (Supporting Information
375 Fig. S3).

376 In parallel, we assessed cumulative size of homoeologous rearrangements on each subgenome from
377 generation S1 to S8 in all crosses (Fig. 4). Overall, cumulative size of homoeologous rearrangements
378 was found higher in 'UG EMZ' compared to 'EMZ' and 'RCC' (with 35.2Mb vs 20.5Mb and 12.4Mb; t-
379 test, $p<0.05$) (Fig. 4). Furthermore, the C subgenome was predominantly affected by rearrangements
380 in 'CRC', 'EMZ' and 'UG EMZ' (Fig. 4) but only statistically different in generations S6 and S8 of 'CRC',
381 generation S3 of 'EMZ' and S3 of 'UG EMZ'. Although having similar progenitors, crosses 'RCC' and CRC'
382 were found differently impacted by homoeologous rearrangements on the C subgenomes in S6 and S8
383 (t-test, $p<0.05$).

384

385 **Correlations between homoeologous rearrangements, meiotic behaviour and fertility**

386 The novelty of the present study lies in explaining meiotic behavior, fertility, and structural dynamics
387 using repeated euploid selection of *B. napus* individuals in nascent allopolyploid populations. We
388 assessed correlations between the different variables in order to identify if and how fixed non-
389 reciprocal translocations may explain seed yield and chromosome pairing during meiosis. First, all
390 measurements describing the presence of homoeologous rearrangements were correlating positively
391 between themselves (Supporting Information Fig. S4). Expectedly, percentage of cells with bivalents
392 was inversely correlated with percentage of cells with multivalents (with statistical support in crosses
393 'RCC', 'EMZ' and 'UG EMZ', Supporting Information Fig. S4). Interestingly, the correlations depended
394 profoundly on the cross and thus the progenitors of the resynthesized allopolyploids. In 'RCC' and 'CRC'
395 that have globally fewer homoeologous rearrangements, strongest negative correlations were found
396 between the presence of homoeologous rearrangements and the number of seeds produced
397 (Supporting Information Fig. S4). By contrast, large and numerous rearrangements observed in 'EMZ'
398 have strong negative impact on meiotic behavior (Supporting Information Fig. S4). In 'UG EMZ',
399 correlations were described between average size of rearrangements and meiotic behavior and
400 between number of homoeologous rearrangements along with cumulative size on A subgenome and
401 fertility (Supporting Information Fig. S4).

402

403 **Genome scan linking phenotypic measures with rearranged homoeologous regions**

404 To go further, a genome scan was performed to link phenotypic measures with positions of the
405 rearranged homoeologous regions (Supporting Information Table S2). Using genome scan analysis
406 *overall data*, we identified one locus of 2.2Mb on chromosome A03 containing 440 genes (Table 1) and
407 impacting the percentage of cells with multivalents. This list of genes was screened to identify
408 annotations that might be relevant in the context of plant meiosis. In particular, one gene (ortholog

409 AT2G42890) coding for a protein MEI2-like 2 or ML2 has drawn our attention. This gene has several
410 copies in the genome of *B. napus* 'Darmor' (with two paleologs BnaA03g19940,
411 BnaC03g23940/BnaC03g23930 and BnaA05g03150, BnaCnng35790). The unique gene on
412 chromosome A03 has potentially been replaced by the two copies from chromosome C03. Using
413 genome scan analyses *within each cross*, we identified one region associated with the percentage of
414 cells with 19 bivalents in 'EMZ' and 'CRC' individuals on the C02 chromosome and three regions
415 associated with the number of seeds per 100 flowers on C01, C02 and C04 chromosomes (containing
416 228 to 880 genes, Table 1).

417

418 **DISCUSSION**

419 In this study, we unravel the consequences of repeated euploid selection in the early generations
420 following allopolyploidization, specifically we describe how rearrangements between homoeologous
421 chromosomes influence meiotic behavior and fertility in nascent resynthesized *B. napus* individuals.
422 Compared to previous studies using resynthesized *B. napus* (Gaeta & Pires, 2007; Szadkowski *et al.*,
423 2010; Xiong & Pires, 2011; Xiong *et al.*, 2011; Rousseau-Gueutin *et al.*, 2017; Bird *et al.*, 2020), we
424 decided to perform repetitive selection for euploid individuals in order to evaluate the role of this
425 phenomenon in *B. napus* speciation success. Ultimately, after a few euploid generations the
426 consequences on meiosis and fertility can be attributed primarily to homoeologous rearrangements
427 thus drawing conclusion on the impact of homoeologous rearrangements on genome stabilization.
428 After the first meiosis and its 'genome blender', we focus on the drastic subsequent increase of
429 homoeologous rearrangements from S1 to S4, rapidly followed by a quasi total disappearance of newly
430 fixed homoeologous rearrangements in all studied resynthesized *B. napus* lineages. Interestingly, their
431 consequences on meiotic behavior and seed number strongly depended on the genetic background
432 and cytoplasm donor. Finally, we discuss the origin of *B. napus* and the processes that could explain
433 their genomic stability compared to resynthesized allopolyploids.

434

435 **1. Impact of the first meiosis depends on the different genetic backgrounds**

436 Immediately after the formation of the different resynthesized *B. napus* lines, S0 individuals exhibited
437 a relatively high percentage of cells with bivalents and low percentage of cells with multivalents due
438 to the absence of rearrangements (Szadkowski *et al.*, 2010, 2011). In the S1 generation, percentage of
439 cells with 19 bivalents significantly decreased while homoeologous rearrangements were fixed,
440 favoring subsequent homoeologous pairing notably via the formation of multivalents.

441

442 The extent of homoeologous rearrangement intensification in the first couple of generations after
443 allopolyploid speciation depends on the genetic background. Number of homoeologous

444 rearrangements and cumulative size in S3 is strongly limited in 'RCC' and 'CRC' compared to 'EMZ'.
445 These differences can be explained by the contrasted genetic backgrounds of resynthesized *B. napus*
446 progenitors. First, macrosyntenic differences (large structural variants) between progenitor genomes
447 could be present leading to different rates of homoeologous pairing and crossing-over in the
448 allopolyploid. Both *Brassica rapa* used in this study ('Z1' ssp trilocularis and 'C1.3' ssp rapifera) and
449 both *B. oleracea* progenitors ('HDEM' ssp botrytis 'broccoli' type vs 'RC34' ssp alboglabra 'chinese
450 kale') come from distinct clades (Cheng *et al.*, 2016). Although, the genome structure of 'C1.3' and
451 'RC34' is still unknown, a previous RNA-Seq study on the same resynthesized polyploids demonstrated
452 the divergence in terms of transcription between progenitors and different transcriptional dynamics
453 in the allopolyploids (Ferreira de Carvalho *et al.*, 2019). Globally, large structural diversity is being
454 described within both *B. rapa* and *B. oleracea* species (Lin *et al.*, 2014; Golicz *et al.*, 2016; Boutte *et al.*,
455 2020) and could participate in the variation in number and size of homoeologous rearrangements.
456 Second, presence of a genetic factor controlling meiotic behavior in allopolyploids and preventing
457 homoeologous pairing could also explain the differences in the number of rearrangements observed
458 and in the percentage of cells with bivalents between 'RCC' and 'EMZ'. One approach consisted in
459 correlating the loss of one homoeologous region with the variation observed in the different
460 phenotypic variables. We notably identified one region on the A03 chromosome containing 440 genes
461 in 'RCC', 'CRC' and 'UG EMZ' and leading to fewer cells with multivalents. Interestingly, one meiotic
462 gene is included in this region and has been shown implicated in meiosis and control of chromosome
463 pairing. *ML2* gene has been shown to play a role in fertility and plant meiotic behavior in *A. thaliana*
464 mutants (Kaur *et al.*, 2006). In RNAi triple mutants for *aml1*, *aml2* and *aml4*, phenotypes observed
465 were due to a range of abnormalities in chromosome organization during meiotic prophase and later
466 stages. Here, resynthesized lines of *B. napus* were not subjected to a complete loss of the locus but
467 the replacement of the A03 region by the homoeologous region from the C subgenome. As the synteny
468 is well-conserved between homoeologous regions, we can speculate that the homoeologous C allele
469 is duplicated. Thus, as the function is conserved, allelic or transcription variation can be at the origin
470 of the contrasted phenotypes. Interestingly, Kaur and co-authors, also suggested a dosage effect of
471 the *ML1* to *ML5* genes as they reported a strong expression of these genes in meiocytes compared to
472 other developmental stages and organs. Similarly, other genes have been described as implicated in
473 homoeologous pairing control *via* dosage or allele effect, such as *MSH4* (Gonzalo *et al.*, 2019). *BnAPH1*
474 and *PrBn* have additionally been shown to reduce homoeologous pairing (Jenczewski *et al.*, 2003;
475 Higgins *et al.*, 2020).
476
477 Finally, with identical diploid progenitors, resynthesized individuals 'EMZ' and 'UG EMZ' exhibited
478 similar fertility and meiotic behavior but showed contrasted patterns regarding their respective

479 cumulative size of fixed homoeologous rearrangements. These two resynthesized allopolyploids differ
480 only by their mode of polyploid formation. The S0 from 'EMZ' has been produced *via* colchicine
481 treatment whereas 'UG EMZ' S0 has been produced by unreduced gametes following the hybridization
482 of one 'EMZ' S0 and one 'EMZ' F1 hybrid. Unreduced gametes formed in allohaploids (n=2x=19; AC)
483 present an elevated frequency of homoeologous exchanges during meiosis compared to
484 allotetraploids *B. napus* (2n=4X=38; AACC) (Nicolas *et al.*, 2007, 2009, 2012; Cifuentes *et al.*, 2010;
485 Szadkowski *et al.*, 2011). Indeed, 'UG EMZ' S3 individuals, cumulating rearrangements generated from
486 unreduced female gametes with the ones occurring in S0 synthetic male gamete, have two to three-
487 fold higher number of rearrangements and larger cumulative size than 'EMZ' S3 individuals. However,
488 this tendency diminishes in S6 and S8 in 'UG EMZ' individuals thanks to the low fixation of novel
489 homoeologous rearrangements over generation via the recurrent selection of euploid individuals as
490 well as the high mortality rate of individuals with numerous rearrangements.

491

492 **2. Consequences of euploid selection on the drastic decreased fixation of homoeologous 493 rearrangements in early allopolyploid generations**

494 Rapidly after the third generation, euploid selection led to the fixation of fewer novel homoeologous
495 rearrangements hence, limiting the negative impact of these rearrangements on genomes stability and
496 seed yield. Indeed, euploid selection seems to foster higher or at least constant number of bivalents
497 during meiosis without observable consequences on seed yield. However, the amplitude of this result
498 highly depends on the genetic background and maternal progenitor of the resynthesized
499 allopolyploids.

500

501 Rearrangements between subgenome impact meiosis, the smaller and fewer the rearrangements in a
502 plant, the more stable its meiosis. 'RCC' had fewer, shorter rearrangements without improved seed
503 yield in S8, which probably reveals the functional impact of homoeologous rearrangements on this
504 trait. As numerous seed yield QTLs were identified along the genome of *B. napus* (Raboanatahiry *et*
505 *al.*, 2018), we can presume that even few rearrangements in those regions will have an impact on the
506 production of seeds. In this case, the decrease in seed number may be linked to the allelic diversity
507 and/or dosage effect of genes present in the homoeologous rearrangements. This conclusion is also
508 supported by the fact that in generations S1, S2, S3 and S5 some individuals exhibited a high number
509 of seeds which indicate that some of the rearrangements present in those individuals have a beneficial
510 or at least, a less deleterious impact than the others on seed yield. On the other hand, 'CRC'
511 demonstrates fewer and shorter rearrangements with poorer seed yield than 'RCC'. With identical
512 genetic backgrounds, both crosses should be similarly functionally impacted by homoeologous
513 rearrangements on seed production. Interestingly, 'CRC' individuals have additional homoeologous

514 rearrangements on the C subgenome in generation S6 and S8 compared to 'RCC'. This observable
515 difference between 'RCC' and 'CRC' is probably due to the maternal donors. Phenotypic consequences
516 of differential cytoplasm donors have been reported (in *Brassica* Cui *et al.*, 2012 and in tomato
517 Demondes de Alencar *et al.*, 2020) and recently in maternal cross combination of resynthesized *B.*
518 *napus* (Sosnowska *et al.*, 2020). However, the underlying genetic interactions between organelle and
519 nuclear genomes, as well as their impact on plant functional traits are still overlooked.

520

521 In both 'EMZ' and 'UG EMZ', large and numerous homoeologous rearrangements were observed,
522 directly influencing the stability of meiosis and decreasing the percentage of cells with 19 bivalents. In
523 this case, having smaller and fewer homoeologous rearrangements improved meiotic stability but not
524 seed production as observed in 'RCC' and to a lesser extent in 'CRC'. Although the number of new
525 homoeologous rearrangements seemed to be limited as soon as the 6th generation, individuals still
526 carry a large deleterious load on fertility and meiotic behavior that would not be purged in these self-
527 fertilized lines. Hence, these fixed homoeologous rearrangements may only be eliminated from the
528 population by extensive outcrossing events.

529

530 **3. On the road to polyploid success**

531 Homoeologous rearrangements are visible in *B. napus* varieties (Chalhoub *et al.*, 2014; Lloyd *et al.*,
532 2018; Song *et al.*, 2020). These rearrangements are globally shorter in natural varieties compared to
533 resynthesized lines (Chalhoub *et al.*, 2014) and do not seem to influence meiotic behavior and fertility
534 (Rousseau-Gueutin *et al.*, 2017). Recently, the pangenome of *B. napus* revealed the high proportion of
535 homoeologous genomic rearrangements in modifying important adaptive and agronomic traits, such
536 as flowering time, seed quality, silique length disease resistance and chemical defense (Pires *et al.*,
537 2004; Zhao *et al.*, 2006; Hurgobin *et al.*, 2017; Stein *et al.*, 2017; Song *et al.*, 2020). It is thus obvious
538 that these rearrangements are occurring and may sometime be beneficial to agronomically improve
539 *B. napus* varieties. Yet, these homoeologous rearrangements observed in natural *B. napus* never level
540 up to the number and size of homoeologous rearrangements observed in newly resynthesized *B. napus*
541 lines (Szadowski *et al.*, 2010, 2011; Rousseau-Gueutin *et al.*, 2017). Thus, we can hypothesize that the
542 original *B. napus* population have experienced similar homoeolog rearrangements as observed in the
543 resynthesized allotetraploids, but that overlapping between rearrangements of different sizes in the
544 same genomic region allow crossover formation leading to progressive size decrease of homoeologous
545 rearrangements. Thereby, the current *B. napus* varieties most presumably derive from a small
546 founding population of euploid and fertile individuals that intercrossed to minimize the number of
547 fixed homoeologous rearrangements, hence maximizing the number of bivalent and enhancing seed
548 production. The alternative (or complementary) explanation lies in the presence of a genetic

549 determinant that completely or partially prevented homoeologous pairing and rearrangements, and
550 preexisted in *B. napus* diploid progenitors.

551

552 CONCLUSION

553 To conclude, the consequences of homoeologous rearrangements on meiotic behavior and fertility
554 depends on their size and the genetic background where they occur. Although recurrent euploid
555 selection drastically reduced the fixation of novel homoeologous rearrangements in subsequent
556 generations, it did not directly improve fertility and meiotic stability. Interestingly, the rearrangements
557 identified in these *B. napus* enabled the identification of several candidate regions involved in seed
558 yield and genome stability. These results offer a new perspective on the consequences of structural
559 variants in allopolyploid genome stability and speciation success as well as new avenues to increase
560 phenotypic diversity in oilseed rape.

561

562 ACKNOWLEDGEMENTS

563 This work was made possible by financial support of the European Union and a Marie Skłodowska-
564 Curie grant (number: 791908) awarded to JFC, as well as a grant from the department 'Biology and
565 Plant Breeding' at INRAE (project 'Allogen' awarded to MRG). We acknowledge the BrACySol BRC (INRA
566 Ploudaniel, France) that provided us with the seeds of parental lines; and K. C. Falk from Agriculture
567 and Agri-Food Canada (Ontario) that provided the seeds of *B. rapa* 'Z1'. We would also like to thank all
568 the technical staff of the greenhouse for management of the plant material (especially L. Charlon, P.
569 Rolland, J.-P. Constantin, J.-M. Lucas and F. Letertre). The authors have no conflict of interest to
570 declare.

571

572 AUTHOR CONTRIBUTION

573 AMC was involved in the experimental design with JFC and MRG in the conceptualization of the study;
574 FE, ML, GT carried out the molecular and cytological experiments; MMG was in charge of plant care;
575 JFC, SS, JM, CF, AMC, MRG were involved in data analyses; JFC, SS, AMC and MRG were involved in
576 writing.

577

578 REFERENCES

579

580 **An H, Qi X, Gaynor ML, Hao Y, Gebken SC, Mabry ME, McAlvay AC, Teakle GR, Conant GC, Barker MS,**
581 **et al. 2019.** Transcriptome and organellar sequencing highlights the complex origin and diversification
582 of allotetraploid *Brassica napus*. *Nature Communications* **10**: 2878.

583 **Anderson GH, Hanson MR. 2005.** The *Arabidopsis* *Mei2* homologue AML1 binds AtRaptor1B, the plant
584 homologue of a major regulator of eukaryotic cell growth. *BMC plant biology* **5**: 2.

585 **Baniaga AE, Marx HE, Arrigo N, Barker MS. 2020.** Polyploid plants have faster rates of multivariate
586 niche differentiation than their diploid relatives. *Ecology Letters* **23**: 68–78.

587 **Belser C, Istace B, Denis E, Dubarry M, Baurens F-C, Falentin C, Genete M, Berrabah W, Chèvre A-M, Delourme R, et al. 2018.** Chromosome-scale assemblies of plant genomes using nanopore long reads and optical maps. *Nature Plants* **4**: 879–887.

590 **Boutte J, Maillet L, Chaussepied T, Letort S, Aury J-M, Belser C, Boideau F, Brunet A, Coriton O, Deniot G, et al. 2020.** Genome size variation and comparative genomics reveal intraspecific diversity in *Brassica rapa*. *Frontiers in Plant Science* **11**.

593 **Chalhoub B, Denoeud F, Liu S, Parkin IAP, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, et al. 2014.** Early allopolyploid evolution in the post-Neolithic *Brassica napus* oilseed genome. *Science* **345**: 950–953.

596 **Cheng F, Wu J, Cai C, Fu L, Liang J, Borm T, Zhuang M, Zhang Y, Zhang F, Bonnema G, et al. 2016.** Genome resequencing and comparative variome analysis in a *Brassica rapa* and *Brassica oleracea* collection. *Scientific Data* **3**: 160119.

599 **Cifuentes M, Eber F, Lucas M-O, Lode M, Chèvre A-M, Jenczewski E. 2010.** Repeated polyploidy drove 600 different levels of crossover suppression between homoeologous chromosomes in *Brassica napus* 601 allohaploids. *The Plant Cell* **22**: 2265–2276.

602 **Cui C, Ge X, Gautam M, Kang L, Li Z. 2012.** Cytoplasmic and genomic effects on meiotic pairing in 603 brassica hybrids and allotetraploids from pair crosses of three cultivated diploids. *Genetics* **191**: 725–604 738.

605 **Delmondes de Alencar L, Azevedo P, Rocha Latado R. 2020.** Mothers' command: phenotypes changes 606 resulting from reciprocal interploidy crosses. *Euphytica* **216**: 21.

607 **Ferreira de Carvalho J, Lucas J, Deniot G, Falentin C, Filangi O, Gilet M, Legeai F, Lode M, Morice J, Trotoux G, et al. 2019.** Cytonuclear interactions remain stable during allopolyploid evolution despite 609 repeated whole-genome duplications in *Brassica*. *The Plant Journal* **98**: 434–447.

610 **Gaeta RT, Pires CJ. 2010.** Homoeologous recombination in allopolyploids: the polyploid ratchet. *New 611 Phytologist* **186**: 18–28.

612 **Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC. 2007.** Genomic changes in resynthesized *Brassica napus* and their effect on gene expression and phenotype. *Plant Cell* **19**: 3403–3417.

614 **Golicz AA, Bayer PE, Barker GC, Edger PP, Kim H, Martinez PA, Chan CKK, Severn-Ellis A, McCombie WR, Parkin IAP, et al. 2016.** The pangenome of an agronomically important crop plant *Brassica oleracea*. *Nature Communications* **7**: 13390.

617 **Gonzalo A, Lucas M-O, Charpentier C, Sandmann G, Lloyd A, Jenczewski E. 2019.** Reducing MSH4 copy
618 number prevents meiotic crossovers between non-homologous chromosomes in *Brassica napus*.
619 *Nature Communications* **10**: 2354.

620 **Griffiths S, Sharp R, Foote TN, Bertin I, Wanous M, Reader S, Colas I, Moore G. 2006.** Molecular
621 characterization of *Ph1* as a major chromosome pairing locus in polyploid wheat. *Nature* **439**: 749–
622 752.

623 **Higgins EE, Clarke WE, Howell EC, Armstrong SJ, Parkin IAP. 2018.** Detecting de novo homoeologous
624 recombination events in cultivated *Brassica napus* using a genome-wide SNP array. *G3: Genes,*
625 *Genomes, Genetics* **8**: 2673–2683.

626 **Higgins EE, Howell EC, Armstrong SJ, Parkin IAP. 2020.** A major quantitative trait locus on
627 chromosome A9, *BnaPh1*, controls homoeologous recombination in *Brassica napus*. *New Phytologist*
628 doi.org/10.1111/nph.16986.

629 **Hurgobin B, Golicz AA, Bayer PE, Chan C-KK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B,**
630 **Montenegro JD, Parkin IAP, et al. 2018.** Homoeologous exchange is a major cause of gene
631 presence/absence variation in the amphidiploid *Brassica napus*. *Plant Biotechnology Journal* **16**: 1265–
632 1274.

633 **Jenczewski E, Alix K. 2004.** From diploids to allopolyploids: the emergence of efficient pairing control
634 genes in plants. *Critical Reviews in Plant Sciences* **23**: 21–45.

635 **Jenczewski E, Eber F, Grimaud A, Huet S, Lucas MO, Monod H, Chèvre AM. 2003.** *PrBn*, a major gene
636 controlling homeologous pairing in oilseed rape (*Brassica napus*) haploids. *Genetics* **164**: 645–653.

637 **Jesske T, Olberg B, Schierholt A, Becker HC. 2013.** Resynthesized lines from domesticated and wild
638 *Brassica* taxa and their hybrids with *B. napus* L.: genetic diversity and hybrid yield. *TAG Theoretical and*
639 *applied genetics* **126**: 1053–1065.

640 **Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, Tomsho LP, Hu Y, Liang**
641 **H, Soltis PS, et al. 2011.** Ancestral polyploidy in seed plants and angiosperms. *Nature* **473**: 97–100.

642 **Lin K, Zhang N, Severing EI, Nijveen H, Cheng F, Visser RG, Wang X, de Ridder D, Bonnema G. 2014.**
643 Beyond genomic variation - comparison and functional annotation of three *Brassica rapa* genomes: a
644 turnip, a rapid cycling and a Chinese cabbage. *BMC Genomics* **15**: 250.

645 **Lloyd A, Blary A, Charif D, Charpentier C, Tran J, Balzergue S, Delannoy E, Rigaill G, Jenczewski E.**
646 **2018.** Homoeologous exchanges cause extensive dosage-dependent gene expression changes in an
647 allopolyploid crop. *The New Phytologist* **217**: 367–377.

648 **Mason AS, Higgins EE, Snowdon RJ, Batley J, Stein A, Werner C, Parkin IAP. 2017.** A user guide to the
649 *Brassica* 60K Illumina Infinium™ SNP genotyping array. *TAG Theoretical and applied genetics* **130**: 621–
650 633.

651 **Mason AS, Rousseau-Gueutin M, Morice J, Bayer PE, Besharat N, Cousin A, Pradhan A, Parkin IAP, Chèvre A-M, Batley J, et al. 2016.** Centromere locations in *Brassica* A and C genomes revealed through half-tetrad analysis. *Genetics* **202**: 513–523.

654 **Nicolas SD, Leflon M, Monod H, Eber F, Coriton O, Huteau V, Chèvre A-M, Jenczewski E. 2009.** Genetic regulation of meiotic cross-overs between related genomes in *Brassica napus* haploids and hybrids. *The Plant Cell* **21**: 373–385.

657 **Nicolas SD, Mignon GL, Eber F, Coriton O, Monod H, Clouet V, Huteau V, Lostanlen A, Delourme R, Chalhoub B, et al. 2007.** Homeologous recombination plays a major role in chromosome rearrangements that occur during meiosis of *Brassica napus* haploids. *Genetics* **175**: 487–503.

660 **Nicolas SD, Monod H, Eber F, Chèvre A-M, Jenczewski E. 2012.** Non-random distribution of extensive chromosome rearrangements in *Brassica napus* depends on genome organization. *The Plant Journal* **70**: 691–703.

663 **One thousand plant transcriptomes. 2019.** One thousand plant transcriptomes and the phylogenomics of green plants. *Nature* **574**: 679–685.

665 **Pires CJ, Zhao J, Schranz ME, Leon E, Quijada PA, Lukens LN, Osborn TC. 2004.** Flowering time divergence and genomic rearrangements in resynthesized *Brassica* polyploids (Brassicaceae). *Biological Journal of the Linnean Society* **82**: 675–688.

668 **R Core Team. 2018.** *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing.

670 **Raboanatahiry N, Chao H, Dalin H, Pu S, Yan W, Yu L, Wang B, Li M. 2018.** QTL alignment for seed yield and yield related traits in *Brassica napus*. *Frontiers in Plant Science* **9**.

672 **Rousseau-Gueutin M, Morice J, Coriton O, Huteau V, Trotoux G, Nègre S, Falentin C, Deniot G, Gilet M, Eber F, et al. 2017.** The impact of open pollination on the structural evolutionary dynamics, meiotic behavior, and fertility of resynthesized allotetraploid *Brassica napus* L. *G3: Genes, Genomes, Genetics* **7**: 705–717.

676 **RStudio Team. 2020.** RStudio: Integrated Development for R. RStudio.

677 **Samans B, Chalhoub B, Snowdon RJ. 2017.** Surviving a genome collision: genomic signatures of allopolyploidization in the recent crop species *Brassica napus*. *The Plant Genome* **10**.

679 **Selmecki AM, Maruvka YE, Richmond PA, Guillet M, Shores N, Sorenson AL, De S, Kishony R, Michor F, Dowell R, et al. 2015.** Polyploidy can drive rapid adaptation in yeast. *Nature* **519**: 349–352.

681 **Song J-M, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, et al. 2020.** Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of *Brassica napus*. *Nature Plants* **6**: 34–45.

684 **Song K, Lu P, Tang K, Osborn TC. 1995.** Rapid genome change in synthetic polyploids of *Brassica* and
685 its implications for polyploid evolution. *Proceedings of the National Academy of Sciences of the United*
686 *States Of America* **92**: 7719–7723.

687 **Sosnowska K, Majka M, Majka J, Bocianowski J, Kasprowicz M, Książczyk T, Szała L, Cegielska-Taras**
688 **T. 2020.** Chromosome instabilities in resynthesized *Brassica napus* revealed by FISH. *Journal of Applied*
689 *Genetics* **61**: 323–335.

690 **Szadkowski E, Eber F, Huteau V, Lode M, Coriton O, Jenczewski E, Chevre AM. 2011.** Polyploid
691 formation pathways have an impact on genetic rearrangements in resynthesized *Brassica napus*. *New*
692 *Phytologist* **191**: 884–894.

693 **Szadkowski E, Eber F, Huteau V, Lode M, Huneau C, Belcram H, Coriton O, Manzanares-Dauleux MJ,**
694 **Delourme R, King GJ, et al. 2010.** The first meiosis of resynthesized *Brassica napus*, a genome blender.
695 *New Phytologist* **186**: 102–112.

696 **Tate JA, Ni Z, Scheen AC, Koh J, Gilbert CA, Lefkowitz D, Chen ZJ, Soltis PS, Soltis DE. 2006.** Evolution
697 and expression of homeologous loci in *Tragopogon miscellus* (Asteraceae), a recent and reciprocally
698 formed allopolyploid. *Genetics* **173**: 1599–1611.

699 **Xiong Z, Gaeta RT, Pires JC. 2011.** Homoeologous shuffling and chromosome compensation maintain
700 genome balance in resynthesized allopolyploid *Brassica napus*. *Proceedings of the National Academy*
701 *of Sciences of the United States Of America* **108**: 7908–7913.

702 **Xiong Z, Pires JC. 2011.** Karyotype and identification of all homoeologous chromosomes of
703 allopolyploid *Brassica napus* and its diploid progenitors. *Genetics* **187**: 37–49.

704 **Zhao J, Udall JA, Quijada PA, Grau CR, Meng J, Osborn TC. 2006.** Quantitative trait loci for resistance
705 to *Sclerotinia sclerotiorum* and its association with a homeologous non-reciprocal transposition in
706 *Brassica napus* L. *TAG Theoretical and applied genetics* **112**: 509–516.

707

708 **FIGURE LEGENDS**

709 **Figure 1. Crosses and gamete type formation of the different resynthesized *B. napus* populations**
710 **advanced by single seed descent.**

711

712 **Figure 2. Evolution of number of seeds per 100 flowers, percentage of cells with 19 bivalents and**
713 **percentage of cells with multivalents during Metaphasis I in all four resynthesized populations across**
714 **all generations. Letters above boxplots represent significativity after t-test (p<0.05).**

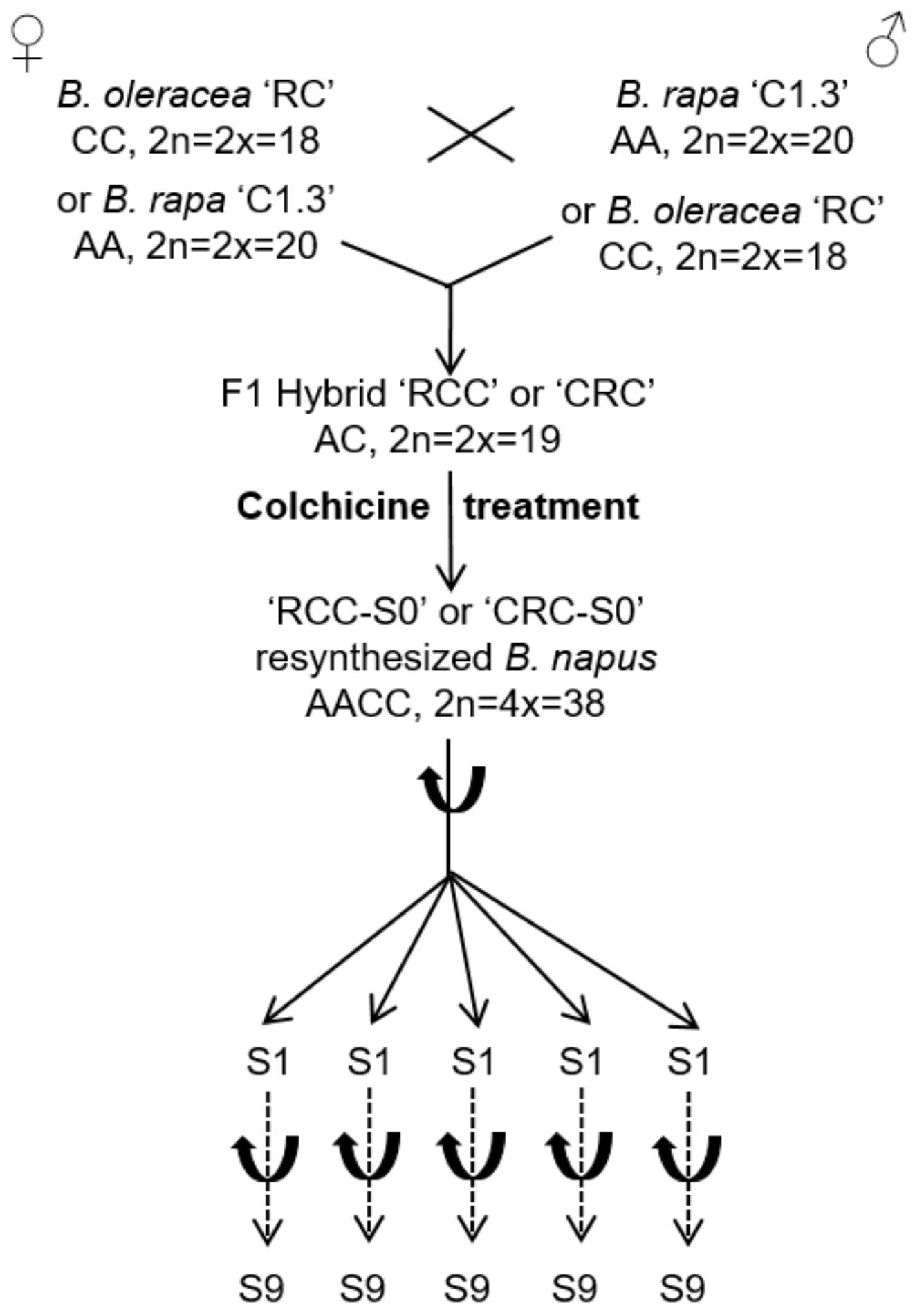
715

716 **Figure 3. Structural dynamics of non-reciprocal homoeologous rearrangements (a) at each**
717 **generation for all four resynthesized *B. napus* populations (lines connect data point from the same**
718 **lineage). Per population, we also compared (b) the number of homoeologous rearrangements and**
719 **(c) the average size of these rearrangements across all individuals. Letters above boxplots represent**
720 **significativity after t-test (p<0.01).**

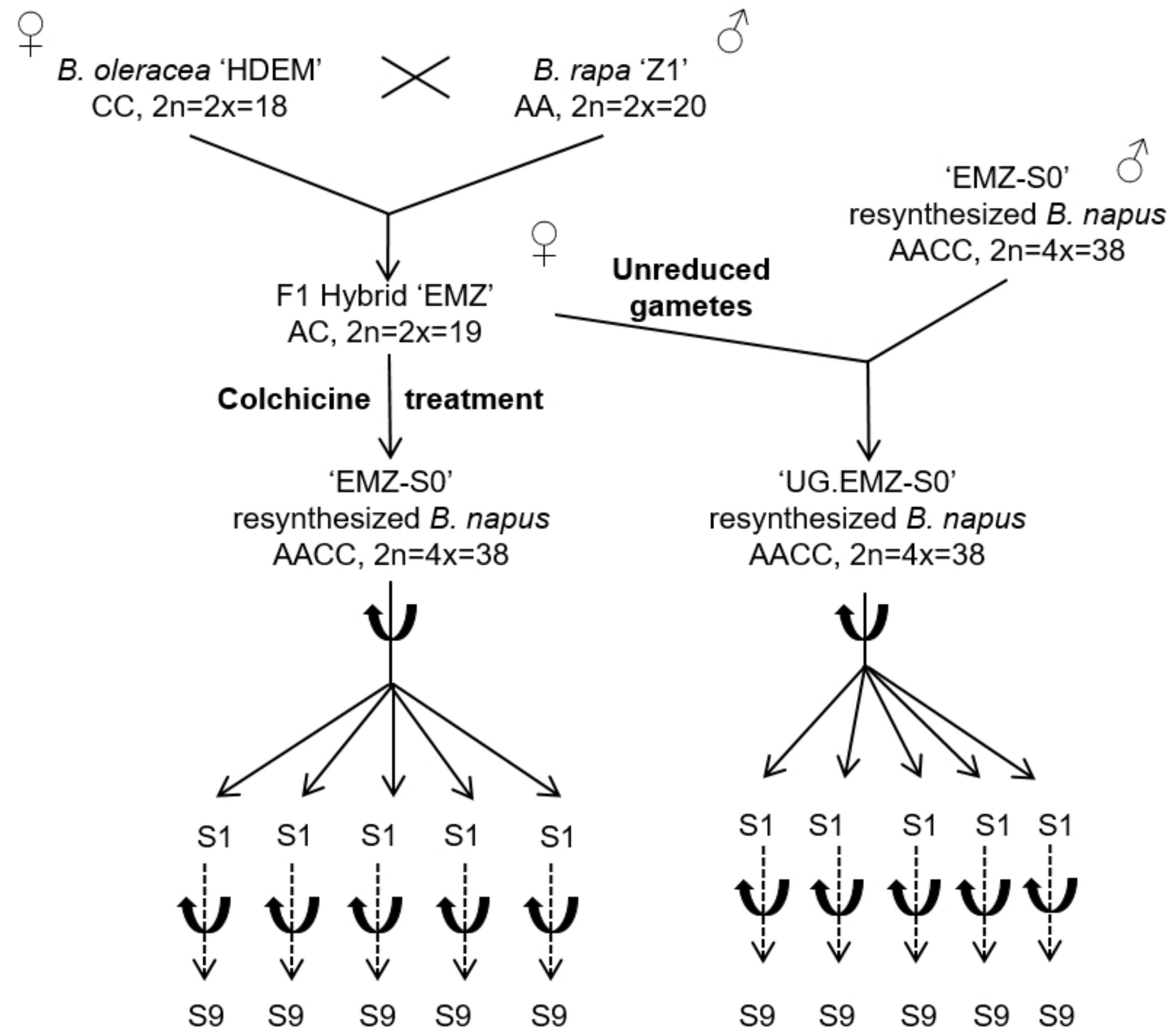
721

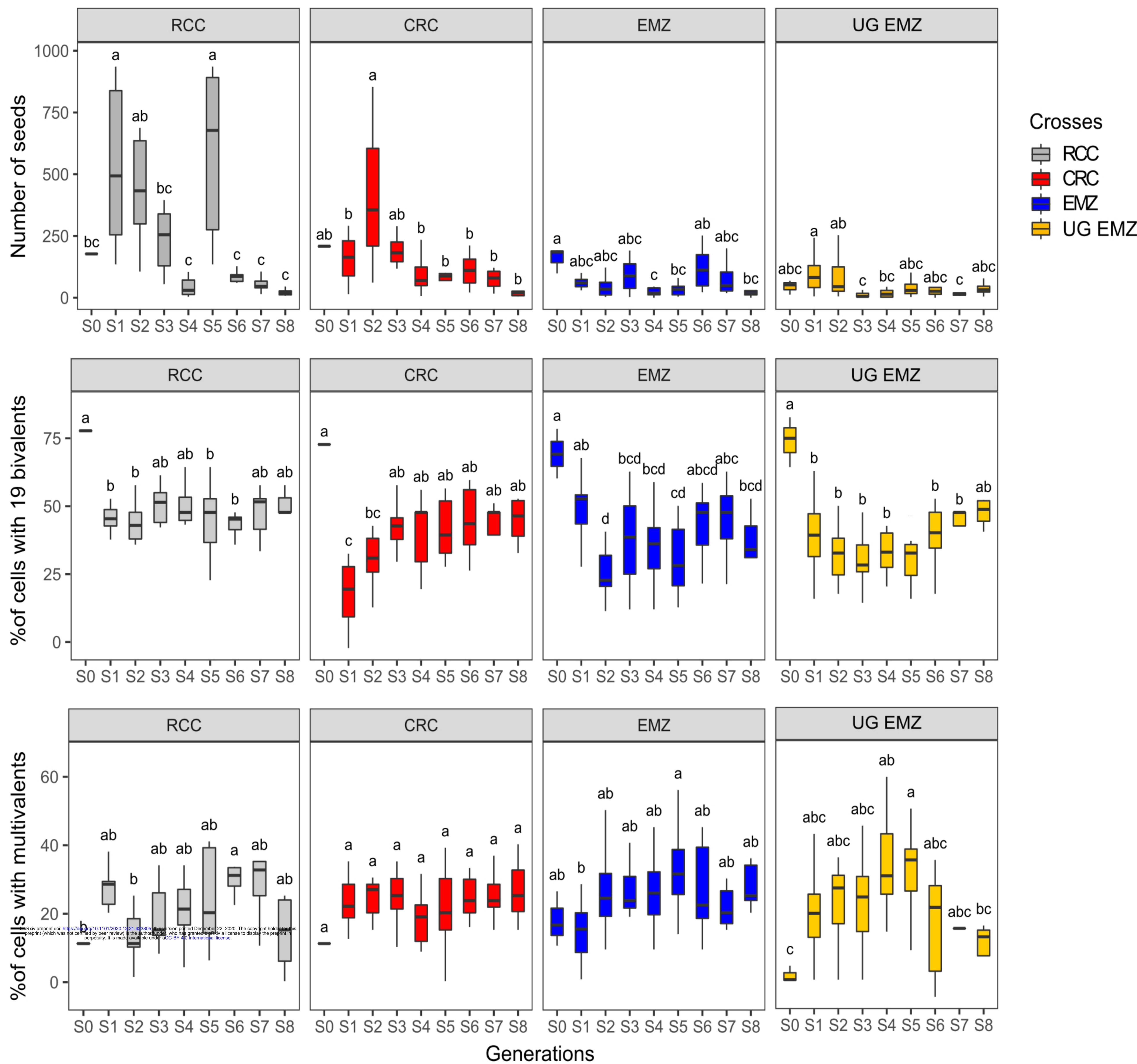
722 **Figure 4. Cumulative size of translocations in A and C subgenomes in all individuals at each**
723 **generation for all four resynthesized *B. napus* populations. Letters in each graph represent the**
724 **overall significant differences between populations (t-test, p<0.05) whereas the stars represent**
725 **significant differences in cumulative size between subgenomes in a generation (t-test, p<0.05).**

726

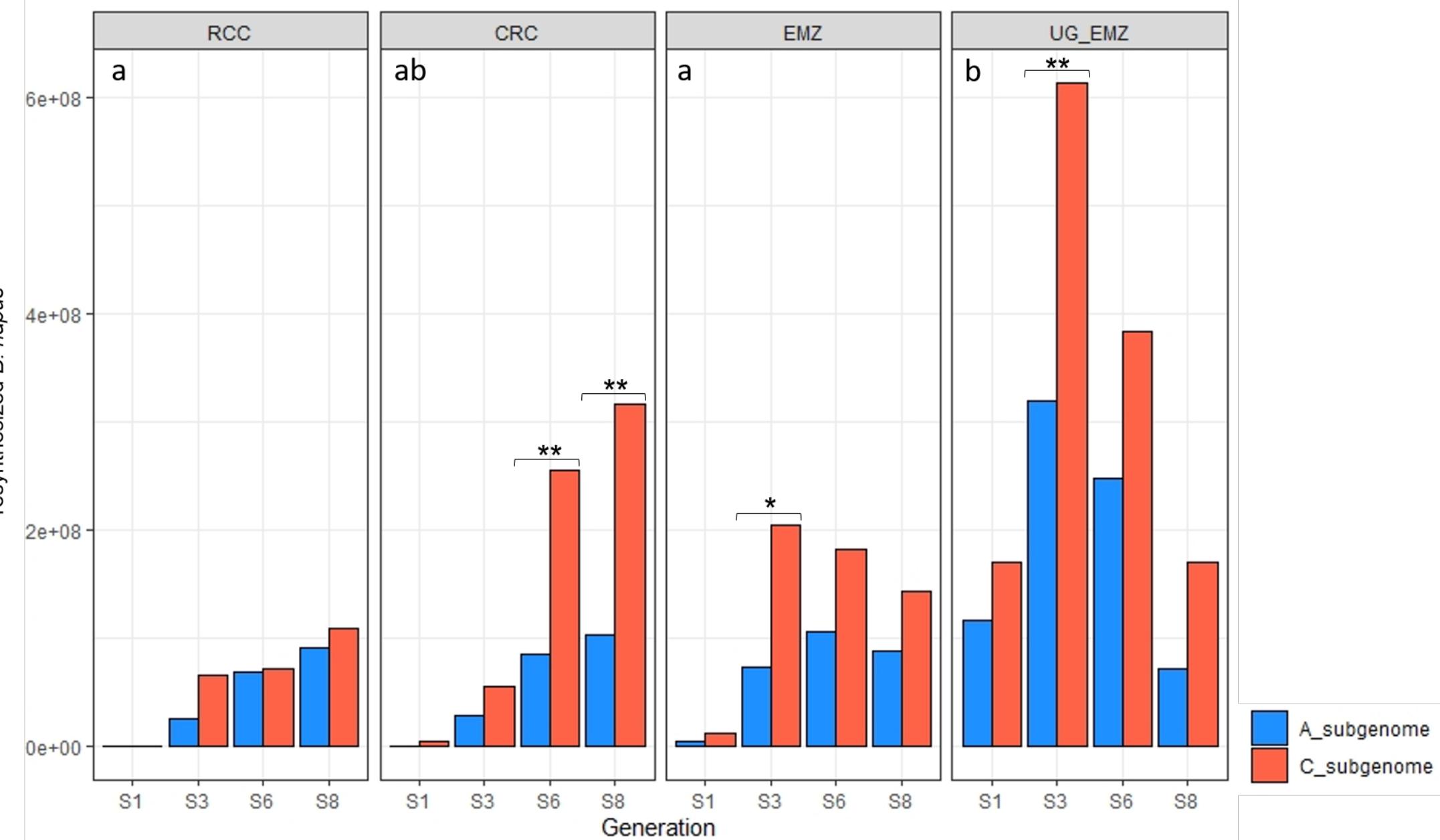

727 **TABLE**

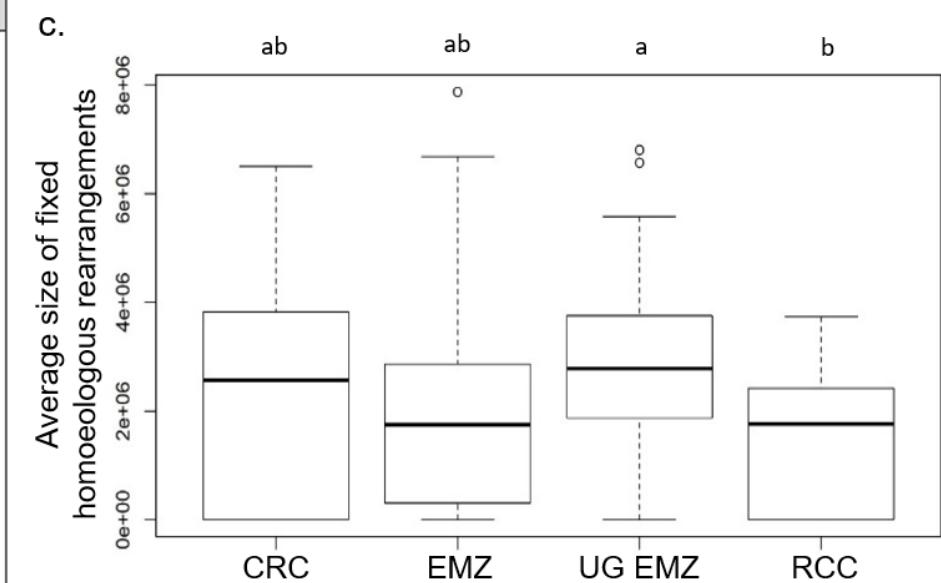
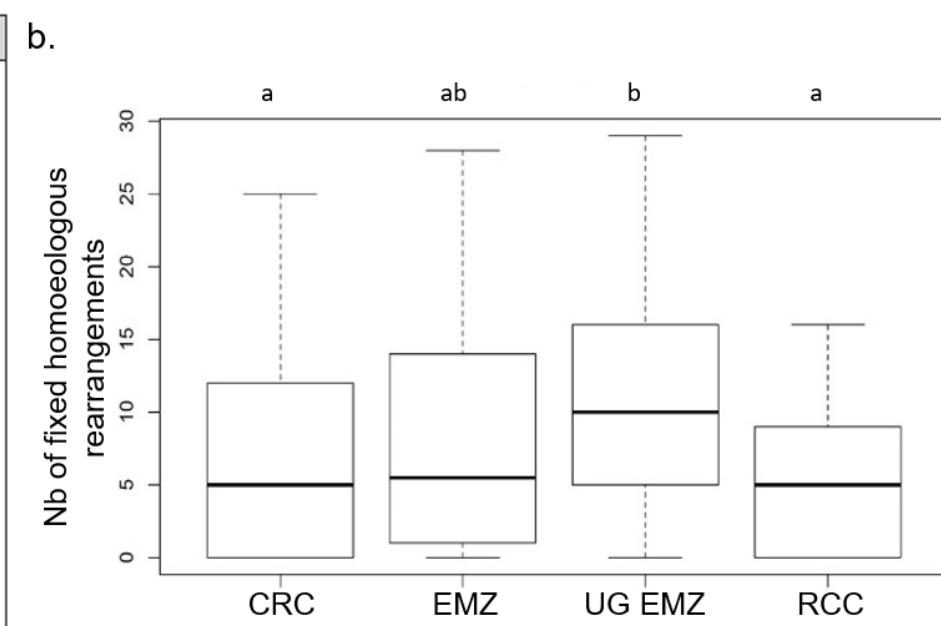
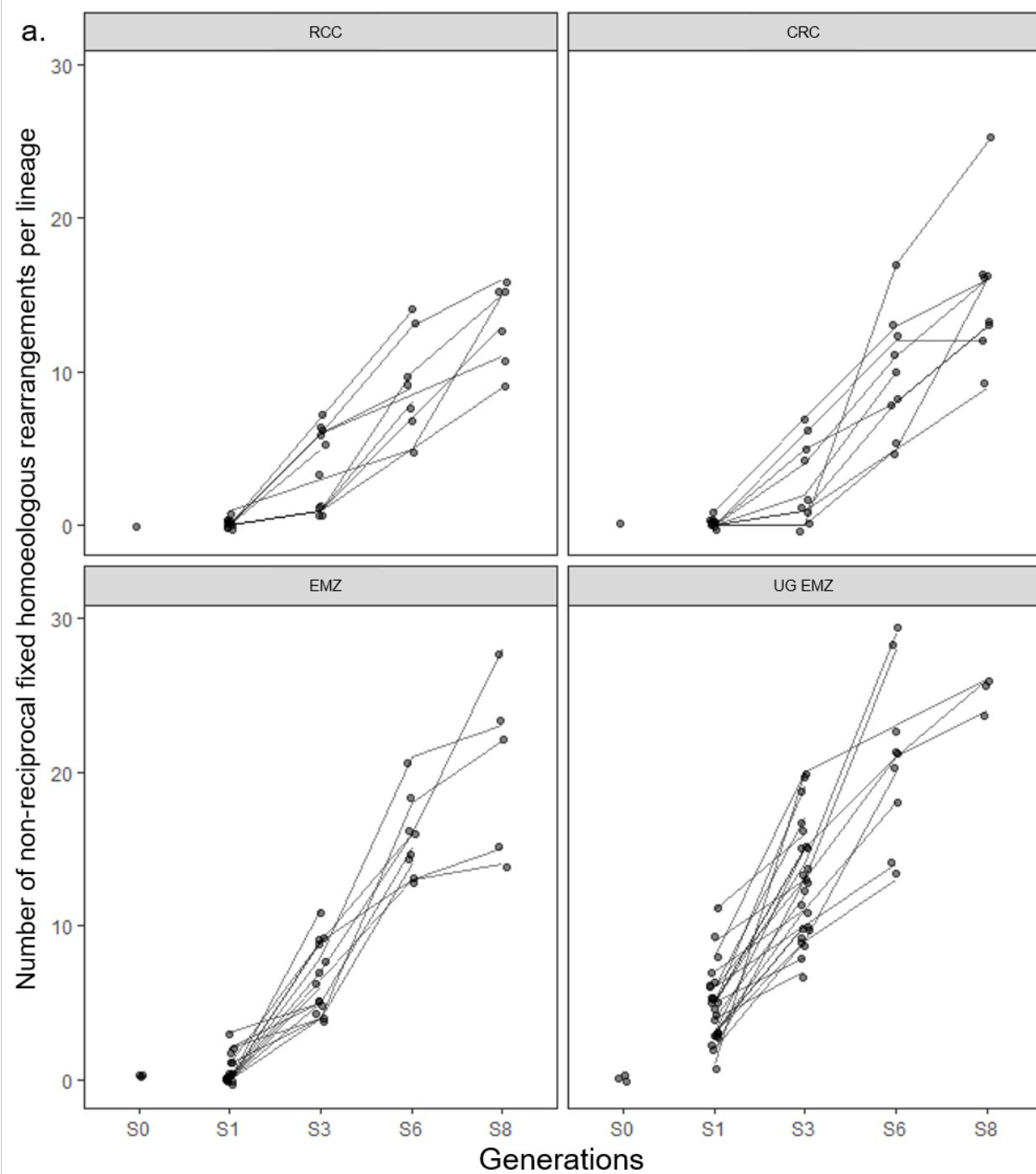
728 **Table 1. Summary of homoeologous deletions having a significant impact on percentage of cells with univalents/multivalents and on the number of seeds**
 729 **per 100 flowers in resynthesized *B. napus* individuals (see statistical analyses part). The physical localization of the identified candidate region as well as**
 730 **the number of SNP markers and number of genes in the region are indicated. We also mentioned for each population the number of individuals harboring**
 731 **the deletion of the candidate region via a homoeologous rearrangement, average phenotypic measures and standard deviation in brackets. Genes**
 732 **implicated in meiosis were retrieved using meiosis gene list from Higgins et al. (2020). Significant impact on phenotypes is represented by (*) when the**
 733 **deletion was significantly associated with higher or lower phenotypic measures in one or several genetic backgrounds.**


Phenotypic trait	Chromosome	Start position	End position	Number of SNPs	Number of genes	Genes implicated in meiosis	'EMZ' individuals		'UG EMZ' individuals		'RCC' individuals		'CRC' individuals		All individuals	
							With deletion	Without deletion	With deletion	Without deletion	With deletion	Without deletion	With deletion	Without deletion	With deletion	Without deletion
% of cells with multivalent	A03	7,593,332	9,793,914	16	440	1 (ML2, AT2G42890)	2 0.18%(0.6%)	40 0.26%(0.11%)	3 0.12%(0.16%)	58 0.26%(0.14%)	4 0.22%(0.16%)	27 0.29%(0.09%)	2 0.24%(0.06%)	32 0.30%(0.09%)	11 (*) 0.19%(0.14%)	157 0.27%(0.11%)
% of cells with 19 bivalents	A02	17,970,614	20,069,824	23	258	0	5(*) 0.23%(0.14%)	36 0.51%(0.14%)	6 0.38%(0.10%)	50 0.40%(0.16%)	1 0.50%	30 0.50%(0.09%)	8(*) 0.51%(0.08%)	26 0.37%(0.16%)	20 0.40%(0.15%)	142 0.44%(0.16%)
Number of seeds/100 flowers	C01	2,475,667	8,275,217	21	820	1 (CDC20.1, AT4G33270)	5(*) 53.69(57.54)	40 90.73(62.16)	10(*) 44.60(49.66)	52 60.90(76.16)	4 108.53(117.02)	30 266.00(268.61)	8(*) 60.68(69.70)	29 161.26(135.93)	27 55.70(63.42)	151 135.44(168.94)
Number of seeds/100 flowers	C02	4,887,388	6,416,485	17	233	0	7 97.26(68.02)	38 80.31(61.76)	12(*) 111.57(108.51)	50 47.06(57.23)	8(*) 23.24(5.53)	26 269.17(261.75)	5(*) 24.99(3.12)	32 149.62(131.65)	32 82.51(82.77)	146 121.43(160.71)
Number of seeds/100 flowers	C04	44,901,241	46,386,410	45	228	0	9(*) 43.00(44.28)	36 92.04(62.82)	12(*) 16.11(22.03)	50 63.85(72.05)	2 181.01(162.39)	32 251.63(265.50)	7(*) 62.33(59.33)	30 157.52(136.74)	30 47.13(65.05)	148 129.60(161.82)


734

'RCC' and 'CRC' populations






'EMZ' and 'UG EMZ' populations

Cumulative size of non-reciprocal fixed rearrangements in resynthesized *B. napus*

