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ABSTRACT

Genetic correlation (rg) analysis is commonly used to identify traits that may have a shared genetic basis.
Traditionally, rg is studied on a global scale, considering only the average of the shared signal across the
genome; though this approach may fail to detect scenarios where the r; is confined to particular genomic
regions, or show opposing directions at different loci. Tools dedicated to local rz analysis have started to
emerge, but are currently restricted to analysis of two phenotypes. For this reason, we have developed
LAVA, an integrated framework for local rg analysis which, in addition to testing the standard bivariate local
rg‘s between two traits, can evaluate the local heritability for all traits of interest, and analyse conditional
genetic relations between several traits using partial correlation or multiple regression. Applied to 20
behavioural and health phenotypes, we show considerable heterogeneity in the bivariate local rg's across
the genome, which is often masked by the global ry patterns, and demonstrate how our conditional

approaches can elucidate more complex, multivariate genetic relations between traits.
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INTRODUCTION

Results from just over a decade of genome-wide association studies (GWAS) have demonstrated that
statistical pleiotropy across the genome is ubiquitous, meaning that particular genetic variants, genes, or
genomic regions often show association with more than one trait'=. Pleiotropy is valuable to study for a
number of reasons, as it could elucidate biological pathways that are shared between traits*®, help
generate hypotheses about the functional significance of GWAS results’=, and improve our understanding
of the aetiology and overlap between complex traits and diseases%1%,

Pleiotropy on the single variant level has traditionally been studied using colocalization methods,
which typically employ a Bayesian analysis framework with the aim of detecting true, causally shared
genetic effects”®1112; but there now exists a wide range of different cross-trait genetic association methods
aimed at elucidating pleiotropy>®*3-1°>. Given the notion that extensive pleiotropy may result in a genome-
wide correlation between the genetic association signals, genetic correlation analysis has been frequently
employed to identify traits for which there could be widespread pleiotropy across the genome, and this
type of analysis has become a standard follow-up analysis to genome-wide association studies (GWAS)*3:16-
18 Notably, an observed genetic correlation (rg) does not guarantee the presence of true, causal pleiotropy,
as strong linkage disequilibrium (LD) between different causal SNPs could also give rise to a correlation
between genetic signals'’, but genetic correlation analysis nonetheless facilitates prioritisation of scenarios
where pleiotropy is likely.

While pleiotropy is typically discussed on a local level, such as single SNPs or genes, r; is
traditionally studied on a global, genome-wide scale. Since a global ry merely represents an average of the
shared association signals across the genome, local ry’s in opposing directions could result in a low or
completely non-significant global rg, and strong local ry’s in the absence of any global relationship may go
undetected”*°, In addition, global rg’s offer limited insight into the biological mechanisms that are shared
between phenotypes, as the exact source of any detected genetic relation remains unidentified. To
overcome these limitations, some have employed strategies such as partitioning the rg by annotation (e.g.

GNOVA?), or restricted testing only to variants that are assumed to be associated (MiXER?Y).
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Due to often high levels of LD between nearby SNPs, global r; methods cannot easily be translated
to a local scale; but methods aimed at estimating local ry have also started to emerge (Rho-Hess',
SUPERGNOVA??, LOGOdetect?®). To our knowledge, however, no existing tool currently offers the
opportunity to model the local genetic relations between more than two phenotypes simultaneously. To
address this, we have developed LAVA (Local Analysis of [co]Variant Annotation), a flexible and user-
friendly tool aimed at detecting regions of shared genetic association signal between any number of
phenotypes. LAVA can analyse binary as well as continuous phenotypes with varying degrees of sample
overlap, and in addition to evaluating standard bivariate local ry’s, it can test the local joint univariate
association signal (i.e. the local h?) for the traits in question, which can be used to filter out non-associated
loci that may yield unstable r; estimates, and analyse the genetic relations between several traits
simultaneously. Local genetic association analysis of multiple traits can be performed either via partial
correlation or multiple linear regression, allowing for complex, multivariate genetic relationships to be
examined in more detail than is currently possible with standard bivariate approaches.

In this paper, we demonstrate the features of LAVA through application to real data, and validate
its properties and robustness using simulation. We first describe the details of the method and the various
analysis options, and then apply LAVA to 20 behavioural and health-related traits. We examine the
heterogeneity of genetic relations between these phenotypes, and then zoom in on the major
histocompatibility complex (MHC) on chromosome 6, to examine the variability of the conditional local

relationships between selected health phenotypes in this LD-dense region.

RESULTS

Input processing and estimation of local genetic signal. For any genomic region of interest, consider a
centred continuous phenotype vector Y, (for phenotype p) with sample size N, and a standardised
genotype matrix X containing Ksn, SNPs. We can model the relation between a phenotype and all SNPs in
this region using a multiple linear regression model of the form Y, = Xa,, + €,, where «,, represents the
vector of joint SNP effects (which account for the LD between SNPs) and ¢,, the vector of residuals which

are normally distributed with variance r]f,.
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Given that the standard least squares estimate of a,, is of the form &,, = (X'X)~1X'Y, if we denote
the local SNP LD matrix as S = cor(X) and the vector of estimated marginal SNP effects as ﬁ’p (which do

not account for LD), we can express &, as &, = S‘lﬁp. Then, after obtaining ﬁ’p from GWAS summary

p
statistics for Y}, by using a reference genotype data set (e.g. 1,000 Genomes?*) from a population with a
matching ancestry/LD structure to compute S, we can estimate the joint SNP effects a,, (effectively
removing the correlation between SNPs effects that is due to LD), without the need for any individual level
data. To ensure that the direction of effect is consistent across traits (which is crucial for preventing false
positives; see Suppl. Fig. 1), LAVA aligns the summary statistics to the reference data before computing
.
Once we have obtained &p, we can estimate the residual variance r]f,, and hence also the
phenotypic variance explained by the SNPs in the locus (i.e. the univariate local genetic signal, or local h?).
To determine whether the local h? is significant, we test the explained phenotypic variance using an F-test
(see Methods). We recommend using this test to filter out non-associated loci prior to any rg analysis, since
rg’s will not be interpretable or reliable for phenotypes that do not show any local genetic signal.
Note that the above regression formulation concerns continuous phenotypes; for binary
phenotypes we employ a largely similar strategy, reconstructing a multiple logistic regression model for

the locus based on the marginal SNP effects and using a y?-test to test the joint association of SNPs with

the phenotype (see Methods for more detail).

Estimation of bivariate local genetic correlations. To determine the bivariate local genetic correlation: for
any region and set of P traits, we define the local genetic component matrix G = Xa, where X represents
the standardised genotypes at that locus and a the K, by P matrix of joint effects on each trait (as
outlined above). We denote the realised covariance matrix of G as Q, such that each diagonal element mf,
represents the local genetic variance of G, for phenotype p, and each off-diagonal element w,,, the local

genetic covariance of G, and G, (for phenotypes p and q). Thus, for two phenotypes p and q:
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Wpq

From this (1, the local genetic correlation can be directly computed as p,, = . Since
2

(U(Uq

14
genotype and phenotype data is all standardised, the square of the estimated local genetic correlation,
pgq, can be interpreted as the proportion of variance in the local genetic component G, that is explained
by G, (and vice versa). Since G is unobserved, ) cannot be computed directly, and we therefore estimate
it using the Method of Moments?. Once estimated, we compute Ppq as shown above, and generate
simulation-based based p-values to evaluate its significance (see Methods).

As shown in Suppl. Figs. 2-4, this approach produces unbiased parameter estimates with well
contained type 1 error rates for both binary and continuous phenotypes, and a wide range of locus sizes.
See also the Suppl. Note 1 for a comparison of the local ry estimation employed in LAVA, to that of Rho-
Hess and SUPERGNOVA.

Since any potential sample overlap between summary statistics sets can result in an upward bias
in the estimated correlation, known or estimated sample overlap (obtained e.g. via bivariate LDSC*3) should
be provided to LAVA. Any shared variance that is due to sample overlap will be modelled as a residual

covariance, effectively removing such bias (see Methods; Suppl. Fig. 5).

Estimation of multivariate local genetic relations. Multivariate local genetic analysis can be used to obtain
the conditional genetic associations, using several traits simultaneously. This has been implemented in two
forms: partial correlation, which models the local ry between two phenotypes while controlling for their
rg‘s with one or more other phenotypes, and multiple regression, which can model local genetic signal of
an outcome phenotype using a set of predictor phenotypes simultaneously.

The partial genetic correlation between the phenotypes p and g, conditioned on their local rg's
with some other phenotypes(s) Z, is denoted ppq|z- This ppqz can be computed directly from ( (see
Methods), and indicates how much of the initial correlation p,, remains once the rg's with the
phenotypes(s) in Z are accounted for.

In contrast, the multiple regression models the genetic signal for a single outcome phenotype Y
using the genetic signal for one or more predictor phenotypes X . We formulate this as Gy = Gyy + € for

standardised genetic components Gy and Gy, such that y reflects the vector of standardised regression
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coefficients and € the residuals, with residual variance 72 (all computed directly from ; see Methods).
Here, the y’s indicate how much the genetic component for each individual predictor in X contributes to
the genetic component of Y (conditioned on the other predictors) and T2 the proportion of local heritability
of Y that is independent of X. From this 72, we can then compute the model 7% as 2 = 1 — 72, which tells
us how much of the local heritability for Y can be explained by the genetic components of all predictor
phenotypes jointly. (95% confidence intervals are computed for all individual ¥’s, as well as the total model
r2; Methods). For a more in-depth overview of the differences and similarities between partial correlation
and multiple regression, see Suppl. Note 2.

Again, as can be seen in Suppl. Figs. 6-9, our two multivariate local genetic association approaches
provide unbiased estimates of both the multiple regression coefficients and partial correlations, with type
1 error rates properly controlled. The only exception was one scenario where we saw minor a type 1 error
rate inflation of the partial correlation for binary phenotypes with local odds ratios of 1.5 (.06 for an alpha
level of .05; Suppl. Fig. 9a). Note, however, that this represents a rather extreme level of local heritability

for complex, non-mendelian phenotypes.

Bivariate local genetic correlation analyses reveal extensive overlap of local genetic association signals
between traits. To demonstrate our method, we applied LAVA to 20 health related and behavioural traits
(see Table 1), testing the pairwise local genetic correlations within 2,495 genomic loci (genome-wide),
followed by conditional local genetic analyses for a subset of strongly intercorrelated phenotypes. In order
to partition the genome, we developed an algorithm that sections the chromosomes into approximately
equal sized (~1Mb) semi-independent blocks, by recursively splitting the chromosomes into smaller regions
while minimising the LD between them (see Methods — Genome partitioning for details).

As our summary statistics were based on European samples, we utilised the individuals of
European ancestry from the 1000 Genomes (phase 3)%* as a genotype reference (both for the definition of
genomic regions and for all LAVA analyses). Sample overlap was estimated using the intercepts from

bivariate LDSC (see Methods).
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Given that the detection of valid and interpretable local ry’s requires the presence of sufficient
local genetic signal, we used the univariate test as a filtering step for the bivariate local rz analyses. Since
the power to detect a significant local heritability depends on the power of the original GWAS, this step
could potentially lead to the exclusion of some relevant loci, particularly for phenotypes with a small
sample size. Though similar to a lack of genetic signal, such scenarios would likely also produce unstable rg
estimates, and we therefore tested only the local correlations for any pairs of traits which both exhibited
univariate local genetic signal at p < .05 / 2,495. This resulted in a total of 21,374 bivariate tests across all
trait pairs, spanning 1,919 unique loci.

With a Bonferroni corrected p-value threshold of 2.34e-6 (.05 / 21,374), we detected a total of 546
significant bivariate local rg's across 234 loci, of which 81 loci were associated with more than one trait
pair. For 193 of these correlations, the 95% confidence intervals (Cl’s) for the explained variance included
1, which is consistent with the scenario that the genetic signal of those pairs of phenotypes in these loci is
completely shared (Fig. 1).

The trait pairs exhibiting the greatest number of significant local r;'s were BMI and educational
attainment (39), which also had with the largest sample sizes (see Table 1), followed by depression and
neuroticism (33), and BMI and waist-hip ratio (20). As can be seen in Fig. 1, several conceptually related
phenotypes tended to show a large number of significant ry’s, with depression and neuroticism having the
highest proportion of regions within which the ClI’s included 1.

Given the number of immune phenotypes analysed here, we chose to retain the major
histocompatibility complex (MHC; chr6:26-34Mb, 21 loci) in our analyses as this locus is highly relevant to
the aetiology of these phenotypes. Of the 546 significant local rs’s, 229 were found within these MHC loci
(particularly for immune phenotypes), consistent with the notion that there is extensive pleiotropy within

this region2°,
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Table 1 Overview of the 20 phenotypes included in this study

Phenotype Short name N N cases N controls Global h?(SE) Atlas ID Original study
High cholesterol Cholesterol 289,307 46,932 242,375 5% (.5) 3608 Watanabe, K. et al. (2019)?
Coronary artery disease (incl. angina) CAD 86,995 22,233 64,762 4% (.3) 3925 Schunkert, H. et al. (2011)*
Hypertension Hypertension 244,890 71,332 173,558 10% (.5) 3691 Watanabe, K. et al. (2019)?
Crohn's disease Crohn's 20,883 5,956 14,927 48% (5.5) 68 LiuJ. Z et al. (2015)%
Ulcerative colitis uc 27,432 6,968 20,464 25% (3.3) 69 LiuJ. Z etal. (2015)%8
Diverticular disease Diverticular 451,099 31,964 419,135 3% (.2) 4311 Schafmayer, C. et al. (2019)%
Body mass index BMI 379,831 - - 22% (.7) 3445 Watanabe, K. et al. (2019)?
Waist-hip ratio (adj. for BMI) WHR 694,649 - - 11%(.5) 4080 Pulit, S. L. et al. (2019)3°
Diabetes Diabetes 385,420 18,483 366,937 4% (.3) 3328 Watanabe, K. et al. (2019)?
Asthma Asthma 385,822 44,301 341,521 5% (.5) 3552 Watanabe, K. et al. (2019)?
Hypothyroidism Hypothyroid 244,890 13,043 231,847 4% (.6) 3685 Watanabe, K. et al. (2019)?
Rheumatoid arthritis RA 58,284 14,361 43,923 21% (7.4) 1203 Okada, Y. et al. (2013)31
Lupus Lupus 14,267 5,201 9,066 84% (21.1) 4018 Julia, A. etal. (2018)32
Immunoglobin A deficiency IgAD 6,487 1,635 4,852 78% (42.3) 2037 Bronson, P. G. et al. (2016)33
Depression Depression 500,199 170,756 329,443 6% (.2) 4293 Howard, D. M. et al. (2019)3*
Neuroticism Neuroticism 380,506 - - 10% (.4) 3990 Nagel, M. et al. (2018)3>
Insomnia Insomnia 386,078 - - 6% (.2) 3232 Watanabe, K. et al. (2019)?
Educational attainment Education 766,345 - - 10% (.3) 4066 Lee, J. et al. (2018)3¢
Alcohol intake frequency Alcohol 386,082 - - 7% (.3) 3261 Watanabe, K. et al. (2019)?
Current tobacco smoking Smoking 386,150 - - 4% (.2) 3235 Watanabe, K. et al. (2019)?

Summary statistics have been downloaded from the GWAS Atlas?, the relevant page for individual summary
statistics can be accessed directly at: https://atlas.ctglab.nl/taitDB/[Atlas-ID]. SNP heritabilities (h?) were
obtained using LDSC?’.
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Figure 1: Overview of the number of significant bivariate local ry's between all 20 trait pairs. The table
(a) shows the exact number of significant bivariate local ry's detected between top phenotype pairs (N. sig.),
together with proportion of significant loci for which the 95% confidence interval included 1 (CPP7°=1). The
chord diagram (b) illustrates the number of significant bivariate local genetic correlations between all
phenotype pairs, while the bar plot (c) shows the total number of significant bivariate correlations detected

per phenotype.

Local genetic correlation analysis more accurately captures the heterogeneous genetic relationships
between phenotypes. For all trait pairs, we examined the strength and direction of effect of the local ry’s
by taking the average of the observed correlation coefficients across tested loci. As shown in Fig. 2,

consistently positive rg’s with multiple significant loci were observed for many phenotypes (e.g. neuroticism

10
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& depression, cholesterol & CAD, BMI & diabetes, Crohn’s & UC), for which we also saw concordance with
the observed pattern of global ry’s, as obtained via bivariate LDSC*? (Fig. 2).

However, there were also several trait pairs with a global r; close to 0 which nonetheless exhibited
significant local genetic correlations (e.g. BMI & WHR, BMI & neuroticism, asthma & Crohn’s, asthma & UC,
alcohol & WHR), supporting the notion that global rg’s fail to capture the complexity and heterogeneity in
the genetic overlap between many traits. As expected, these traits tended to exhibit local rg’s in opposite
directions, and/or within a limited number of loci. Although even for pairs like alcohol intake frequency
and BMI, which showed a consistent pattern of negative local rg’s, and a highly significant negative global
rg (r=-.3, p = 8.85e-42), two significant local rg's in a positive direction were still found. Similar patterns
were observed for several other phenotypes, such as BMI and cholesterol, diabetes and cholesterol, and
alcohol and neuroticism (for an overview of the total number of positive versus negative local genetic

correlations detected per phenotype pair, see Suppl. Fig. 10).

11


https://doi.org/10.1101/2020.12.31.424652
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.424652; this version posted January 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

LDSC (top) vs LAVA (bottom)
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Figure 2: Comparison between the global genetic correlation estimated using LDSC (top) and the mean

“wxn

local genetic correlation from LAVA across tested loci (bottom). The indicates a significant global
genetic correlation estimated by LDSC (p < .05 / (20%19)/2 = .05 / 190), while the numbers indicate how
many significant local r4‘s were detected with LAVA (p < .05 / 20,630 = 2.42e-6). Bold asterisk means a
significant global ry was detected by LDSC, without any evidence for a significant local rg, while bold
numbers indicate that at least one local ry was detected by LAVA, despite no significant global rq. While
LDSC excludes a small region within the MHC (chr6:30-31Mb), this region concerns only three of the loci

analysed with LAVA (locus IDs: 955-957), within which we detected 14 significant ry’s between 10 traits: all

of which had significant ry4’s elsewhere.
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Bivariate local genetic correlations implicate potential pleiotropy hotspots. From the bivariate analyses,
we identified a total of 81 regions within which significant r;’s were found between multiple trait pairs.
Most of these were located within the MHC (chr6:26-34Mb), a region within which extensive pleiotropy
has been noted previously*?¢. Within MHC hotspots, immune related phenotypes were among the most
frequently intercorrelated (with lupus displaying the greatest number of significant genetic correlations of
all; Fig. 3), consistent with the known role of the MHC in immune function3%3°,

The largest hotspot, i.e. the locus with the greatest number of genetic correlations, was locus 963
(chr6:32,454,578-32,539,567, within the MHC), where a total of 27 significant correlations between 10
different phenotypes were detected (Fig. 3a; Suppl. Table 1). This locus contains a single protein coding
gene, HLA-DRB5, which has been linked with several of the associated phenotypes previously (e.g.
asthma??, diabetes®, WHR*., lupus®?). The second largest hotspot, locus 961 (chr6:31,427,210-32,208,901;
also within the MHC), was the most diverse, showing a total of 24 significant genetic correlations for 15
different traits. Here, lupus was situated as a hub phenotype, showing significant correlations with most
other phenotypes (Fig. 3b), a pattern that was observed across a few other MHC loci as well (Suppl. Tables
2,6,9,13). Notably, both of these loci were contained within a region identified as the top pleiotropic locus
in a recent large scale investigation of pleiotropy by Watanabe et al. (2019)?, across a total of 558 traits.

Although the MHC is a region known for its complex LD structure*?, we nonetheless observed
clustering of conceptually related traits within these loci (e.g. cholesterol & WHR vs Crohn’s & UC,
depression & neuroticism see Suppl. Tables 1-11, 13, 15-18, 21, 25-27), and saw instances of substantial
local heritability, without necessarily the presence of any local genetic correlation (e.g. IgAD and RA in loci
958-960: univariate p’s < 1e-118, bivariate, bivariate p’s > .05). This suggests that shared and nonshared
genetic signal might be distinguishable even in regions with notoriously strong LD; though, it should be
noted that in scenarios where separate causal SNPs are in perfect LD, true pleiotropy will be inseparable
from confounding, and such instances might be more common within LD-dense regions like the MHC.

Outside the MHC, the two largest hotspots had 8 significant ry’s each. The first on chromosome 11
(112,755,447-113,889,019), with phenotypes depression, neuroticism, alcohol intake, educational

attainment, and WHR (locus ID 1719; Suppl. Table 12), and the second on chromosome 3 (47,588,462-

13


https://doi.org/10.1101/2020.12.31.424652
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.12.31.424652; this version posted January 3, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

50,387,742) with educational attainment, insomnia, alcohol intake, BMI, CAD, UC, and Crohn’s (locus ID
464; Suppl. Table 14). These hotspots also overlapped with loci identified among the top pleiotropic
regions for psychiatric, cognitive, metabolic, and immunological phenotypes previously (see Suppl. Table 4
in Watanabe et al. 20192). In addition, locus 1719 on chromosome 11 contains both NCAM1 and DRD2
(among 8 other genes), which have been frequently implicated in behavioural and psychiatric traits (e.g.
alcohol dependence®*, smoking?, cannabis use*’, depression*, neuroticism?%, sleep duration*’, ADHD
symptoms*®), and this locus also overlapped with a hotspot flagged by SUPERGNOVAZ?? within which
significant rg’s were identified for autism, bipolar disorder, depression, cognitive performance,
schizophrenia and smoking initiation??, suggesting this region might be a key regulator of brain related
phenotypes.

Finally, we also identified two loci that were specific to RA, hypothyroidism, and lupus: the first on
chromosome 2 (191,051,955-193,033,982; locus ID 374) and the second on chromosome 1 (113,418,038
114,664,387; locus ID 100) (see Suppl. Tables 40 & 42). In both cases, positive r;’s were observed between
hypothyroidism and RA, both of which showed negative rg’s with lupus.

For a complete overview of all hotspots, including the relevant statistics, associated genes, and

network plots, see Suppl. Tables 1-81.
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Figure 3: Dense bivariate local genetic correlations within the MHC. The network plot (a) shows the
bivariate local rg’s within the two biggest MHC hotspots (locus 963, chr6:32,454,578-32,539,567 & locus
961, chr6:31,427,210-32,208,901). Colour indicates direction of effect (red = positive, blue = negative) and
opacity the strength, while node size reflects the number of significant local ry’s for each phenotype. The
barplot (b) shows how many significant bivariate r,’s were detected for each phenotype on the Y-axis, within
the 10 adjacent loci of the biggest hotspot on the X axis (chr6:31,106,494-33,194,975). The phenotypes
have been ordered according to total number of significant ry’s across these loci, indicating that lupus,

asthma, hypothyroidism, WHR, and diabetes were the most interconnected within this region.

Genetics of asthma partially explain local genetic correlations between other health-related phenotypes.

To demonstrate the application of our partial local rg approach — which can model the local rg between two
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phenotypes of interest conditioned on one or more other phenotypes — we selected a subset of the
aforementioned MHC hotspots within which we discovered a sub-cluster of four phenotypes that were
consistently interconnected: asthma, hypothyroidism, RA, and diabetes (see network plots in Suppl. Tables
3-5,8). Given that asthma tended to show consistently strong rg's with the other phenotypes within this
cluster (see Fig. 4 & Suppl. Tables 3-5,8), we hypothesized that the shared genetic signal with asthma could
account for some of the overlap between RA, diabetes, and hypothyroidism. We therefore computed the
partial genetic correlations between these phenotypes, accounting for their local ry with asthma.

As shown in Fig. 4, conditioning on asthma, in most cases, resulted in a substantial decrease of the
rg‘s between hypothyroidism, RA, and diabetes. On several occasions, the 95% Cl’s for the partial rg’s
included 0, indicating that they were no longer even nominally significant. This reduction in signal was
particularly evident for locus 965 (chr6:32,586,785-32,629,239), in which the partial rg’s were no greater
than .08 after accounting for asthma (and all of the CI’s spanning 0), despite bivariate ry‘s ranging from .32
to .52. This suggests that, in part, genetic variants associated with asthma within these loci might confer a
more general susceptibility these phenotypes.

Notably, the degree of change in the local r; after conditioning on asthma was locus dependent,

indicating variation in the local genetic covariance structure even for adjacent blocks within the MHC.
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Figure 4: Heatmaps demonstrating the effect of conditioning on asthma within four MHC loci (chré6:
32,208,902-32,682,213). The top heatmaps show the unconditioned bivariate local rq, while the bottom
heatmaps show the partial local ry4’s conditioned on asthma. Correlation coefficients with 95% confidence

intervals spanning 0 are indicated with an underscore.

Shared genetic aetiology of hypothyroidism within the MHC. To also demonstrate the multiple regression
approach —which can model the genetic signal for a single outcome phenotype of interest using the genetic
signal for one or more predictor phenotypes — we selected hypothyroidism as the outcome and computed
the full joint local genetic relations across a set of relevant MHC loci, using asthma, diabetes, and
rheumatism as predictors. With this, we determined the total proportion of variance in the genetic
component of hypothyroidism that can be attributed to the genetic signal for these three traits
simultaneously.

As seen in Fig. 5, there was notable variation in the total multivariate r? across adjacent MHC loci,
with the proportion of the genetic component of hypothyroidism that could be explained by that of the

predictor phenotypes ranging from as little as 13% to as much as 79%. Note, however, that the CI's for the
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joint r¥s did not include 1, suggesting that some proportion of the local heritability for hypothyroidism
within these loci is nonetheless independent of the three predictor phenotypes.

There was also substantial variation in the strength of the effects of the three traits on
hypothyroidism in the multivariate model, largely mirroring the bivariate correlations. In general, either
asthma or diabetes tended to account for most of the shared association signal across loci, with 95% Cl’s
for the multiple regression coefficients of other traits all spanning 0. The relationship between RA and
hypothyroidism was largely accounted for by either of asthma or diabetes in all but locus 968
(chr6:32,897,999-33,194,975) where there was some independent association signal for both asthma and

RA.
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Figure 5: Results for multiple regression model of hypothyroidism on six other genetically correlated
traits within MHC loci. The heatmap shows the bivariate genetic correlations (p) as well as the standardised
coefficients (y) from the multivariate regression models (together with the multivariate r?) within 7 MHC
loci (chr6: 31,427,210-33,194,975Mb; Note, there were too few common SNPs in locus 963 to perform the
multivariate analysis in that locus). Parameters for which the 95% confidence intervals included 0 are
underscored. None of the ClI’s for the multivariate r?’s included 1, suggesting the presence of

hypothyroidism-specific genetic signal in all seven loci.

DISCUSSION
Global genetic correlation (rg) analysis is commonly used to identify pairs of traits that have a shared
genetic basis, and is a widely popular follow-up to GWAS. The traditional, global approach to rg analysis

reports only the average rg across the genome, and may therefore fail to detect more complex and
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heterogeneous genetic relationships where the signal might be confined to specific regions or even show
opposing association patterns at different locit37:2°,

Here, we presented a novel method, LAVA, which is an integrated statistical framework aimed at
testing the local genetic relations within user-defined genomic regions. LAVA handles both continuous and
binary phenotypes with varying degrees of sample overlap, and in addition to computing standard bivariate
local ry’s between two phenotypes, LAVA can test the local univariate genetic association signal for each
phenotype, and model the conditional local genetic relations between several traits simultaneously using
either partial correlation or multiple linear regression.

Applied to 20 different behavioural and health related traits across 2,495 semi-independent
regions defined based on LD, we identified a total of 546 significant bivariate local rg’s across 234 regions.
Although the direction of effect for individual pairs was in many cases consistent across loci (particularly
for traits showing a strong global rg), there was substantial variability in the strength of the association
across the genome, indicating that the genome-wide r; is far from constant. In addition, we identified
significant rg’s in opposing directions for several phenotypes, implying a more complex aetiological
relationship than that revealed by a global rg analysis. Significant local rg‘s were also observed between
several trait pairs whose global correlation was not significant, further emphasizing the value of stratifying
rg by region.

From the bivariate local rg analyses, we identified several regions that harboured significant rg's
between multiple trait pairs, implicating these regions as potential pleiotropy hotspots. As expected, many
of these hotspots were located in the MHC, likely owing to the number of immune- and health related
phenotypes included in our example (with the MHC frequently implicated in immune function3®3°), and
the MHC having been flagged as a pleiotropy hotspot in the past?2°.

We emphasize that while the aim of an rg analysis is to elucidate pleiotropy, the ability to do so is
naturally limited by the amount of LD that exists within a region. While this LD structure is accounted for
by LAVA, there may be cases where distinct causal scenarios yield identical patterns of SNP associations
within a locus, and with the extensive LD that exists within the MHC, there is an increased chance that true

pleiotropy may be indistinguishable from confounding here. In spite of this, however, we did observe
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substantial levels of univariate genetic signal without necessarily the presence of any genetic correlation,
with the r; patterns reflecting some clustering of conceptually related traits, suggesting that strong genetic
signal may be distinguishable from genetic covariance even within LD dense regions such as the MHC.
However, experimental evidence will be required to confirm these observations.

Based on the elaborate r;’s patterns observed within the MHC, we selected a subset of loci within
this region to demonstrate how more complex association patterns can be disentangled via our two
multivariate models: the partial correlation, which tests the genetic correlation between two phenotypes
of interest conditioned on some other phenotype(s), and the multiple linear regression, which models the
genetic signal of an outcome phenotype using that of several predictor phenotypes jointly (i.e. conditioned
on each other). For a cluster of consistently associated phenotypes — asthma, diabetes, RA, and
hypothyroidism —we showed how such models allow us to examine in detail the patterns of mediation and
confounding that exist between them; providing further insights into the genetic association between traits
beyond what can be achieved using standard bivariate models.

The LAVA analysis framework can be applied to answer a wide array of research questions. It may
be used in a more targeted manner to follow up on a smaller subset of loci highlighted through GWAS,
identifying regions of shared association with aetiologically informative phenotypes, or in a more agnostic
manner, scanning multiple traits across the entire genome (as done in this paper). Approaching the
genomic region as the unit of interest, LAVA could be applied to study the function of particular blocks or
genes by mapping out patterns of genetic sharing within a locus across the phenome (similar to a Phe WAS).
This general analysis framework will have implications for our understanding of disease aetiology and
genetic heterogeneity as a whole, which can be further aided by integrating summary statistics of
molecular phenotypes or endophenotypes (such as gene expression, metabolites, or brain regions),
facilitating the functional interpretation of GWAS results by evaluating the local ry’s with these lower level
phenotypes. In this setting, the conditional models could prove particularly useful as they may enable
identification of key tissues or regions, offering unique insight into the biological mechanisms that underlie

complex traits.
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Our method is not without limitations. As already discussed, analytical approaches like LAVA can
only pinpoint locations where pleiotropy is likely, but these may be confounded by excessive LD and,
ultimately, experimental validation will be required to establish the true nature of any observed genetic
overlap. In addition, significant local genetic correlations could be detected from multiple nearby regions,
but as LAVA can currently only analyse a single locus at a time, it is unable to condition on the association
signal from nearby loci, and it is therefore possible that local genetic correlations are observed in regions
adjacent to those harbouring the true association signal. LAVA is also limited by the number of overlapping
SNPs within different summary statistics data sets, which could potentially lead to a failure to detect true
correlations in scenarios where there are too few shared SNPs between them. Though we endeavour to

address these limitations as best possible in future versions of LAVA.

METHODS

Model overview and input processing of continuous phenotypes. For any given locus, consider a linear
model for a standardised phenotype ¥;, on a genotype matrix X (containing K, SNPs, also standardised):
Y, = Xa, + €,, where a,, represents the vector of standardised joint SNP effects and €, the vector of
normally distributed residuals with variance r]f,. Denote the SNP LD matrix as S = cor(X) and the vector
of estimated marginal SNP effects ﬁ’p (standardised); we obtain the estimated joint effects from these
GWAS summary statistics as @, = S‘lﬁp, using the reference data set to compute S. Here it is assumed

that the SNP LD in the reference data is the same as in the original GWAS sample. We can then estimate

N-1
N-K-1

(1 —2), with explained variance ;2 = @} S&,, N the original GWAS

the residual variance as ﬁf, = »

sample size, and K the number of SNP principal components (see below). The estimated joint effects &,

=2
i . . .
" p1 being the sampling variance.

are distributed as MVN(ap, 655‘1), with 65 =
As we cannot be certain whether provided beta coefficients provided as input are standardised,
for each SNP s we create Z-scores using the p-value and sign of the provided effect size as Z,; =

—D(P,s/2) X sign(ﬁ’ps), with @ the cumulative normal distribution function and B, the SNP p-value. We

z
then convert Z,; to the corresponding correlation 7, = ——E_— which equals the standardised beta

p 2
Z2+Ng—2
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coefficient (note: when per SNP sample size N; is not provided, we will use the overall N as a proxy). If Z-
scores or T-statistics are provided we can also just use these directly, in which case p-values and beta
coefficients are not necessary.

Due to the substantial LD between SNPs, it is unlikely that the LD matrix S will be of full rank, in

which case it is not invertible. This therefore requires us to work in a lower dimensional space. To do so,

we compute the singular value decomposition Hret - UAQT, such that S = QAAQT and hence S~ =

Y, Nref—1

Q(AA)1QT (here N5 denotes the sample size of the reference data set with genotype matrix X,¢. For
each component j, the corresponding squared singular value /1]-2 is proportional to the amount of variance
of the total accounted for by that component). We order the components by decreasing singular value,
and select the smallest subset of the first K components such that these account for at least 99% of the
total variance (pruning away the rest).

Defining Q. as the K, by K pruned eigenvector matrix, and A, as the corresponding K by K
diagonal singular value matrix, we approximate the inverse of S as S~ = Q,(A.A,) Q. We then define
the scaled principal component matrix W = XR with projection matrix R = Q,A; . Finally, we define the
corresponding vector of joint effects §, = R+ap, with R* = A,QT, such that W &, closely approximates
G, = Xa,, and use this sparser 6, in place of a,, /G, for parameter estimation instead.

To test the proportion of phenotypic variance that can be attributed by the local genetic signal, we

construct the test statistic Tpm

82
= %Z—p and evaluate this using an F-distribution with K and N — K — 1
nt  gre K

degrees of freedom.

Processing of binary phenotypes. In order to obtain the joint SNP effects from GWAS summary statistics

of binary phenotypes, for the scaled principal components W as defined above, and with i denoting the
individual, we reconstruct the multiple logistic regression model E(Ypi) = Upi = —— L Where

1+exp(-W, 6p*)'

. 0
W, = (1 W) and 81,* = (8010), with (50p the model intercept. To do so, we use the iteratively reweighted
p
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least squares (IRLS) approach*?, which iteratively updates estimates of the model coefficients according to

the equation:

sk+1) _ G0 L /00 (T 7,09
BYD = 889 + v (wry,, — wr ).

Here, V, = (I/I/*Tdiaf_;(cz[,)I/I/*)_1 where c is a vector with ¢,; = up; (1 — pp;), and k is the index of the
current iteration.

For the sufficient statistic W*TYp needed for this process, we note that TTYp = N; = Poage X Npeg,
with P.ase designated as the proportion of individuals in the original sample that are cases (¥,; = 1). In
addition, we have that WTYp = RTXTYp for the standardised SNP genotype matrix X and R the projection
matrix for W.

This can therefore be computed from the individual XSTYp for each SNP s. To obtain these we define

1

- m’ with X*s = (1 XS) and ﬁ =

the marginal logistic regression model E(Ypi) = Upsi «ps

(ﬁ0p5>, and observe that at convergence of the IRLS algorithm X*TSYp = X*Tsupsi, the left side of which can

ﬁlps

be obtained by filling in the marginal SNP effect estimates ﬁ Because the intercept is unlikely to have

*pS*
been reported in the GWAS summary statistics and the slope may not be on the correct scale, we use a
search algorithm to re-estimate these SNP effects from the GWAS Z-statistic and case and control counts

reported for s (substituting general case and control count for the sample if not available per SNP).

From this, the Sp can then be estimated using the IRLS algorithm as outlined above, which has

sampling covariance matrix },

N . .

%f. Because the components in W are independent and all have the same
variance, in practice V, should be close to a diagonal matrix, and the standard errors for each Sps be very
similar. To verify this, the ratio between the maximum and median standard error is computed, and if this

ratio exceeds 1.75, the PC with the highest standard error is discarded, and the process repeated until no

PC has a ratio above that threshold. Subsequently, we define 65 as the mean of the diagonal elements of
this sampling covariance matrix, and assume Sp ~ MVN(6p, 651,() (our simulations show that this has no

appreciable effect on type 1 error rates, see Suppl. Fig. 3). From this we can then also define a test for the
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578
univariate signal, similar to the F-test for continuous phenotypes, using the test statistic 7, = gzp.
p

Given the distribution for Sp, this has a y2 distribution under the null of no genetic association.

Estimating bivariate local genetic correlations. We define () as the P x P realised covariance matrix of

T TyT
the genetic components G = Xa of any P phenotypes (g = cov(G) = % == A)’(_fa

= aTSa), which is
the main variable of interest for the estimation of the local genetic correlation. In practice, since we are

working with the sparser joint effects of the PCs § (rather than the a’s), which have the same covariance

. sTs
as G by a scaling factor K (Q; = a’Sa = aTR*TRTa = 676, and hence ; Q5 = cov(5) = — = 76), we
actually use the Q5 = cov(0) instead. As all the output is standardised, however, this makes no practical
difference (since Q; and Q5 have identical correlational structure). We will use Q to refer to Q5 henceforth.

This Q can be subdivided as:

with each diagonal element a)g reflecting the (scaled) variance of the genetic component of phenotype p,
and each off-diagonal element w,,, the (scaled) covariance of the genetic components for phenotypes p

and q. We can compute the corresponding bivariate local genetic correlations from the elements of this Q

2rg , with pgq representing the proportion of explained variance (i.e. the r2).
2

iy o
r=q
For estimation of (), we note that the K x P matrix of estimated joint effects of the principal

components ()3- are distributed as MVN(& f), where £ represents the sampling covariance matrix. We then

use the Method of Moments?® to estimate Q as follows: With § ~ MVN(6, f), the expected value of 578

A~ ~ ~ ~ ATA 2
has the form E[678] =676+ KE =K(Q+£), and hence Q = E[i o _s. Plugging in the sample
~ ~ — ATA 2
moments for E[6T8], we therefore obtain the estimator () = 61(—6 — 2.

If there is no sample overlap £ is defined as diag(62), where 62 is a length P vector with the
sampling variances of each phenotype. In the presence of possible sample overlap, estimates of the

sampling correlation across phenotypes must be provided by the user. These can be obtained using cross-
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trait LDSC*3, creating a P x P covariance matrix with the intercepts for the genetic covariance for the off-
diagonal elements (for the diagonal, use the bivariate intercept of a phenotype with itself, or its univariate
LDSC intercept). LAVA then internally converts this to a correlation matrix, C, and computes the sampling

correlation matrix as £ = diag(6) x C x diag(§).

Local multiple regression & partial correlations. Local conditional genetic associations between more than
two phenotypes can be obtained using either multiple regression or partial correlation.

For the multiple regression approach, consider an outcome phenotype Y and set of predictor
phenotypes X, with corresponding genetic components Gy and Gy. Here, we can decompose Gy as Gy =
GXy(T) + € into a component that can be explained by Gy and a residual component € with cov(Gy, €) =
0, such that y(r) reflects the vector of unstandardised regression coefficients; the variance of € is denoted

‘QX ‘QX Y

2 - _
as T().- Subdividing Q = (Q)T(y a)}z,

) we can then compute y ™ = Q3 Qyy and 74y = 0f — QFy Q3 Qyy.

Denoting the vector of standard deviations in (y as Wy , we can then use these to obtain the standardised

— 2

diag(w . : : _T i

—i( X)y(r) and standardised residual variance 72 = % The corresponding
Y

regression coefficients y =

explained variance for the full model is computed asr? = 1 — 2.

The partial correlations between the genetic components of two phenotypes X and Y, conditional
on a set of other phenotypes Z (denoted pyy|7), can be expressed using the linear equations Gy = G;fx +
€x and Gy = GzPy + €y, With pyy|; = cov(ey, €y). As with the parameters from the multiple regression,
this can also be computed from the () directly. Given the partial covariance wyy; = wyy — Q70710
(with subscripts denoting the subset of relevant variances and covariances for X, Y, and Z), and the partial

variance a))z(lz = w% — Oy 0710y (and likewise for 6012/|z): we can simply compute the partial correlation

wxy|z

aspPxyiz = T ———
| @Xx|1zWy |z

Simulation p-values and confidence intervals. Because the sampling distributions for the local genetic

correlation, partial correlation, and multiple regression coefficients have no tractable closed form, we
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employ a simulation procedure with partial integration to obtain empirical p-values for these parameters.
Below, we denote the particular statistic being tested as T, with observed value T, ;.

First, we define a pure simulation approach, observing that the sufficient statistic 8748 has a
noncentral Wishart distribution with K degrees of freedom, scale matrix £ and non-centrality matrix K.
For a statistic T, we can therefore specify the (1, corresponding to the null hypothesis to be tested and use
that to define the non-centrality matrix. We can then generate a random sample of null (STS)* matrices,
and for each of those compute the corresponding (* and from there the statistic T*. The sample of null T*
values can then be compared to the observed statistic T, to obtain an empirical p-value, defining this p-
value as the proportion of simulations for which T* has a value more extreme than T, ;.

A drawback of empirical p-values is that they can require a substantial number of simulations to
reach sufficient accuracy for low p-values. To deal with this, we augment the simulation procedure with a
partial integration step as follows. For a single phenotype p, the distribution of Sp given S_p is multivariate

normal with parameters of known form, and consequently many of the statistics of interest will have a

normal distribution given S_p (and Q). We can therefore generate draws for (STg)ip from the noncentral

Wishart distribution, and for each such draw compute the parameters of the conditional distribution of the
statistic T, then obtain the corresponding conditional p-value for T,;,¢ for that draw. We then compute the
final p-value as the mean of the conditional p-values across all draws.

Although the resulting p-value is still empirical and subject to simulation uncertainty, with this
procedure we can obtain sufficiently reliable p-values even at very low value ranges without needing
prohibitively many simulations. By default, LAVA performs 10,000 simulations to estimate the p-value. This
is increased this to 100,000 or 1,000,000 simulations if the p-value estimate falls below thresholds of 1e-4
and 1e-6 respectively.

For a pair of phenotypes p and g, to test the null hypothesis of no local correlation, Hy: w,q =

Ppq = 0, we use the local covariance w,, as the statistic T to test. For the integration step, for half of the
simulations we use the conditional distribution of Sp given Sq, and the distribution of Sq given Sp for the
other half. Similarly, to test the null hypothesis of no local partial correlation given a set of phenotypes Z,

Hy: Wpqiz = Ppqiz = 0, we use the local partial covariance w7 as the statistic T. We use the conditional
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distribution of Sp given Sq and SZ for half the simulations, and the conditional distribution of Sq given Sp

and SZ for the other half.
For the regression model, with outcome phenotype Y and set of predictor phenotypes X, to test
) _,,(ss) _

the null hypothesis of no conditional effect for predictor phenotype j, Hy:y; y;

( yj =0, we use

the semi-standardised coefficient y].(ss) (standardised for X, but not Y) as the statistic T. For the integration

step, we use the conditional distribution of SY given SX.

Optionally, LAVA can also be requested to generate 95% confidence intervals for the local
correlation, partial correlation and standardised regression coefficients, as well as for the multiple 12
parameter of the multiple regression model. These are computed by generating 10,000 draws from the
noncentral Wishart distribution (with noncentrality matrix K{,,), and for statistic of interest T computing
the simulated statistics T* for all draws. The 2.5% and 97.5% quantiles of these T* are then used as

estimates of the boundaries of the confidence interval for T,,,.

Genome partitioning. In order to partition the genome into smaller regions, we developed a method that
uses the LD information between SNPs and groups them into approximately equal sized, semi-independent

blocks (available for download at https://github.com/cadeleeuw/lava-partitioning).

The blocking procedure is as follows: For each chromosome, a break point metric for each pair of
consecutive SNPs is computed. Starting with the whole chromosome as the initial block, the blocks are
then recursively split into two smaller blocks using this metric and a minimum size requirement, continuing
until some threshold for the break point metric or size were met and the blocks could not be divided any
further.

Each pair of consecutive SNPs defines a potential break point, for which a metric is computed to
determine which breakpoint is the most suitable (i.e. at which point the LD between the SNPs is the lowest).
The break point metric between each SNP pair can be thought of as the strength of the LD between the
SNPs on each side of the break point. For computational efficiency, we compute only the correlations near

the diagonal of the entire SNP x SNP matrix, i.e. between the most proximal SNPs (in this case, we used a
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window of 200 SNPs). Each break point defines a triangular wedge on this thick diagonal, and the break
point metric is simply the mean if the squared correlations in this wedge.

When a block is split, the minimum size requirement is first used to determine the region within
the block that contains the subset of potentially valid break points, and within this region, the break point
with the lowest metric value is identified. If this value is above some defined maximum, the block will not
be split any further.

A small margin was also applied to the minimum break point in a block, treating all other potential
breakpoints with metrics within that margin as equivalent. The break point closest to the centre of the
block was then selected to split the block, in order to encourage more even sizes of subblocks.

Prior to applying this algorithm, SNPs with a MAF smaller than 1% were filtered out to speed up
computation time. These SNPs were added back in after the blocks had been created, applying a variation
of the same algorithm to further refine the boundaries between the blocks.

For this paper, we used the default values of the program for all parameters (see program manual
for details), except the minimum size requirement which was set to 2500 SNPs in order to obtain an average

block size of around 1Mb.

Simulations. Simulations were conducted in order to validate the robustness of our model, examining the
influence of heritability, block size, sample overlap, allele mismatch, and case/control ratio. To ensure an
ecologically valid LD structure for our simulations, we used real genotype data from the 1,000 genomes
(European subset), from which we simulated phenotypes under various scenarios. In order to achieve a
larger sample size than the standard N = 503, we stacked the sample 40 times, and subsetted to the first
20,000 individuals. Univariate power for a given locus is fully determined by the sample size and univariate
joint effect size (h? or OR). Consequently, simulation conditions at N = 20,000 and a particular effect size
are representative of conditions at higher N and lower effect size that have the same level of power; for
example, for continuous phenotypes with h? values of 1%, 5%, 10%, and 25% approximately equivalent

power is obtained at an N of 100,000 with h? values of .2%, 1%, 2%, and 6% respectively (see Suppl. Note
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3). For this reason, we opted to keep the sample size constant, and only varied the effect sizes. The original
1,000 genomes sample (N=503) was also used as a LD reference for the analysis of the simulated data.

The simulations were based on 5 randomly selected loci. Locus size was varied by resizing these 5
loci from the centre SNP and outward until the desired size was achieved (50, 500, 1000, or 5000 SNPs).
SNPs with MAF < .01 or an SD of 0 were excluded. All simulations were repeated 1,000 times per block by
default, though this was increased to 10,000 for some conditions in order to evaluate type 1 error at lower
significance levels.

To evaluate the type 1 error rate for the standard bivariate local rg; analysis, we simulated two
phenotypes with a true local genetic correlation of 0, quantifying the proportion of times where a
significant local genetic correlation was detected at different significance levels (p < .05, p < .01, and p <
.001). Estimation bias was assessed by simulating true genetic correlations p of 0 and .5, and comparing
the distribution of estimated correlations to their true value.

For the multiple linear regression, we simulated two genetically correlated (at p = .5) predictor
phenotypes, X, and X,, exhibiting true rg’s with an outcome phenotype Y of 0 and .5 respectively.
Detection of a significant effect of X, in the multivariate model was considered a false positive, and we
used the estimated betas for both X, and X, to evaluate bias.

For the partial genetic correlations, we generated four predictor phenotypes X, Y, Z; and Z,
simultaneously, with § such that pyy = 0.64, pxy|z, = 0, and pxy|z, = .5. This was accomplished by first
generating unit-variance 6z, and 6, such that p; , = V1 — 0.752, then setting 8y = 0.8(821 + AX) and
oy = 0.8(821 + Ay) with for the noise terms var(Ay) = var(Ay,) = v/0.75 and Ay 1 Ay. Here, we used
the p-values for pyy ,, to evaluate error rate, and the estimated values for both pxy|;, and pyy z, to
evaluate bias.

The actual phenotype data was simulated as follows: first, the 1,000 Genomes?* genotype data
was read in to R (using the snpStats package) and standardised (after increasing of N as explained above).
We subsequently computed the scaled principal components W as defined previously, and for the bivariate
and multiple regression simulations, we used this to create the desired Q) (see Suppl. Note 4 for more

detail). With this, we then generated the true §, with which we compute the genetic components G = W§é.
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. . . 1 . .
We obtained the residual variance 62 = var(G) * (T—2 — 1), and drew the residuals € from a multivariate

normal with covariance a2 C (with C being the residual correlation matrix used to indicate degree of sample
overlap). The § were scaled such that var(G) = 1.

For continuous phenotypes, we then generated the N X P phenotype matrix Y asY = 5,G + ¢,

2
with §; = ’# and h? the desired local heritability value. The P X 1 vector of residuals ¢; for individual

i drawn from a normal distribution with zero mean and covariance matrix C. The matrix C was set to the
desired residual correlation matrix for conditions simulating sample overlap, and to I otherwise.

For binary phenotypes, the outcome Y),; for phenotype p and individual i was modelled as a
Bernouilli random variable with probability 7,,; defined using a logistic model: logit(npi) = Lo + B1G. As
for the continuous phenotypes the f; parameter was used to control the effect size, defining 8, =
log (OR) with OR the odds ratio relative to a 1 SD change in the genetic component G. The intercept S,
was used to control the population prevalence under the model. Its value was determined using a simple

linear search, selecting 3, such as to obtain the desired prevalence.

SNP Alignment. LAVA performs alignment of SNP effect alleles for all summary statistics prior to analysis.
This is done first by removing any SNPs with strand ambiguous alleles or alleles that are not present in the
reference data set; then, in the case that the reported effect allele does not correspond to that of the

reference data set, the sign of the marginal SNP effect size ﬁ’ps (for phenotype p and SNP s) is flipped.

GWAS summary statistics & LD reference data. The GWAS Atlas? (https://atlas.ctglab.nl) was used to

search for and access publicly available summary statistics for the 20 traits analysed here, details of which
can be found in Table 1. We aimed to select a combination of health related and behavioural traits, with
the intention of selecting a number of related traits from different categories (e.g. immune, cardiovascular,
body composition, psychiatric) in order to facilitate the detection of local genetic correlations, while
maintaining some level of phenotypic diversity. When imputation quality metrics were available, we

filtered out any SNPs with an INFO score < .9.
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As a reference for the estimation of LD in all of our analyses, we used the European subset of the

1,000 Genomes?* data as downloaded from https://ctg.cncr.nl/software/magma.

Global genetic correlation analysis and estimation of sample overlap using LDSC. Bivariate LD-score
regression (LDSC)*® was used to evaluate the global ry’s between all trait pairs, as well as to obtain estimates
of their level of sample overlap (as required for our LAVA analyses). To account for the sample overlap, we
created a (symmetric) matrix based on the intercepts from the bivariate LDSC analyses (the diagonals
populated by the intercepts from the analysis of each phenotype with itself). This was then converted to a
correlation matrix and provided to LAVA (see ‘Methods: Estimating bivariate local genetic correlations’, for
an overview of how LAVA uses this information). Summary statistics for each phenotype was munged using

HapMap SNPs.

Data availability. All analyses in this study relied on publicly available summary statistics downloaded from

the GWAS Atlas? (https://atlas.ctglab.nl; original sources and Atlas-IDs are referenced in Table 1). The locus

file used for all the LAVA analyses can be downloaded from https://github.com/josefin-werme/lava.

Code availability. The LAVA software is implemented as an R package which is publicly available at

https://github.com/josefin-werme/lava. The method used for genome partitioning can be downloaded

from https://github.com/cadeleeuw/lava-partitioning.
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