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ABSTRACT

Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of
crop productivity. As traditional plant breeding is most likely reaching a plateau, there is a timely need to
accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solu-
tions. The emerging field of synthetic biology offers the potential for building completely novel pathways in
predictable directions and, thus, addresses the global requirements for higher yields expected to occur in
the 21st century. Here, we discuss recent advances and current challenges of engineering improved photo-
synthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to
optimize the production of food, fiber, and fuel.
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INTRODUCTION

The Need for Increased Photosynthesis in Crops

Photosynthesis is the main driving force for plant growth and
biomass production and, as such, is considered as a cornerstone
of human civilization (Ort et al., 2015; Orr et al., 2017; Simkin et al.,
2019). Notably, most attention in research that could result in an
improvement of the productivity of crops has been directed
to photosynthesis (Nowicka et al.,, 2018). Moreover, the
accelerated growth of global population and the uncertainties
derived from global climate change make the enhancement of
photosynthetic efficiency of paramount importance to ensure
food security over the coming decades (National Academies of
Sciences, Engineering and Medicine, 2019) and an exciting
opportunity to address the challenge of sustainable yield
increases required to meet future food demand (Foyer et al,,
2017; Eva et al., 2019; Fernie and Yan, 2019).

Until recently, it was generally believed that plant photosynthesis
had already been optimized during evolution to perform at its op-
timum, and thus could not be further improved (Leister, 2012).
However, research efforts toward better understanding of the
photosynthetic process have actually demonstrated that
photosynthesis in terrestrial plants can be considered
remarkably inefficient (Ort et al., 2015; Eva et al., 2019). As a
consequence, a range of opportunities aimed at enhancing the
photosynthetic capacity have been proposed (Orr et al., 2017;

Nowicka et al., 2018; Kubis and Bar-Even, 2019; Nowicka,
2019) and promising results have been obtained. If successfully
transferred to crops, these results would enable agriculture to
keep pace with the exponential demand for increased yield
from growing human population (Shih, 2018; Eva et al., 2019).

The strategies aimed at enhancing crop yield have changed over
time. From the onset of crop domestication and the very beginning
of agriculture until the current state of global agriculture, human-
kind has learned to improve crops in order to fulfill its evolving
needs (Pouvreau et al., 2018; Fernie and Yan, 2019). In the past,
particularly in the second half of the 20th century, during the so-
called Green Revolution, traditional plant-breeding strategies, in
conjunction with greater inputs of fertilizers, pesticides, and water,
provided a rapid and significant increase in crop yield, especially
for cereals (Betti et al., 2016; Nowicka et al., 2018; Eva et al.,
2019). As a result, large increases in the yield of the staple crops
were achieved (Long et al., 2006; Nowicka et al., 2018). However,
yield improvements for several major crops are either slowing or
stagnating (Long et al., 2015). Furthermore, it is predicted that
the productivity of the major crop species is approaching the
highest yield that can be obtained using traditional breeding
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methods (Betti et al., 2016; Hanson et al., 2016; Nowicka et al.,
2018). Therefore, there is a timely need to accelerate our
understanding of the mechanisms controlling photosynthetic and
associated processes in response to the environment to allow
higher photosynthesis for increased biomass production and
yield (Long et al., 2015; Vavitsas et al., 2019). However,
according to Leister (2019b), few, if any, increases in crop yield
have been attained through increases in photosynthetic rate.

As traditional methods of crop improvement are probably reaching
a plateau, further increases in the productivity of crops must be ob-
tained by means of novel tools and technological solutions (Ort
et al.,, 2015; Nowicka et al., 2018; Simkin et al., 2019). Much of
the ongoing research has aimed at identifying natural genetic
variation responsible for increased photosynthetic capacity
(Huner et al., 2016; Nunes-Nesi et al., 2016). However, the limited
genetic variation that is naturally found in the enzymes and
photosynthesis-related processes, especially for major crops,
hampers the task of optimizing photosynthesis (Ort et al., 2015;
Dann and Leister, 2017). Such challenges can potentially be
overcome using genetic engineering in conjunction with systems/
synthetic biology and computational modeling strategies as part
of a new Green Revolution (Long et al., 2015; Wallace et al., 2018;
Fernie and Yan, 2019). Instead of exchanging single components,
synthetic biology tools can engineer and redesign entire
processes to overcome the challenges that cannot be easily
solved using existing systems (Weber and Bar-Even, 2019).

Our aim here is to provide an overview of the current state and the
prospects for engineering improved photosynthesis and plant
productivity in the era of synthetic biology. To this end, we sum-
marize recently identified strategies for manipulating photosyn-
thetic efficiency and further discuss their potential application
for plant biomass production and crop vyield, as well as for pro-
ducing valuable and highly demanded compounds in vivo to
address the global requirements for higher yields expected to
occur in the 21st century.

Photosynthesis as a Target for Synthetic Biology
Strategies

Oxygenic photosynthesis is the process by which plants and
other phototrophs use solar energy to fix carbon dioxide (COy)
into carbohydrates, releasing oxygen (O.) as a by-product
through a series of reactions occurring in the thylakoid mem-
branes (photochemical reactions) and in the chloroplast stroma
(carbon-fixing and reducing reactions). In the photochemical re-
actions, the absorbed light energy oxidizes water to O, and drives
a series of reduction—oxidation (redox) reactions whereby elec-
trons flow through several specialized compounds, ultimately
reducing NADP* to NADPH, with the concomitant generation of
ATP during the electron transfer from water to NADP* (Nielsen
et al,, 2013). The resulting high-energy compounds, NAPDH
and ATP, are used to power the Calvin-Benson cycle (CBC) al-
lowing the assimilation and reduction of CO, into trioses phos-
phate, which are then stored in the chloroplast as starch or ex-
ported by the phloem in the form of sucrose to support growth
and metabolism of sink tissues and organs.

At least three kinds of photosynthesis, namely C3, C4, and cras-
sulacean acid metabolism (CAM), are found in plants based on a
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set of characteristics, such as the identity of the first molecule
produced upon CO, fixation, photorespiratory rate, and
natural habitat (Moses, 2019). The central enzyme of the
CBCG, ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase
(RuBisCO), catalyzes the carboxylation reaction of RuBP (CO,
fixation) to form two molecules of 3-phosphoglycerate (3PGA)
in the first step of the C3 photosynthetic carbon reduction cycle
(Moses, 2019). Because carboxylation and oxygenation occur
within the same active site of the RuBisCO in all photosynthetic
organisms, and the enzyme does not discriminate well between
CO, and O,, the concentration ratio of CO, to O, in the vicinity
of RuBisCO determines the efficiency of CO, fixation (Betti
et al., 2016; Hagemann and Bauwe, 2016; Nolke et al., 2019).

The majority of plants (~85%), including major crops such as
wheat (Triticum aestivum), rice (Oryza sativa), and soybean
(Glycine max), have a C3-type metabolism (Stitt, 2013; Moses,
2019). In contrast to C3, in which oxygenase activity of
RuBisCO causes a significant waste of resources, some plant
species, as well as cyanobacteria and algae, have evolved
carbon concentration mechanisms (CCMs) to favor the
carboxylase activity of RuBisCO and thus limit their
photorespiratory rates known as C4 and CAM photosynthesis
(Peterhansel et al.,, 2013; Long et al., 2016; Nowicka et al.,
2018; Nolke et al., 2019). By contrast, C3 plants maximize CO,
capture by maintaining high stromal RuBisCO concentrations
(up to 50% of leaf total protein) at the cost of relatively higher
rates of photorespiration and lower water-use efficiency (WUE)
(Raines, 2011; Orr et al, 2017; Rae et al, 2017). In
consequence, most of the efforts to optimize photosynthesis
have been directed toward the introduction of desired
metabolic pathways of either CAM or C4 photosynthesis into
C38 plants (Orr et al., 2017; Weber and Bar-Even, 2019).

Considering that the number of genes and metabolic routes
bearing a potential for improved photosynthesis and biomass
production is high (Orr et al.,, 2017; Nowicka et al., 2018),
targeted manipulation based on engineering principles have
been extensively used to modify and optimize photosynthesis
and, thus, facilitate the management of such complexity.
Synthetic biology offers a promising interdisciplinary approach
to integrate the principles of molecular biology with biochemical
engineering in conjunction with computational tools to modify
an existent organism or to artificially create novel life forms for
different purposes (South et al., 2018; Stewart et al., 2018),
including the improvement of photosynthesis. Thus, in the
following sections we will shed light on the challenges,
advances, and prospects for the applicability of synthetic
biology concepts, from an integrated and holistic perspective,
to multi-targeted manipulations of the photosynthetic machinery.

Approaches to Optimize Light Reactions of
Photosynthesis

Photosynthesis is the only known biological process capable of
using the energy derived from light to produce chemical energy
for the synthesis of complex carbon compounds. As shown in
Figure 1, light-dependent reactions of land plant photosynthesis
consist of two photochemical complexes, called photosystems |
and Il (PSI and PSIl), which operate in series and are spatially
separated in the thylakoid and lamella membranes (Eva et al.,

2 Plant Communications 1, 100032, March 2020 © 2020 The Authors.



Plant Communications

Improving Photosynthesis through Synthetic Biology

VAV Dhurrin ADP+Pi
<1Q|>
£A
§ /: K+ K+ H+ H+
R Stroma
o [}
Psil |PQ°w.__ ¥ e
LHCIl -~ aPQH ¥ < <
OEC Lumen
€ K+ K*H* H*
2H,0 O, + 4H*

Figure 1. Light Reactions and Potential Targets for Improvement Strategies.

Overview of linear electron flow from water oxidation by OEC (gray rectangle) in the PSII LHCIl supercomplex (light green), though cytochrome bgf
(orange), to PTOX (light red circle) and/or PC (circle red) or algal cytochrome ce (opened rectangle), then to PSI-LHCI (light green), followed by reduction of
NADP* by ferredoxin (brown) and ferredoxin:NADP* reductase (oval purple circle), releasing protons into the lumen, which is then used to drive the ATP
biosynthesis by ATP synthase (blue). In addition to linear electron flow, there are also cyclic electron transfer pathways mediated by PGR5/PGRL1 or NDH
complex (purple). These pathways confer dynamic protection, preventing the production of ROS. Of note, ion channels, such as TPK3 and KEAS3 (yellow),
can be modulated by light fluctuations, regulating the proton motive force in the chloroplast and thus be important regulators of ATP biosynthesis by
exchanging K* and H* between stroma and lumen. Moreover, recently in Nicotiana benthamiana a new strategy rerouting electron transferred by PSI to
P450s monooxygenase was performed (Mellor et al., 2016; Urlacher and Girhard, 2019). CYP fused into Fd was expressed in the thylakoid membrane of
chloroplasts, enabling direct coupling of photosynthetic electron transfer to the heme iron reduction. The reducing power (e”) needed for dhurrin
formation in the chloroplast is thus ultimately derived by the water-splitting activity of PSII (pink, gray, and yellow intermembrane canes). PSI-LHCI,
photosystem | light-harvesting complex |; PSII-LHCII, photosystem Il light-harvesting complex II; PQ, plastoquinone; PQH, semi-plastoquinone;
PTOX, plastoquinol terminal oxidase; PC, plastocyanin; Cyt C6, cytochrome cg; Cytb6f, cytochrome bgf; OEC, oxygen-evolving complex; Fd, ferre-
doxin; NDH, NAD(P)H dehydrogenase; PGR5, proton gradient regulation 5; PGRL1, PGR5-like protein 1; TPK3, two-pore K* channel 3; KEA3, potassium

cation efflux antiporter 3.

2019). PSl and PSII work in conjunction with their respective light-
absorbing antenna systems, light-harvesting complex | (LHCI)
and LHCII, and are connected to each other by an electron-
transport chain (ETC) (Amthor, 2010). While the light-absorbing
pigments of the antenna complex are responsible for collecting
the light and physically transferring the energy, specialized chlo-
rophyll molecules associated with the reaction center complex
transduce the energy from the light and use it for the photochem-
ical reactions leading to long-term chemical energy storage.

In view of the complexity and the importance of light reactions of
photosynthesis, it is not surprising that not only an efficient and
robust apparatus but also flexibility in the responses to changing
environmental conditions is required (Kramer et al., 2004). This
fact aside, many scholars have argued that overall plant
photosynthesis is remarkably inefficient, since many drawbacks
have been identified within this system (Kornienko et al., 2018;
Eva et al., 2019; Moses, 2019). To begin with, less than half of
the average solar spectrum incident on the earth’s surface
(corresponding to the photosynthetically active fraction of 400-
740 nm) can be used to drive oxygenic photosynthesis in plants
(Moses, 2019). Secondly, the theoretical efficiency of solar
energy conversion into biomass by natural photosynthesis is
considered low (maximum of 4.6% and 6% for C3 and C4
plants, respectively; 1%-2% typical for crops and 0.1% for
most other plants) (Zhu et al., 2008, 2010) Thirdly, PSIl is highly
susceptible to photoinhibition at high light intensity (Nishiyama
et al.,, 2011; Liu et al., 2019), possibly due to the evolutionary
origin of photosynthesis in prokaryotes, initially in marine
conditions (i.e., low light) and in the absence of oxygen (Leister,
2012; Eva et al., 201 9). Therefore, the many losses known to
occur from light absorption to photochemical events and

beyond provide the necessary room for improvement of the
plant photosynthetic light reactions.

Several approaches aiming at increasing the efficiency to process
the influx of energy by the photosynthetic apparatus, thus miti-
gating energy losses during photosynthesis, have been proposed
(Blankenship et al., 2011; Orr et al., 2017). Significant increases in
growth rates were recently obtained in tobacco by accelerating
recovery from photoprotection by means of an improved non-
photochemical quenching (NPQ) (Kromdijk et al, 2016).
Furthermore, different recent approaches have emerged as
alternatives to improve photosynthesis based on changes in
NPQ (Murchie and Niyogi, 2011; Harada et al., 2019) as well as
on the regulation of the cytochrome bgf complex and its related
proteins PsbS and Rieske FeS subunit (Shikanai, 2014;
Ermakova et al., 2019a). Apart from the alterations in NPQ or
cytochrome bef complex, two main ideas suggested to optimize
light-use efficiency (LUE) by plants are (1) the expansion of the
light absorption spectrum to capture more of the available
light and (2) the reduction of antenna size of the photosystems
(Terao and Katoh, 1996; Ort et al., 2011; Bielczynski et al., 2019).
In this respect, a promising strategy would be the use of
bacteriochlorophylls found in anoxygenic photosynthetic
organisms, which have absorption maxima that extend out to
the far-red region (~1100 nm), to engineer one of the photosys-
tems, thus expanding the visible-light spectrum of plant photosyn-
thetic apparatus (Blankenship et al., 2011; Ort et al., 2015; Orr
et al., 2017). Alternatively, chlorophylls and bacteriochlorophylls
could also be combined in the same organism (Leister, 2019a).
On the other hand, reducing the size of the antenna could be a
feasible approach to extend the absorption spectrum without
favoring saturation effects (Blankenship et al., 2011).
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The temptation to modify core photosynthetic proteins has
generally led to undesired effects, as expertly reviewed else-
where (Leister, 2019b). For instance, exchanges of conserved
individual photosynthetic proteins from either cyanobacterial
PSI (PsaA) or PSIl (D1, CP43, CP47, and PsbH) by their plant
counterparts caused side effects such as slower growth (Nixon
et al., 1991), loss of photoautotrophy (Carpenter et al., 1993;
Vermaas et al., 1996), higher light sensitivity (Chiaramonte
et al.,, 1999), lower chlorophyll content (Chiaramonte et al.,
1999), impaired photoautotrophic growth, and drastically
reduced chlorophyll/phycocyanin ratio (Viola et al., 2014;
Leister, 2019b). Hence, single mutations or replacements of
core photosynthetic proteins will not be probably enough to
increase the photosynthetic performance owing to the multiple
interactions of the photosynthetic machinery, which evolved
over billions of years and is locked in a “frozen metabolic state”
(Gimpel et al., 2016; Leister, 2019a, 2019b).

In view of the highly integrated nature of the photosynthetic ma-
chinery, the transfer of entire photosynthetic multi-protein com-
plexes from different species seems to be a more promising
approach than the exchange of individual photosynthetic pro-
teins (Leister, 2019b). The first successful demonstration of a
whole photosynthetic complex being exchanged was made by
Gimpel et al. (2016). Six subunits of the entire PSIl core of
Chlamydomonas reinhardtii were replaced by a single synthetic
construct that contained the orthologous genes from two other
green algae (Volvox carteri or Scenedesmus obliquus) (Gimpel
et al.,, 2016). Despite their photoautotrophic growth, the
resulting strains exhibited lower photosynthetic efficiency and
lower levels of the heterologous proteins in comparison with
those proteins they were replacing (Gimpel et al., 2016; Leister,
2019b). These results suggest that the aforementioned
synthetic exchange might have disturbed interactions with
other PSII proteins in the transgenic strains (Gimpel et al,
2016). Therefore, it might be mandatory to not only exchange
the core subunits but also the supplementary proteins that
physically and/or physiologically interact with the core
photosynthetic proteins. However, whether this approach is
feasible in practice is still a matter of debate and a target of
future engineering and optimization efforts (Nowicka et al.,
2018; Leister, 2019a).

Several recent synthetic biology studies have endeavored to
insert photosynthetic proteins into host species that lack the
related homologs (Tognetti et al., 2006, 2007; Chida et al.,
2007; Blanco et al., 2011; Yamamoto et al., 2016). Promising
results were obtained by the introduction of the algal
cytochrome cg protein in the photosynthetic ETC of Arabidopsis
(Chida et al., 2007) and of tobacco (Yadav et al., 2018)
(Figure 1). In both cases, photosynthetic rates and growth were
higher in the transgenic lines (Chida et al., 2007; Yadav et al.,
2018). In addition, improved pigment contents and WUE were
observed when the Cyt cg from the green macroalgae Ulva
fasciata was overexpressed in tobacco (Yadav et al., 2018).
Therefore, the overexpression of the heterologous Cyt cg
protein is a promising approach toward delivering step-change
advancement in crop productivity by means of synthetic biology.

In addition to the improvement of photosynthesis for higher
biomass, synthetic biology efforts have also been proposed to
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modify the photosynthetic apparatus to redirect metabolic energy
toward the production of desired compounds (Mellor et al., 2019;
Russo et al., 2019). P450s are a large and diverse family of redox
enzymes spread widely across the kingdoms (Mellor et al., 2019).
Owing to their involvement in extreme versatile functions and to
the irreversibility of their catalyzed reactions, besides their key
roles in the synthesis of secondary metabolites, P450s are highly
attractive potential targets for biotechnology applications (Rasool
and Mohamed, 2016; Leister, 2019b; Russo et al., 2019). In
eukaryotes, P450s are located in the endoplasmic reticulum (ER),
where they are reduced by a membrane-bound NADPH-
dependent reductase (Jensen and Scharff, 2019). Given that the
expression levels of P450s in plants are generally low and their
activity is limited by the availability of both NADPH and
substrates inside the ER (Wlodarczyk et al., 2016; Russo et al,,
2019), synthetic biology approaches have attempted to introduce
P450 pathways into the plant chloroplast and redirect the
electrons from PSI to the P450s (Russo et al., 2019; Urlacher and
Girhard, 2019). For example, direct coupling of P450 from
Sorghum bicolor (CYP79A1) to barley (Hordeum vulgare) PSI
enabled the conversion of tyrosine to hydroxyphenyl-
acetaldoxime during the biosynthesis of the cyanogenic glucoside
dhurrin (Jensen et al., 2011). In addition, expression of a fusion
between CYP79A1 and Fd in the thylakoid membrane in
Nicotiana benthamiana allowed coupling of photosynthetic
reducing power to the heme iron reduction (Mellor et al., 2016;
Urlacher and Girhard, 2019). Afterward, this strategy was
extended by successfully inserting two P450s (CYP79A1 and
CYP71A1) and a UDP glucosyl transferase from the S. bicolor
biosynthetic pathway of dhurrin into the thylakoid membranes of
transiently transformed N. benthamiana leaves (Nielsen et al.,
2013) or into the cyanobacterium Synechocystis sp. PCC 6803
(Wlodarczyk et al., 2016) (Figure 1). Collectively, these findings
demonstrate the feasibility of transferring P450-dependent
pathways to redirect the photosynthetic electron flow for the
biosynthesis of primary and secondary metabolites in
chloroplasts of either plants or heterologous hosts such as
cyanobacteria.

Apart from the production of high-value compounds by means
of P450 catalysis, recent synthetic biology efforts have
exploited overall light reactions to directly power enzymes for
a large number of diverse biotechnological applications
(Sorigué et al., 2017; Ito et al.,, 2018; Yunus et al., 2018).
Moreover, other pioneering studies have offered a
demonstration of how light-driven enzymes can play a major
role, for example in the degradation of polysaccharides
(Cannella et al., 2016), in the conversion of long-chain fatty acids
into alka(e)nes in microalgae and in the conversion of CO, into
hydrocarbons in photosynthetic microorganisms (Sorigué
et al.,, 2017). Interestingly, light-driven catalysis can even be
created in non-photosynthetic membranes (Russo et al., 2019),
as recently shown in a study seeking to optimize the
application of particulate methane monooxygenases (pMMOs)
by using the reconstituted PSII containing membrane-bound
pMMO of Methylosinus trichosporium OB3b for methane hy-
droxylation (Ito et al., 2018). Considering the capacity of PSlII
to extract electrons from water and its contribution for the
electrochemical potential across membranes (Semin et al.,
2019), electrons from water oxidation can be extracted on the
acceptor side of PSIlI for many additional energy applications.
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From the studies described up to now, it becomes evident that
the ample availability of solar energy provides opportunities to
drive not only photosynthesis but also unrelated metabolic reac-
tions requiring electrons for their catalytic cycle (Leister, 2019a;
Russo et al.,, 2019). However, some fundamental challenges
remain. One of these is that, apart from modifying light capture
and increasing the conversion efficiency of light energy into
biomass or into valuable compounds, a true synthetic biology
program should also aim to design photosystems insensitive to
photodamage and which produce fewer harmful reactive
oxygen species (ROS) (Leister, 2012; Schmermund et al,
2019). For that purpose, photosystems might have to be
redesigned to include additional “devices” that use or quench
excess excitation energy and, at the same time, dramatically
reduce the number of proteins, thus preventing the requirement
for a plethora of assembly factors (Leister, 2012). Moreover,
this problem might be solved by using (1) cells that allow repair
of a damaged D1 subunit of PSII (e.g., cyanobacteria, algae) or
by (2) transferring the entire PSIl core module from organisms
(e.g., non-model green alga Chlorella ohadii), which probably
generate fewer ROS or which are better protected against or
even less accessible to ROS (Treves et al., 2016; Leister,
2019a). Finally, it must be kept in mind that, regardless of the
approach taken, well-validated mechanistic models will be deci-
sive in understanding and further manipulating light reactions
with the final aim to predictably modify the organisms and obtain
desired functions through synthetic biology tools.

Synthetic Biology Offers Great Promise to Introduce
CCMs into C3 Plants

The introduction of CCMs into C3 plants has been a key driver of
many synthetic biology strategies aimed at improving photosyn-
thesis (see Figure 2 for details). C4 photosynthesis, which has
evolved in angiosperm families at least 66 independent times, is
a remarkable convergent evolutionary phenomenon (Sage
et al., 2011; Aliscioni et al., 2012; Orr et al., 2017). According to
the carbon starvation hypothesis, C4 plants arose in open and
arid regions where the low atmospheric CO, concentration, in
concert with warmer weather, triggered the evolution of C4
metabolism as a strategy to minimize the oxygenase activity of
RuBisCO. In addition to the reduction of photorespiration, the
C4 traits have enabled C4 plants to increase their efficiencies in
the use of radiation, nitrogen, and water in comparison with C3
plants (Sage, 2004; Zhu et al., 2008; Maurino and Peterhansel,
2010; Peterhansel and Maurino, 2011; Sage et al., 2012;
Schuler et al., 2016). Therefore, the understanding of the
genetic mechanisms underlying this complex trait could provide
further insights into the conversion of the C3 pathway into C4,
with the ultimate goal of enhancing C3 photosynthetic
efficiency (Schuler et al., 2016).

Engineering C4 photosynthesis into C3 plants has been recently
outlined as a stepwise process reviewed by Kubis and Bar-Even
(2019). Modification of the tissue anatomy, as well as the
establishment of bundle sheath morphology and maintenance
of a cell-type-specific enzyme expression, are key aspects that
must be taken into account in this process (Sage et al., 2012;
Schuler et al., 2016). Accordingly, the introduction of all these
traits into C3 plants that may lack the ability to naturally evolve
C4 photosynthesis is considered a challenging task (Figure 2A;
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Denton et al., 2013; Schuler et al., 2016; Wang et al., 2016). As
previously shown in rice and in many other C3 crops, yield is
drastically limited by the photosynthetic capacity of leaves and
the carbohydrates factories are unable to fill the larger number
of florets or fruits of modern plants (Pearcy and Ehleringer,
1984; Hibberd et al., 2008; von Caemmerer and Evans, 2010;
von Caemmerer et al., 2012; Sowjanya et al., 2019). Therefore,
the introduction of higher-capacity photosynthetic mechanisms
has challenged the scientific community to engineer C4 pathway
into rice (Hibberd et al., 2008).

Genomic and transcriptomic approaches have produced thrilling
results about potential metabolite transporters and transcrip-
tional factors that might be useful for engineering C4 rice (von
Caemmerer et al.,, 2012; Wang et al., 2016; von Caemmerer
et al., 2017). However, several efforts to engineer C4
photosynthesis into C3 species have been hampered by an
incomplete list of genes and gene functions required to support
the trait (Weber and Bar-Even, 2019). Therefore, the
identification and functional characterization of the associated
genes seem to be a fundamental challenge faced by
researchers and a crucial step toward the introduction of the
C4 pathway into important C3 crop plants (Kurz et al., 2016;
Schuler et al., 2016; Orr et al., 2017). In addition, both the
metabolic intermediates between mesophyll cells and bundle
sheath cells and the factors involved in the development of
Kranz anatomy are still not fully identified and thus remain to be
elucidated (Schuler et al., 2016). Notably, these studies and
other recent summaries (Ermakova et al., 2019b) represent
fundamental breakthroughs in understanding and engineering
C4 into C3 photosynthesis plants and, although there is still
room for improvement, it seems reasonable to assume that we
are now facing a move from the proof-of-concept stage to
expanded strategic field testing. These examples illustrate the
critical integration of different research fields to improve crops
that can be provided by synthetic biology.

Another group of plants that represents one strategic and alterna-
tive target to understand and engineer C3 photosynthesis com-
prises those with CAM photosynthesis (Figure 2B; Orr et al.,
2017; Kubis and Bar-Even, 2019). Unlike the C4 pathway, CAM
plants separate the activites of PEPC and RuBisCO
temporally rather than spatially (Edwards, 2019). Given that
CAM species fix CO, during the night, while stomata are closed
(Rae et al., 2017), CAM reduces the water evaporation and
increases WUE by 20%-80%, an adaptive trait for hot and dry
climates (Borland et al., 2009, 2014; Yang et al., 2015; Kubis
and Bar-Even, 2019). The existence of C3-CAM intermediate
plants represents a clear potential target for synthetic biology
to introduce improved WUE into C3 crops for a warmer and drier
condition (Borland et al., 2009, 2011).

Another strategy to increase C3 photosynthesis is the introduc-
tion of biophysical CCMs from cyanobacteria and green algae
into plant chloroplasts (Figure 2C; Long et al., 2006, 2016,
2018; Dean Price et al., 2011, 2013). As well reviewed in the
current literature, cyanobacteria and green algae such as C.
reinhardtii use a biophysical CCM (Raven et al.,, 2012;
Kupriyanova et al., 2013; Mackinder, 2018). The CCMs of
microalgae and cyanobacteria rely on a range of active and
facilitated uptake mechanisms for inorganic carbon (C;) such as
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Figure 2. Photosynthetic Mechanisms and Strategies Used to Introduce Carbon Concentration Mechanisms into C3 Plants.

(A) Converting C3 into C4 mechanism. The transition from C3 to C4 metabolism requires the differentiation of photosynthetically active vascular bundle
sheath cells, modification in the biochemistry reactions of several enzymes, and modulation of metabolite transport in both inter- and intracellular
compartments, as well as transferring GDC into bundle sheath cells (Schuler et al., 2016).

(B) Converting C3 into crassulacean acid metabolism (CAM). The pathway of CAM in a mesophyll cell is temporally separated. The different background
color indicates light at the top and dark at the bottom. The green boxes on both sides indicate the epidermis under these two different conditions (opened,
night; closed, day). As alternative engineering target and less complicated process not involving changes in morphological structure is the introduction of
CAM metabolism into C3 plants. Such engineering requires precise control of several key enzymes, such as PEP carboxylase, malic enzyme, and
RuBisCO (Kubis and Bar-Even, 2019).

(C) Transferring cyanobacteria and algal carbon concentration mechanism (CCM) components to C3 chloroplasts. Transfer of HCO3™ transporter (red
and yellow circles) on inner chloroplast membrane, expression of functional carboxysome (yellow icosahedron), and introducing an algal pyrenoid CCM
(brown circle) in the chloroplast stroma. Long et al. (2018), using sophisticated approaches, took us a step closer to achieving a high stromal HCO3™ pool
in the presence of functional carboxysome, increasing CO5 fixation and yield up to 60% in transformed tobacco, as previously predicted by McGrath and
Long (2014).

Asp, aspartate; CA, carbonic anhydrase; GDC, glycine decarboxylase; PEP, phosphoenolpyruvate; PEPcase, phosphoenolpyruvate carboxylase; PPDK,
pyruvate phosphate dikinase; ME, malic enzyme.
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Domesticated
Crop genes Function Traits References
Tobacco FBPA/SBPase: Fructose-1,6-bisphosphate Increased photosynthetic carbon Simkin et al., 2015
aldolase/sedoheptulose-1,7- assimilation, leaf area, and biomass
bisphosphatase yield
ictB Cyanobacterial putative-inorganic
carbon transporter B
GCS H-protein Glycine cleavage system Biomass yield Lépez-Calcagno et al.,
2018
PsbS Photosystem Il subunit S Reduction in water loss per CO, Gtowacka et al., 2018
assimilated
ZEP Zeaxanthin epoxidase Increased leaf CO, uptake and Kromdijk et al., 2016
VDE Volaxanthinde epoxidase plant dry matter productivity
PsbS Photosystem Il subunit S
Tomato SP (Self pruning) | Flowering repressor A quick burst of flower production Soyk et al., 2017
that translates to an early yield
Rice SBPase Sedoheptulose-1,7-bisphosphatase | Enhancement of photosynthesis to | Feng et al., 2007a
high temperature
ictB Inorganic carbon transporter B Higher photosynthesis and Yang et al., 2008
carboxylation efficiencies, lower
CO, compensation points
FBPA/SBPase Fructose-1,6-bisphosphate Net photosynthetic rate, Gong et al., 2017
aldolase/sedoheptulose-1,7- carboxylation efficiency
bisphosphatase
ccaA Formerly icfA: inorganic carbon
fixation A
ZmSWEET4c/ Sugars will eventually be exported Seed filling Sosso et al., 2015
OsSWEET4 transporters
Wheat SBPase Sedoheptulose-1,7-bisphosphatase | Improved photosynthesis and grain | Driever et al., 2017
yield
Maize ZmSWEET4c/ Sugars will eventually be exported Seed filling Sosso et al., 2015
OsSWEET4 transporters
Arabidopsis | PRK Phosphoribulokinase Photosynthetic capacity, growth, Lépez-Calcagno et al.,
and seed yield 2017
GDC L-protein Glycine cleavage system Increased rates of CO, Timm et al., 2015
assimilation, photorespiration, and
plant growth
PetC Rieske FeS subunit of the Increased electron-transport rates Simkin et al., 2017a
cytochrome bgf complex and biomass yield
soybean ictB Inorganic carbon transporter B Increased photosynthetic CO, and | Hay et al., 2017
dry mass
Setaria viridis | PetC Rieske FeS subunit of the Better light conversion efficiency, Ermakova et al., 2019a
cytochrome bgf complex higher CO, assimilation

Table 1. Some Domesticated Genes that Are Potentailly Useful for Improving Photosynthetic Rates and/or Crop Yield.

carbonic acids (HCOj3").

After the participation of these

et al., 2015) (Figure 2C and Table 1). In addition, transgenic rice

transporters, bicarbonate is further transported into specialized
compartments packed with RuBisCO, the carboxysome in
cyanobacteria and pyrenoids in green algae, where CO, is
released from bicarbonate by carbonic anhydrases (Dean Price
et al., 2013; Mangan et al., 2016; Orr et al., 2017; Long et al.,
2018; Poschenrieder et al.,, 2018). Compelling evidence has
demonstrated that the overexpression of the C; transporter ictB
from cyanobacteria in Arabidopsis and tobacco enhances
photosynthesis and growth (Lieman-Hurwitz et al., 2003; Simkin

expressing the ccaA, ictB, and FBP/SBPase derived from
cyanobacteria exhibited significant increases in their
photosynthetic capacities, mesophilic conductance, and grain
yield (Yang et al., 2008; Gong et al., 2015, 2017). Similar results
found that ictB also contributes to enhancement of the soybean
photosynthetic CO, assimilation (Hay et al., 2017).

Another engineering strategy aiming to generate CCM in crop
plants is the introduction of genes encoding both the
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Figure 3. Calvin-Benson Cycle Advances, RuBP Supply, and
Photorespiratory Bypasses.

RuBisCO catalyzes CO, and O fixation. The product of CO, fixation is the
3PGA that enters in the CBC and can be directed to starch biosynthesis
and/or sugars in the cytosol (black arrows). In addition, the oxygenation
drives the production of 2PGA, which is metabolized in the C2 photo-
respiratory pathway (blue arrows). Recently, three new synthetic
photorespiratory bypasses have been proposed to improve the carbon
assimilation and reduce photorespiration losses in C3 plants. See details
in pink circles: (1) glycolate is diverted into glycerate within the chloroplast,
shifting the release of CO, from mitochondria to chloroplasts, and
reducing ammonia release (dashed light-green arrows) (for details see
Kebeish et al., 2007); (2) peroxisomal pathway, catalyzed by two
Escherichia coli enzymes, converts glyoxylate into hydroxypyruvate and
CO, in a two-step process (brown) (for details see Peterhansel et al.,
2013); (3) lastly, bypass 3 is considered a non-real bypass since the gly-
colate is completely oxidized into CO; inside chloroplasts by both newly
introduced and native enzymes (dashed red arrows) (for details see
Peterhansel et al., 2013; Fonseca-Pereira et al., 2020). In parallel,
overexpression of GDC (gray oval) in Arabidopsis increased net carbon
assimilation. Besides this, RuBisCO activity is also limited by RuBP
regeneration, which involves two main enzymes, SBPase and FBPA
(yellow oval). The combination of SBPase and FBPA overexpression
results in cumulative positive effects on leaf area and biomass
accumulation (Driever et al., 2017). Recent studies have shown that
BSD2 (red star) chaperone is crucial for cyanobacterial RuBisCO
assembly into functional enzyme in tobacco (Conlan et al., 2019).
Therefore, all these changes are considered important checkpoint
targets to optimize and improve the photosynthetic efficiency. 3PGA, 3-
phosphoglycerate; CBC, Calvin-Benson cycle; FBPA, fructose-1,6-
bisphosphate aldolase; SBPase, sedoheptulose-1,7-bisphosphatase;
BSD2, bundle sheath defective 2 protein.

carboxysome and its encapsulated RuBisCO (Dean Price et al.,
2013; Long et al, 2016). Significant progress toward
synthesizing a carboxysome in chloroplasts of C3 plants has
been made by using tobacco as a model system (Figure 2C; Lin
et al.,, 2014a; Hanson et al., 2016; Occhialini et al., 2016).
However, the big challenge and the first step to be achieved as
a key requirement for the introduction of a functional
biophysical CCM into C3 plants is to provide the expression
and the correct localization of C; transporters from
cyanobacteria or green alga into transgenic C3 plants. Once
this step is completed, we can go further with the next step, the
establishment of functional RuBisCO-containing compartments
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(Kubis and Bar-Even, 2019). Recently, Long et al. (2018) have
successfully produced simplified carboxysome within tobacco
chloroplast and replaced endogenous RuBisCO large subunit
genes with cyanobacterial form-1A RuBisCO large and small
subunit genes, producing carboxysome, which encapsulates
RuBisCO and enables autotrophic growth at elevated CO,.
Therefore, these new findings are offering alternative avenues
to tailor microcompartment design based on simplified sets of
genes.

Engineering RuBisCO

RuBisCO, a key regulator of the CBC, is responsible for the
assimilation of CO, and is recognized as the most abundant pro-
tein in nature (Ellis, 1979; Reven, 2013; Erb and Zarzycki, 2018).
Given that RuBisCO exhibits slower catalytic rate than most
enzymes involved in the central metabolism of plants, it has
long been considered a limiting step for photosynthesis and
hence for primary productivity (Pottier et al., 2018). Therefore, a
number of metabolic engineering and synthetic biology
strategies have been proposed to improve RuBisCO’s ability to
fix CO, (Figure 3; Weigmann, 2019). However, some strategies
to achieve this goal have generally faced significant technical
challenges, suggesting that RuBisCO is already operating at or
near physiological optimum in plants (Long et al., 2015).

A key challenge in engineering RuBisCO is that the enzyme is a
robust hexadecameric complex (550 kDa) comprising eight
copies of a large subunit (Rbcl), encoded by the chloroplast
genome, and an additional eight copies of a small subunit
(RbcS), encoded by the nuclear genome (Pottier et al., 2018).
Moreover, RuBisCO exhibits extensive natural diversity
regarding subunit stoichiometry and carboxylation kinetics
(Whitney and Sharwood, 2008; Sharwood, 2017). Further
development has been obtained by manipulating the small
subunit of RuBisCO, an approach that has provided higher
RuBisCO catalytic turnover rates in rice (Ishikawa et al., 2011;
Ogawa et al., 2012) and Arabidopsis (Makino et al., 2012;
Atkinson et al., 2017). In addition, the introduction of a foreign
RuBisCO from Synechococcus elongatus PCC7942 into
tobacco allowed complete assembly of RuBisCO with
functional activity and photosynthetic competence, supporting
autotrophic growth (Lin et al., 2014b; Occhialini et al., 2016).

Itis also already known that the folding and assembly of RuBisCO
large and small subunits in LgSg holoenzymes within the chloro-
plast stroma involves many auxiliary factors, including chaper-
ones such as bundle sheath defective 2 protein (BSD2)
(Figure 3; Aigner et al., 2017; Bracher et al., 2017; Conlan and
Whitney, 2018; Conlan et al., 2019). According to Aigner et al.
(2017), these factors might assist RuBisCO folding by
stabilizing an end-state assembly. In addition, they can further
facilitate efforts to enhance the kinetics of RuBisCO though muta-
genesis. Moreover, the catalytic parameter can be improved by
changes in the carbamylating activity, which is a prerequisite
for RuBisCO activity (Lorimer and Miziorko, 1980; Kubis and
Bar-Even, 2019). In fact, the catalytic chaperone RuBisCO
activase (Rca) presents itself as an attractive target for
engineering enhanced photosynthesis (Salvucci and Crafts-
Brandner, 2004; Kurek et al., 2007; Fukayama et al., 2012;
Yamori et al., 2012). These findings, combined with those of
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previous studies, indicate that RuBisCo activity and, by
consequence, photosynthesis can be engineered and improved
by means of synthetic biology.

Optimizing the CBC and Advances in Engineering
Synthetic Photorespiration Bypass Routes

Several attempts have focused on enhancing photosynthetic car-
bon fixation, and it has also been recognized that CBC enzymes
represent promising targets to accelerate plant carbon
fixation (Figure 3; Raines, 2003; Feng et al., 2007a; Raines,
2011; Singh et al., 2014; Orr et al., 2017; Kubis and Bar-Even,
2019). These assumptions are in consonance with
computational models suggesting that the natural distribution
of enzymes within the CBC is not optimal and thus could
directly limit photosynthesis performance (Kebeish et al., 2007;
Zhu et al., 2007; Bar-Even, 2018). Furthermore, it was predicted
that higher levels of sedoheptulose-1,7-biphosphatase (SBPase)
and fructose-1,6-biphosphate aldolase (FBPA) could support
higher productivity, generating extra thermodynamic push and
enabling better flux control (Zhu et al., 2007; Bar-Even, 2018;
Kubis and Bar-Even, 2019).

Different glasshouse experiments have identified higher photo-
synthetic rates and total biomass in transgenic tobacco and to-
mato plants overexpressing SBPase (Lefebvre et al., 2005; Ding
et al., 2016). Moreover, overexpression of SBPase in rice plants
enhanced photosynthesis rate under both high-temperature
(Feng et al.,, 2007a) and salt stress (Feng et al., 2007b), by
providing higher regeneration of RuBP in the stroma. Similar
results were obtained by increasing SBPase activity in
transgenic wheat, which exhibit enhanced leaf photosynthesis,
total biomass, and dry seed vyield (Driever et al., 2017). In
addition, increases in SBPase activity in tomato plants resulted
in higher photosynthetic efficiency by higher RuBP regeneration
capacity and increased LUE, in addition to higher tolerance to
chilling stress (Ding et al., 2016).

To avoid bottlenecks in different parts of the CBC, additional ef-
forts have been pursued to implement engineering principles to
other CBC targets (Simkin et al., 2015, 2017b). These include
the enzymes FBPase, FBPA and photorespiratory glycine
decarboxylase-H (GDH-H), and the last was shown to increase
photosynthesis and biomass when overexpressed in transgenic
tobacco plants (Lopez-Calcagno et al., 2018). In this respect,
intensive effort has been placed into multi-gene manipulation of
photosynthetic carbon assimilation to improve crop vyield
(Simkin et al., 2015). For instance, co-overexpression of SBPase
and FBPA enhanced photosynthesis and yield in transgenic to-
bacco (Table 1; Simkin et al., 2015, 2017b). In addition, co-
expression of GDC-H with SBPase and FBPA resulted in a posi-
tive impact on leaf area and biomass in Arabidopsis (Simkin et al.,
2017b). However, despite promising results obtained so far,
multi-gene manipulations are still in development and still need
to be tested under field conditions.

An alternative approach to optimizing CBC and reducing the
negative effects of photorespiration has been proposed to
ameliorate carbon and energy losses during carbon fixation. This
strategy is based on the introduction of synthetic metabolic path-
ways that incorporate enzyme-catalyzed reactions found in micro-
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organisms such as bacteria, algae, and even Archaea, into higher
plants for the creation of the so-called photorespiratory
bypasses (Peterhansel and Maurino, 2011; Peterhansel et al.,
2013; Nolke et al.,, 2014; John Andralojc et al., 2018). The
metabolic engineering of photorespiratory bypasses enhances
the total photosynthetic yield while the ammonia release in
the mitochondrion is omitted, thereby saving ammonia
reassimilation costs (Maier et al., 2012; Peterhansel et al., 2013).
However, according to Peterhansel et al. (2013), advantages of
this bypass have been only detectable under short-day conditions,
whereby energy efficiency of carbon fixation is more limiting for
growth, than under long-day conditions. This is a highly promising
approach, yet further studies under field conditions and stress
conditions are still required.

Redesigning Photorespiration and CO, Fixation
Pathways

Given that carbon loss is the greatest problem caused by photo-
respiration and a challenge for boosting carbon fixation, recent
systematic analysis has aimed to identify photorespiratory
bypass routes that do not lead to the release of CO, (Trudeau
et al., 2018; Kubis and Bar-Even, 2019). By combining natural
and artificially designed enzymes, the activity of a synthetic
carbon-conserving photorespiration bypass has been estab-
lished in vitro (Trudeau et al., 2018). In brief, the authors
successfully jointly engineered the two enzymes responsible to
catalyze the glycolate reduction to glycolaldehyde, an acetyl-
coenzyme A (CoA) synthetase, and an NADH-dependent pro-
pionyl-CoA, and further combined, in a test tube, the glycolate
reduction module with three natural enzymes required to convert
glycolate to RuBP. Since NADPH and ATP were consumed and
RuBP accumulated upon addition of glycolate and 3PGA
(Trudeau et al., 2018), the study provides proof of principle of
an alternative synthetic photorespiration bypass that does not
release CO,. However, once this metabolic sequence has
been demonstrated in vitro, it awaits in planta investigations.

Beyond carbon conservation, other studies have recently sug-
gested carbon-positive photorespiration shunts as a strategy to
improve CBC efficiency (Yu et al., 2018; Kubis and Bar-Even,
2019). For instance, a synthetic malyl-CoA-glycerate (MCG) car-
bon fixation pathway designed for the conversion of glycolate to
acetyl-CoA was introduced to complement the deficiency of the
CBC for acetyl-CoA synthesis (Yu et al., 2018). To this end, the
authors first tested the feasibility of the MCG pathway in vitro
and in Escherichia coli, then evaluated the coupling of the MCG
pathway with the CBB cycle for the acetyl-CoA synthesis in the
cyanobacteria S. elongatus. Although the MCG pathway cannot
be considered a true photorespiration bypass, since acetyl-
CoA cannot be easily reassimilated into the CBC (Weber and
Bar-Even, 2019), the pathway facilitated a twofold increase in
bicarbonate assimilation in cyanobacteria (Yu et al., 2018;
Kubis and Bar-Even, 2019).

Instead of generating photorespiration bypasses, alternative
studies have attempted to construct and optimize completely
artificial routes for the fixation of CO, in vitro to further replacing
the CBC with a synthetic carbon fixation pathway (Figure 3;
Schwander et al., 2016; Kubis and Bar-Even, 2019; Weber and
Bar-Even, 2019). Toward in vitro reconstitution of an enzymatic
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network, the original CBC pathway was replaced by synthetic
reaction sequences where different enzymes were engineered
to either limit side reactions of promiscuous enzymes or
proofread other enzymes required to correct for the generation
of dead-end metabolites (Schwander et al., 2016). Notably, the
CETCH pathway, which relies on the reductive carboxylation of
enoyl-CoA esters, was able to convert CO, into the C, intermedi-
ate glyoxylate (Schwander et al., 2016). In total, 17 enzymes
originating from nine organisms of all three domains of life were
used for the assembly of the CETCH cycle (Schwander et al.,
2016), thus opening the way for future applications in the field
of carbon fixation reactions.

By using a synthetic biology approach, South et al. (2019)
investigated three alternative photorespiratory bypass
strategies by generating a total of 17 construct designs with
and without one RNAIi construct in field-grown tobacco. The
RNAi approach was used to downregulate a native chloroplast
glycolate transporter in the photorespiratory pathway, thereby
limiting metabolite flux through the native pathway. Remarkably,
the synthetic glycolate metabolism pathway has stimulated crop
growth and biomass productivity under both greenhouse and
field conditions. Similarly, a new photorespiratory bypass was
recently designed in rice by Shen et al. (2019). By using a multi-
gene chloroplastidic bypass, it was possible to create a reduce
participation of the glycolate oxidase, oxalate oxidase, and cata-
lase, allowing the generation of the so-called GOC pathway. The
transgenic plants showed significant increases in photosynthetic
efficiency and biomass yield as well as increased nitrogen con-
tent under both greenhouse and field conditions (Shen et al.,
2019). Altogether, these results coupled with others (Xin et al.,
2015; Eisenhut et al., 2019) provide compelling evidence for the
potential of creating a new photorespiratory bypass by means
of synthetic biology. Nevertheless, the effectiveness of such
approaches is clearly dependent on the complex metabolic
regulation that exists between photorespiration and related
metabolic pathways. That being said, not only the current
strategies of synthetic biology but also novel approaches to
develop synthetic biochemical pathways that bypass
photorespiration hold highly promising potential for significant
yield increases in C3 crops.

In addition to the in vitro synthesis of artificially designed carbon
fixation pathways (Bar-Even et al., 2010; Schwander et al., 2016),
strategies to improve carbon fixation have attempt to introduce
natural or non-natural CO, fixation pathways into heterotroph or-
ganisms such as E. coli (Antonovsky et al., 2016; Kerfeld, 2016).
The functional introduction of a fully non-native CBC was ob-
tained, for the first time, by combining heterologous expression
and rational laboratory evolution approaches (Antonovsky et al.,
2016; Claassens et al., 2016). Interestingly, isotopic analysis of
the biomass content in the transformed strain revealed that the
CBC implementation allowed a generation of 35% of the
biomass from CO,. Taking into account the most advanced
state of the engineering tools available for heterotrophic model
microorganisms and autotrophic hosts, the transplant of partial,
and recently even complete, CO, fixation pathways and other
energy-harvesting systems related to autotrophy into hetero-
trophs can be seen as an alternative promising concept
(Claassens et al., 2016). Further advances of synthetic biology
in this direction might involve complementary approaches
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(Bailey-Serres et al., 2019) including integrated analysis, higher
comprehension of the gene-regulatory networks, and plastid
transformation (for details see Bock, 2014), which may
altogether deliver substantial gains in crop performance.

Going Back to the Beginning: De Novo Domestication

The process of crop improvement, using either traditional or
modern agricultural technologies, has been accompanied by
large reductions in the genetic variability available for breeding
and also in the nutritional quality of crops (Zsogon et al., 2017).
To reverse this situation, adaptive traits taken from wild species
can be readily introgressed onto the background of cultivated
crops (Dani, 2001), which demonstrate the prospect of de novo
domestication (Fernie and Yan, 2019). Once native populations
contain the genetic diversity that has been lost through
thousands of years of crop domestication, wild plants can be
redomesticated or domesticated de novo by the targeted
manipulation of specific genes in order to generate novel
varieties containing the lost traits of interest (Palmgren et al.,
2015; Shelef et al., 2017; Wolter et al., 2019). It is important to
bear in mind that in C3 plants, which represent most of land
plants, three major physiological and biochemical limitations,
namely the stomatal conductance (gs), the mesophyll
conductance (gy,), and the biochemistry led by the RuBisCO,
drives the overall photosynthetic performance. In this context,
maximal potential photosynthesis can be limited by individual
or combinations of all factors, specifically if they are co-limiting
in a balanced manner. Remarkably, knowing that those photo-
synthetic limitations are governed by several genes, naturally
occurring genetic variation in plants provides itself a powerful
tool to not only understand but also to modulate complex physi-
ological traits such as photosynthesis and photorespiration
(Nunes-Nesi et al., 2016; de Oliveira Silva et al., 2018; Adachi
et al.,, 2019). The recent perspectives for improving g, in
different plant species have been expertly reviewed elsewhere
(Lundgren and Fleming, 2019; Cousins et al., 2020; Fernandez-
Marin et al., 2020). It is important to mention that molecular
mechanisms governing gm, still remain mostly unknown. This
fact aside, further studies are clearly required to fully
understand the biochemical aspects connecting an improved
photosynthesis with g,, responses. This is particularly true
given that improvement of photosynthetic machinery must be
combined with fast enough diffusion of CO,, via g, or the
capacity to improve photosynthesis will be severely
compromised.

Following the genetic transfer of desired traits from wild progen-
itors to domesticated varieties, it is necessary to elucidate the ge-
netic basis responsible for phenotypic outcome (Fernie and Yan,
2019). The genetic and molecular dissection of quantitative trait
loci and the comparative mapping of segregating populations
obtained by crossing of a cultivated accession with its wild
relative has been the most common approach used to identify
the genetic basis for the phenotypic differences. A detailed
study using a set of 76 introgression lines from a cross between
Lycopersicon pennelli and the cultivated cv M82 (Eshed and
Zamir, 1995) identified genomic regions involved in the
regulation of fundamental physiological processes in tomato
(de Oliveira Silva et al., 2018). Interestingly, 14 candidate genes
were directly related to photosynthetic rates, as follows: three
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photosynthesis-related genes per se; six genes related to photo-
synthesis and starch accumulation; and five genes related to
photosynthesis and root dry mass accumulation.

Alongside redomestication, de novo domestication, i.e., the cre-
ation of new crop plants from wild species (Zsogon et al., 2017),
has been proposed as an avenue for making agriculture more
sustainable in addition to ensuring food security (Fernie and
Yan, 2019). In combination with synthetic biology approaches,
de novo domestication is a promising tool to boost efforts to
rapidly engineer better crops (Zsogon et al., 2018), as can be
seen on the list of genes related to domestication (Table 1).
Genomic editing technologies have allowed highly precise
modifications in the DNA sequence and can represent a
breakthrough in plant breeding (Chen et al., 2019; Schindele
et al., 2020). Due to its simplicity, efficiency, and versatility,
CRISPR/Cas9 has overcome the ZFNs and TALEN techniques
and has been successfully used to promote precise multiplex
modifications on DNA of different organisms, including plants
(Armario Najera et al., 2019). By means of the simultaneous
editing of multiple targets, CRISPR systems hold a promise to
build regulatory circuits, which could create novel traits for
precise plant breeding in agriculture (Chen et al., 2019). All this
success in DNA editing through the CRISPR/Cas technology
has shed new light on plant breeding and will probably allow us
to overcome the current challenge of producing food that can
supply the demands of a growing world population. Given the
current scenario, genome editing through the CRISPR
technology has the potential to allow thousands of years of
domestication and crop improvement to be revived and
restructured, making food production more socially and
environmentally sustainable.

Although de novo domestication or redomestication presents it-
self as a valuable approach to engineering improved photosyn-
thesis, a cautionary note is the fact that most cultivated plants
were selected mainly according to survival or production during
evolution (Denison et al., 2014; Leister, 2019b; Weiner, 2019)
and not necessarily for higher photosynthetic rates. In this
context, it should not be overlooked that the advantageous
traits conferring better photosynthesis that we are only starting
to reveal most likely have not been selected under natural
conditions or by domestication processes. It seems reasonable
to assume, therefore, that traits that confer higher
photosynthesis can be more easily transferred to those crops.
It should be noted that although higher photosynthesis is
clearly an important trait, not only stress-resistant crops are
also required to ensure yield stability; nutrient efficiency crops
should also be deserving of special attention in the near future.
It is equally important to mention that compelling evidence has
revealed that improvements of model and non-cultivated species
can be achieved by single domestication genes (reviewed in
Zsogon et al., 2017; Bailey-Serres et al., 2019; Fernie and Yan,
2019).

By regulating diverse pathways involved in plant growth and
development, transcription factors (TFs) also represent an impor-
tant class of potential targets for modifying domestication-related
phenotypes and conferring tolerance to environmental stress
(Ambavaram et al., 2014; Wu et al., 2019). In agreement,
several examples of TF-modification strategies have been used

Plant Communications

in different species. For instance, by using transgenic rice
plants expressing the TF HYR (HIGHER YIELD RICE) it was
demonstrated that HYR is a master regulator, directly activating
cascades of TFs and other downstream genes involved in
photosynthetic carbon metabolism and yield stability under
either normal or drought conditions (Ambavaram et al., 2014).
In addition, the control of grain size and rice yield performed by
OsGRF4 (Growth Regulating Factor 4) appears to occur by
modulating specific brassinosteroid-induced responses (Che
et al., 2015; Liebsch and Palatnik, 2020). Moreover, the
overexpression of a maize MADS-box transcription factor gene,
zmm?28, culminated in increases in growth, photosynthesis ca-
pacity, and nitrogen utilization in maize (Wu et al., 2019).
Altogether, these and other examples justify the over-
representation of TFs in the list of known genes underlying
domestication (Olsen and Wendel, 2013; Zhu et al., 2019) and
make TFs potentially suitable for targeted modification by
synthetic biology tools.

A Long March Ahead: The Best of Synthetic Biology Is
Yet to Come

Much attention has been given to the improvement of photosyn-
thesis as an approach to optimize crop yields to fulfill human
needs for food and energy (Nowicka et al., 2018). Plant
biotechnology is currently facing a dramatic challenge to
develop crops with higher yield, increased resilience, and
higher nutritional content. Recent developments in genome
editing and genetic manipulation have been used to boost an
impressive number of targeted approaches to simultaneously
produce more and more sustainability. Even though more
targeted and precise genetic manipulation strategies have been
recently generated in plant photosynthesis, a range of
challenges remain. In conjunction with extensive system
biology data, these manipulations have clearly advanced our
understanding of the contribution of individual genes,
transcripts, proteins, and metabolites for photosynthetic
performance. Considering the tremendous amount of time and
resources invested to “improve” plants (Weiner, 2019), the
observations above raise the question of how, when, and to
what extent these improvements will solve world food crises
(Sinclair et al., 2019). The fact that evolution has not already
provided such “improved” plants in nature by positively
selecting mutations demonstrates that more progress is likely
to occur if breeders think in terms of “trade-offs” instead of
“improvements” (Weiner, 2019). Moreover, revolutionary
synthetic biology technologies must be effectively engaged to
access new opportunities aimed at transforming agriculture
(Wurtzel et al., 2019) and provide not only improved vyield but
also stress-resilient crops while facing major climatic changes
(Bailey-Serres et al., 2019). Alternatively, it is quite probable
that photosynthesis will be made more efficient if designed
outside of plants (Liu et al., 2016; Weiner, 2019), by means of
future developments of enzymology and computational
approaches to overcome the limitations associated with the
execution of synthetic pathways that are now tractable to be
designed in silico (Erb, 2019). Once synthetic biology has
opened the door to comprehensive networks for the utilization
of solar energy and carbon sources (Luan et al., 2020), the
future will tell us whether synthetic biology will fully develop its
tremendous potential for building completely novel pathways
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and crops in predictable desired directions and, thus, provide the
solutions for the social, economic, and environmental challenges
already at hand.
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