

Sex-specific body mass ageing trajectories in adult Asian elephants

Lucas D. Lalande^{1,2,3,a}, Virpi Lummaa^{1,a}, Htoo H. Aung⁴, Win Htut⁴, U. Kyaw Nyein⁴, Vérane Berger^{1,a,*}, Michael Briga^{1,a,*}

¹ Department of Biology, University of Turku, Turku, Finland;

² Université Bourgogne Franche-Comté, Dijon, France;

³ Present address: Université de Lyon, Université Lyon 1, UMR CNRS 5558, Villeurbanne CEDEX, France;

⁴ Myanma Timber Enterprise, Ministry of Natural Resources and Environmental Conservation, Gyogone Forest Compound, Yangon, Myanmar;

* Equal contribution of these authors

^a Corresponding authors: L. D. Lalande: lucas.lalande@univ-lyon1.fr, V. Lummaa: virpi.lummaa@gmail.com, V. Berger: verber@utu.fi, M. Briga: michbriga@gmail.com

Sex-specific life-histories are thought to shape senescence patterns differently for males and females. In species with marked sexual dimorphism and where one sex is undergoing stronger intrasexual competition, it is expected that this sex ages earlier or quicker. Here, we utilise a unique, longitudinal dataset of a semi-captive population of Asian elephants (*Elephas maximus*) to describe the body mass ageing trajectories in this species with marked sexual dimorphism in size and lifespan, with males being larger and living shorter. Our results show sex-specific ageing trajectories: males gained weight throughout their life, at a diminishing rate until natural death. In contrast, adult female body mass did not change significantly with age until an abrupt decline during the last year of life. Our study shows that sex-specific life-histories shape ageing patterns contrary to those predicted by classical theory and expands the previously described diversity of ageing dynamics.

Keywords: senescence, ageing, sex-differences, terminal decline, *Elephas maximus*, long-term data

28 **Introduction**

29 Senescence – a gradual age-specific decline in contribution to fitness [1] – has been observed
30 across species [2]. However, the onset and rates of senescence differ both between [2] and
31 within species [3] and between sexes [4]. A main challenge in senescence research is to quantify
32 and explain these differences in onset and rates [e.g. 5].

33 In species with sex-specific intrasexual competition, theory predicts that the sex with the
34 highest intrasexual competition should have the shorter lifespan and show an earlier onset
35 and/or higher rate of senescence [6]. The rationale is that high intrasexual selection often results
36 in one sex showing conspicuous displays or aggressive intrasexual behaviours, leading to
37 increased mortality and a *live fast, dye young* pace of life [6–8]. Accordingly, in polygynous
38 species where intrasexual competition is higher for males, males often die earlier (15.7% earlier
39 in mammals [9]) and senesce earlier or faster than females [4,8,10–12]. However, recent
40 conceptual developments have shown that this classic association can be disrupted, for example
41 because of condition-dependent extrinsic mortality [9] or canalisation (*i.e.* the more a trait
42 contributes to fitness, the less it should deviate from optimal trait value, with respect to
43 environmental variations [14]), thereby contradicting the theoretically expected earlier or faster
44 ageing in males. The extent to which such phenomena occur in nature remains unknown.

45 Here, we took advantage of a unique long-term dataset to describe the sex-specific body mass
46 ageing trajectories of an unsupplemented semi-captive population of Asian elephants (*Elephas*
47 *maximus*) living in natural conditions in Myanmar. Body mass is of interest in the study of
48 senescence because it is positively associated with key life-history traits such as reproduction
49 and lifespan in many non-human species [15]. Accordingly, Asian elephants show seasonal
50 variation in body mass which is positively associated with subsequent survival [16].

51 However, we know almost nothing on body mass ageing in this species despite the interest of
52 studying ageing on such a long-lived, social and sexually dimorphic non-human species. While
53 females live in kin groups, adult males roam solitary through the forest [17], undergo a more
54 intense intrasexual competition for dominance and mating [17] and are therefore bigger, heavier
55 [18], and shorter-lived (median lifespan: 30.8 years) than females (44.7 years) [19]. Based on
56 this male-biased intrasexual competition and shorter lifespan, we expected males to display
57 earlier and/or faster body mass ageing than females [6,7,20].

58

59 **Material and methods**

60 **Study population**

61 The unsupplemented study population is the world's largest semi-captive Asian elephant
62 population, including around 3,000 individually-marked elephants owned by the government-
63 run Myanma Timber Enterprise (MTE) [21]. These elephants are distributed across Myanmar
64 in forest camps and used as riding, transport and drafting animals. Their birth, death and
65 pedigree details, and morphological measurements have been recorded for almost a century by
66 local veterinarians in elephant-specific logbooks. Elephants work during the day and socialise,
67 mate and forage freely in forests at night (see [22,23] for further details). Consequently, their
68 life-history and lifespan closely resemble that of wild elephants [19].
69

70 **Data collection and selection**

71 We extracted 1,975 body masses of 347 elephants with known sex, year of birth ('YOB'), alive
72 or dead status, origin (captive-born or wild-caught) and measurement season (hot: Feb-May,
73 monsoon: Jun-Sep, cold: Oct-Jan [16]) from the 325 working localities ('township') monitored
74 on average every 1.5 years between 1968-2018. When body mass measurements were not
75 available, we estimated body masses using height to the shoulder and chest girth ($n = 2,098$, r
76 = 0.89, method described in table S1). We obtained a median of 4.0 measurements/individual
77 [2.5-97.5th percentiles: 1.0-38.7], followed for a median of 2.8 years [2.5-97.5th: 0.0-37.3] for a
78 total of 493 elephants ($n = 4,073$).

79 Our analyses focused on age- and sex-specific variation in adult body mass from age 18
80 onwards, omitting the phase during which elephants grow in height [18]. The study elephants
81 were aged 18-72 years (mean = 39.3) and born 1941-1999. Age and cohort information were
82 consistent between the sexes, with 171 males ($n = 1,378$) born 1954-1999 and aged 18-64 years
83 (mean = 37.2), and 322 females ($n = 2,695$) born 1941-1999 and aged 18-72 years (mean =
84 40.4).

85

86 **Statistical analyses**

87 All analyses were performed on R version 4.0.2 [24]. We investigated the age- and sex-specific
88 variation in body mass, using the log-transformed body mass as a dependent variable with a
89 normal error distribution. We first tested whether there were sex-specific ageing trajectories
90 (table S2) and then compared the ageing trajectories for both sexes separately using general
91 linear mixed models with the function 'lmer' (package 'lme4' [25]) and identified the models
92 that best fitted the data using model selection with the function 'dredge' (package 'MuMin'
93 [26]). Better-fitting models are indicated by their lower AICc, models $<4 \Delta\text{AICc}$ are plausible
94 and models become increasingly equivocal up to $14 \Delta\text{AICc}$, after which they become

95 implausible [27]. Visual inspection of model residuals confirmed that these fulfilled all
96 assumptions of distribution and homogeneity without any influential data points or outliers.

97

98 *Within- vs. between-individual change*

99 In all models, we accounted for non-independence of data due to repeated measurements from
100 the same individual by including elephant identity ('ID') as a random intercept. Here we are
101 interested in within-individual changes in body mass. Because population composition can
102 change with age (*e.g.* selective disappearance), body mass changes at the population level can
103 result from both between-individual and within-individual changes [28]. To capture the within-
104 individual trajectory, we decomposed the age variable in the models into *i*) a 'mean age' term
105 (mean age for all the measurements of the same individual) capturing the between-individual
106 changes with age and *ii*) a ' Δ age' term (age at measurement minus the individual's mean age)
107 capturing the within-individual changes with age, following the approach developed in [28].
108 We mean-centered and standardized all age terms.

109

110 *Testing ageing trajectories*

111 We tested a number of within-individual ageing trajectories of increasing complexity (linear,
112 quadratic, threshold models, figure S1). To determine whether changes in body mass started at
113 a certain threshold age (figure S1C), we followed the approaches previously developed in [4,29].
114 Briefly, we tested a series of models varying the threshold in the ' Δ age' term between -36 to 22
115 years with intervals of 1 Δ age (= 3.4 years for males and 4.5 years for females). We identified
116 the best fitting threshold model based on the AICc and its confidence intervals using $\pm 4 \Delta$ AIC
117 age range. Ageing is sometimes better described using the time before death (terminal decline).
118 A 'terminal' change (figure S1D) is captured by a binomial factor for whether an individual
119 died during the year following the measurement. To avoid dealing with seasonally-driven
120 terminal effects, we used a terminal decline window of one year prior to death. Note that other
121 time windows gave consistent conclusions (Results section, figure S2). We tested the terminal
122 decline in combination with each ageing trajectories.

123

124 *Accounting for seasonal and spatial variation in body mass*

125 As body mass variation can be influenced by seasonal, spatial and within-individual factors, we
126 accounted for whether body mass values were measured or estimated, individuals were alive or
127 dead, captive- or wild-born, and the measurement season in the selected models for both sexes
128 (table S3). For females, ID and township were included as random intercepts, but YOB was

129 removed because of insufficient power to estimate its variance [30]. For males, ID and YOB
130 were included and ‘township’ excluded for the same reasons. Note that for models with only
131 ID as random intercept, results yielded consistent conclusions. Repeating the analyses adding
132 log(height) as a covariate to correct for the allometric relationship between height and body
133 mass gave consistent conclusions (table S4, S5 and S6).

134

135 **Results**

136 Elephants weighed 1,334-4,582 kg (mean = 2,631.3). Males weighed 1,334-4,582 kg (mean =
137 3,024.3) and were on average 593.9 kg heavier than females which weighed 1,458-4,181 kg
138 (mean = 2,430.4). This difference was statistically significant ($\Delta\text{AICc} = -257.0$, table S2).

139 At the measurements’ starting age of 18 years, the body mass difference between the sexes was
140 reversed, with males weighing on average 478.5 kg less than females, respectively at 1,861.6
141 kg [95%CI: 1,742.3-1,989.0] and 2,330.1 kg [95%CI: 2,288.6-2,372.3]. However, sexes
142 displayed different body mass ageing trajectories ($-78.5 < \Delta\text{AICc} < -75.0$, figure 1, table 1 and
143 S2). Males continuously gained weight but the rate of increase diminished with age, as shown
144 by a quadratic within-individual body mass ageing trajectory ($\Delta\text{AICc} = -45.6$ compared to a
145 linear trajectory, figure 1A, table 1), with a maximum at the oldest age at measurement of 64
146 years.

147 In contrast, females showed a linear within-individual increase in body mass with age ($\beta =$
148 0.013 ± 0.001 , $\Delta\text{AICc} = -2.8$), followed by a terminal decline in body mass during the last year
149 of life ($\beta = -0.076 \pm 0.019$, $\Delta\text{AICc} = -7.5$, figure 1B and S2) of 184.8 kg [95%CI: 94.7-271.5]
150 (7.3% [95%CI: 3.8-10.8] of the mean adult body mass). The equivalent model containing a
151 terminal decline factor for males was not statistically significant ($\Delta\text{AICc} = +7.3$, table 1, figure
152 S3) as the drop in body mass was smaller and overlapped with 0: 27.8 kg [95%CI: -134.0-
153 181.1] or 0.9% [95%CI: -4.5-6.1].

154

155 **Discussion**

156 We tested for sex differences in body mass ageing trajectories of Asian elephants in which the
157 sexes differ in size, life-history and lifespan. We found that males gained weight at a decreasing
158 rate throughout their lifespan, while females showed no body mass ageing until a 7.3% decline
159 during the last year of life. In Asian elephants, males are more aggressive than females [31],
160 fight more for dominance and show higher rates of mortality at all ages than females [19]. In
161 species with such male-biased intrasexual selection on mortality, classic theory predicts that

162 males should show an earlier onset or accelerated ageing [32]. Indeed, in several polygynous
163 mammals, males had higher rates of body mass declines than females, and this difference was
164 suggested to be due to their higher intra-sexual competition [8,11]. Our results are thus opposite
165 to what expected from classic theory and we here discuss three possible mechanisms and
166 implications of our study.

167 The lack of body mass decline in males of this highly polygynous species is unlikely to be due
168 to a power issue. First, the median lifespan in males and females is 30.8 and 44.7 years
169 respectively [19]. Our dataset included 114 males (n = 899) and 108 females (n = 1,051) beyond
170 these ages. Second, the MTE retires elephants at the age of 53 years [33], when the elephant's
171 physical condition is insufficient for timbering, and we included 15 males (n = 141) and 57
172 females (n = 601) beyond that age. Third, we included 5 dead males (n = 65) and 18 dead
173 females (n = 185) to detect for a terminal decline. Although the power was lower for males,
174 power is unlikely to be an issue here because the coefficient for the terminal decline in males
175 was more than 8 times smaller than that of females ($\beta_{males} = -0.009 \pm 0.027$, $\beta_{females} = -$
176 0.076 ± 0.019) and, including a male terminal factor resulted in a 7.3 $\Delta AICc$ increase relative to
177 the model without decline. Hence, we do not believe the lack of body mass decline in males or
178 the different ageing trajectories between sexes to be driven by the power of the data.

179 The fact that the observed sex-specific body mass ageing trajectories were opposite to the
180 classic predictions on sexual selection and ageing [32] raises questions regarding the underlying
181 evolutionary mechanisms. Body mass in male elephants plays a predominant role in intrasexual
182 competition [17], and therefore in the contribution to fitness, potentially causing the
183 canalisation of males body mass, thereby preventing its decline [14]. Alternatively, condition-
184 dependent mortality can filter weakest individuals and alter (sex-specific) within-individual
185 ageing trajectories [34]. The rationale is that the disappearance of weaker males that would
186 have declining body masses at older ages can result in a selection of males without body mass
187 declines. Such condition-dependent mortality can occur at evolutionary timescales, but also at
188 an individual timescale. For example, in Asian elephants, males experience higher mortality
189 than females at all ages, including development and calfhood [19], and parasite-associated
190 mortality is higher for males than females at all ages [33]. In polygynous species, raising a male
191 is costlier than raising a female and this could translate in a more pronounced condition-
192 dependent mortality in males during early-life, as suggested in the wild boar (*Sus scrofa*) [35].
193 Although canalisation and condition-dependent mortality are possible explanations for the
194 absence of male-biased ageing in polygynous species [6], female-biased ageing is not supported
195 in most of the current literature. Our finding that females experienced only a terminal body

196 mass decline is an interesting result. It emphasizes that the chronological age is rarely a perfect
197 estimation of the biological age which can better describe the ‘true biological state’ of an
198 organism [36]. The ‘terminal illness’ hypothesis refers to the age-independent decrease of a
199 trait value, related to the imminent death of the individual [37] and such terminal effects were
200 shown for example for body mass and sexual signals in mammals and birds [38]. Which traits
201 or under which conditions to expect terminal declines remains yet unknown but our study
202 highlights the importance of studying sex-specific differences in ageing and illustrates the need
203 to improve our understanding of the mechanisms driving the diversity of ageing patterns in the
204 wild.

205

206 **Ethics**

207 The study was performed with the permission from the Myanmar Ministry of Natural Resources
208 and Environmental Conservation and following the University of Turku ethical guidelines.

209

210 **Data accessibility**

211 The dataset supporting the conclusions of this article will be made publicly available upon
212 acceptance.

213

214 **Authors' contributions**

215 HHA, WH and UKN performed field work and data collection. VL, VB and MB designed the study
216 and LL selected, extracted and translated data. LL carried out all statistical analyses with
217 contributions from VB and MB. LL wrote the manuscript and VL, VB and MB critically reviewed
218 it. All authors approved the manuscript for publication and agree to be held accountable for
219 the content therein and approve the final version of the manuscript.

220

221 **Competing interests**

222 We declare we have no competing interests.

223

224 **Funding**

225 This work was supported by the Academy of Finland [292368], the European Research Council
226 [ERC-2014-CoG 648766] and the Ella & Georg Ehrnrooth Foundation.

227

228 **Acknowledgements**

229 We thank the Myanma Timber Enterprise (MTE) and the Myanmar Ministry of Natural
230 Resources and Environmental Conservation for their collaboration and all of the MTE staff
231 enabling this study by recording elephant life events and morphology for so long. Particularly,
232 we thank Mu Mu Thein and Nina Aro for their patience in helping translating countless elephant

233 morphological measurements from burmese to english. We also thank Carly Lynsdale for
234 ensuring our english was fluent. We thank the Academy of Finland, the European Research
235 Council and the Ella & Georg Ehrnrooth Foundation for fundings.

236

237 References

- 238 1. Gaillard J, Lemaître J. 2020 An integrative view of senescence in nature. *Funct. Ecol.*
239 **34**, 4–16. (doi:10.1111/1365-2435.13506)
- 240 2. Jones OR *et al.* 2014 Diversity of ageing across the tree of life. *Nature* **505**, 169–173.
241 (doi:10.1038/nature12789)
- 242 3. Nussey DH, Kruuk LEB, Morris A, Clutton-Brock TH. 2007 Environmental conditions in
243 early life influence ageing rates in a wild population of red deer. *Curr. Biol.* **17**, R1000–R1001.
244 (doi:10.1016/j.cub.2007.10.005)
- 245 4. Douhard F, Gaillard J-M, Pellerin M, Jacob L, Lemaître J-F. 2017 The cost of growing
246 large: costs of post-weaning growth on body mass senescence in a wild mammal. *Oikos* **126**,
247 1329–1338. (doi:10.1111/oik.04421)
- 248 5. Nussey DH, Froy H, Lemaitre J-F, Gaillard J-M, Austad SN. 2013 Senescence in natural
249 populations of animals: Widespread evidence and its implications for bio-gerontology. *Ageing*
250 *Research Reviews* **12**, 214–225. (doi:10.1016/j.arr.2012.07.004)
- 251 6. Maklakov AA, Lummaa V. 2013 Evolution of sex differences in lifespan and aging:
252 Causes and constraints. *BioEssays* **35**, 717–724. (doi:10.1002/bies.201300021)
- 253 7. Bonduriansky R, Maklakov A, Zajitschek F, Brooks R. 2008 Sexual selection, sexual
254 conflict and the evolution of ageing and life span. *Funct. Ecol.* **22**, 443–453.
255 (doi:10.1111/j.1365-2435.2008.01417.x)
- 256 8. Clutton-Brock TH, Isvaran K. 2007 Sex differences in ageing in natural populations of
257 vertebrates. *P. Roy. Soc. B-Biol. Sci.* **274**, 3097–3104. (doi:10.1098/rspb.2007.1138)
- 258 9. Lemaître J-F *et al.* 2020 Sex differences in adult lifespan and aging rates of mortality
259 across wild mammals. *P. Natl. A. Sci. USA* **117**, 8546–8553. (doi:10.1073/pnas.1911999117)
- 260 10. Tidière M, Gaillard J-M, Müller DWH, Lackey LB, Gimenez O, Clauss M, Lemaître J-F.
261 2015 Does sexual selection shape sex differences in longevity and senescence patterns across
262 vertebrates? A review and new insights from captive ruminants. *Evolution* **69**, 3123–3140.
263 (doi:10.1111/evo.12801)
- 264 11. Beirne C, Delahay R, Young A. 2015 Sex differences in senescence: The role of intra-
265 sexual competition in early adulthood. *P. Roy. Soc. B-Biol. Sci.* **282**, 20151086.
266 (doi:10.1098/rspb.2015.1086)
- 267 12. Nussey D, Kruuk L, Morris A, Clements M, Pemberton J, Clutton-Brock T. 2009 Inter-
268 and Intrasexual Variation in Aging Patterns across Reproductive Traits in a Wild Red Deer
269 Population. *Am. Nat.* **174**, 342–57. (doi:10.1086/603615)
- 270 13. Williams P, Day T, Fletcher Q, Rowe L. 2006 The shaping of senescence in the wild.
271 *Trends Ecol. Evol.* **21**, 458–463. (doi:10.1016/j.tree.2006.05.008)
- 272 14. Boonekamp JJ, Mulder E, Verhulst S. 2018 Canalisation in the wild: effects of
273 developmental conditions on physiological traits are inversely linked to their association with
274 fitness. *Ecol. Lett.* **21**, 857–864. (doi:10.1111/ele.12953)
- 275 15. Hämäläinen A, Dammhahn M, Aujard F, Eberle M, Hardy I, Kappeler PM, Perret M,
276 Schliehe-Diecks S, Kraus C. 2014 Senescence or selective disappearance? Age trajectories of
277 body mass in wild and captive populations of a small-bodied primate. *P. Roy. Soc. B-Biol. Sci.*
278 **281**, 20140830. (doi:10.1098/rspb.2014.0830)

279 16. Mumby HS, Mar KU, Thitaram C, Courtiol A, Towiboon P, Min-Oo Z, Htut-Aung Y,
280 Brown JL, Lummaa V. 2015 Stress and body condition are associated with climate and
281 demography in Asian elephants. *Conserv. Physiol.* **3**, cov030. (doi:10.1093/conphys/cov030)

282 17. Sukumar R. 2003 *The living elephants: evolutionary ecology, behavior, and*
283 *conservation*. New York: Oxford University Press.

284 18. Mumby HS, Chapman SN, Crawley JAH, Mar KU, Htut W, Thura Soe A, Aung HH,
285 Lummaa V. 2015 Distinguishing between determinate and indeterminate growth in a long-
286 lived mammal. *BMC Evol. Biol.* **15**, 214. (doi:10.1186/s12862-015-0487-x)

287 19. Lahdenperä M, Mar KU, Courtiol A, Lummaa V. 2018 Differences in age-specific
288 mortality between wild-caught and captive-born Asian elephants. *Nat. Comm.* **9**, 3023.
289 (doi:10.1038/s41467-018-05515-8)

290 20. Christensen K, Doblhammer G, Rau R, Vaupel JW. 2009 Ageing populations: the
291 challenges ahead. *Lancet* **374**, 1196–1208. (doi:10.1016/S0140-6736(09)61460-4)

292 21. Leimgruber P, Senior B, Aung M, Songer M, Mueller T, Wemmer C, Ballou J. 2008
293 Modeling population viability of captive elephants in Myanmar (Burma): Implications for wild
294 populations. *Anim. Conserv.* **11**, 198–205. (doi:10.1111/j.1469-1795.2008.00172.x)

295 22. Oo ZM. 2010 The training methods used in Myanma Timber Enterprise. *Gajah* **33**, 58–
296 61.

297 23. Zaw UK. 1997 Utilization of elephants in timber harvesting in Myanmar. *Gajah* **17**, 9–
298 22.

299 24. R Core Team. 2020 *R: A language and environment for statistical computing*. Vienne,
300 Austria: R Foundation for Statistical Computing. See <https://www.R-project.org>.

301 25. Bates D, Mächler M, Bolker B, Walker S. 2015 Fitting linear mixed-effects models using
302 lme4. *Journal of Statistical Software* **67**, 1–48. (doi:10.18637/jss.v067.i01)

303 26. Bartoń K. 2019 *MuMIn: Multi-Model Inference*. See <https://CRAN.R-project.org/package=MuMIn>.

304 27. Burnham KP, Anderson DR, Huyvaert KP. 2011 AIC model selection and multimodel
305 inference in behavioral ecology: some background, observations, and comparisons. *Behav.
306 Ecol. Sociobiol.* **65**, 23–35. (doi:10.1007/s00265-010-1029-6)

307 28. van de Pol M, Verhulst S. 2006 Age-dependent traits: A new statistical model to
308 separate within- and between-individual effects. *The American Naturalist* **167**, 766–773.
309 (doi:10.1086/503331)

310 29. Briga M, Jimeno B, Verhulst S. 2019 Coupling lifespan and aging? The age at onset of
311 body mass decline associates positively with sex-specific lifespan but negatively with
312 environment-specific lifespan. *Exp. Gerontol.* **119**, 111–119.
313 (doi:10.1016/j.exger.2019.01.030)

314 30. van de Pol M. 2012 Quantifying individual variation in reaction norms: how study
315 design affects the accuracy, precision and power of random regression models. *Methods in
316 Ecology and Evolution* **3**, 268–280. (doi:<https://doi.org/10.1111/j.2041-210X.2011.00160.x>)

317 31. Seltmann MW, Helle S, Htut W, Lahdenperä M. 2019 Males have more aggressive and
318 less sociable personalities than females in semi-captive Asian elephants. *Sci. Rep.* **9**, 2668.
319 (doi:10.1038/s41598-019-39915-7)

320 32. Williams GC. 1957 Pleiotropy, natural selection, and the evolution of senescence.
321 *Evolution* **11**, 398–411. (doi:10.2307/2406060)

322 33. Lynsdale CL, Mumby HS, Hayward AD, Mar KU, Lummaa V. 2017 Parasite-associated
323 mortality in a long-lived mammal: Variation with host age, sex, and reproduction. *Ecol. Evol.* **7**,
324 10904–10915. (doi:10.1002/ece3.3559)

325

326 34. Chen H, Maklakov AA. 2014 Condition Dependence of Male Mortality Drives the
327 Evolution of Sex Differences in Longevity. *Current Biology* **24**, 2423–2427.
328 (doi:10.1016/j.cub.2014.08.055)

329 35. Gamelon M *et al.* 2014 Do age-specific survival patterns of wild boar fit current
330 evolutionary theories of senescence? *Evolution* **68**, 3636–3643. (doi:10.1111/evo.12519)

331 36. Klemara P, Doubal S. 2006 A new approach to the concept and computation of
332 biological age. *Mech. Ageing Dev.* **127**, 240–248. (doi:10.1016/j.mad.2005.10.004)

333 37. Coulson JC, Fairweather JA. 2001 Reduced reproductive performance prior to death in
334 the Black-legged Kittiwake: senescence or terminal illness? *J. Avian Biol.* **32**, 146–152.
335 (doi:10.1034/j.1600-048X.2001.320207.x)

336 38. Simons MJP, Briga M, Verhulst S. 2016 Stabilizing survival selection on presenescence
337 expression of a sexual ornament followed by a terminal decline. *Journal of Evolutionary
338 Biology* **29**, 1368–1378. (doi:<https://doi.org/10.1111/jeb.12877>)

339

340

341 **Table 1.** Selected models for males and females (bold). Model comparison describing the population body mass (bm) ageing trajectory. Models ranked from the
 342 least to most complex. For each model type, first is presented the model and second its equivalent adding the terminal decline binary factor as a fixed variable
 343 ('+terminal'). Models within 4ΔAICc in italic. AICc: Akaike Information Criteria; ΔAICc: relative AICc to the best model; k: degrees of freedom.

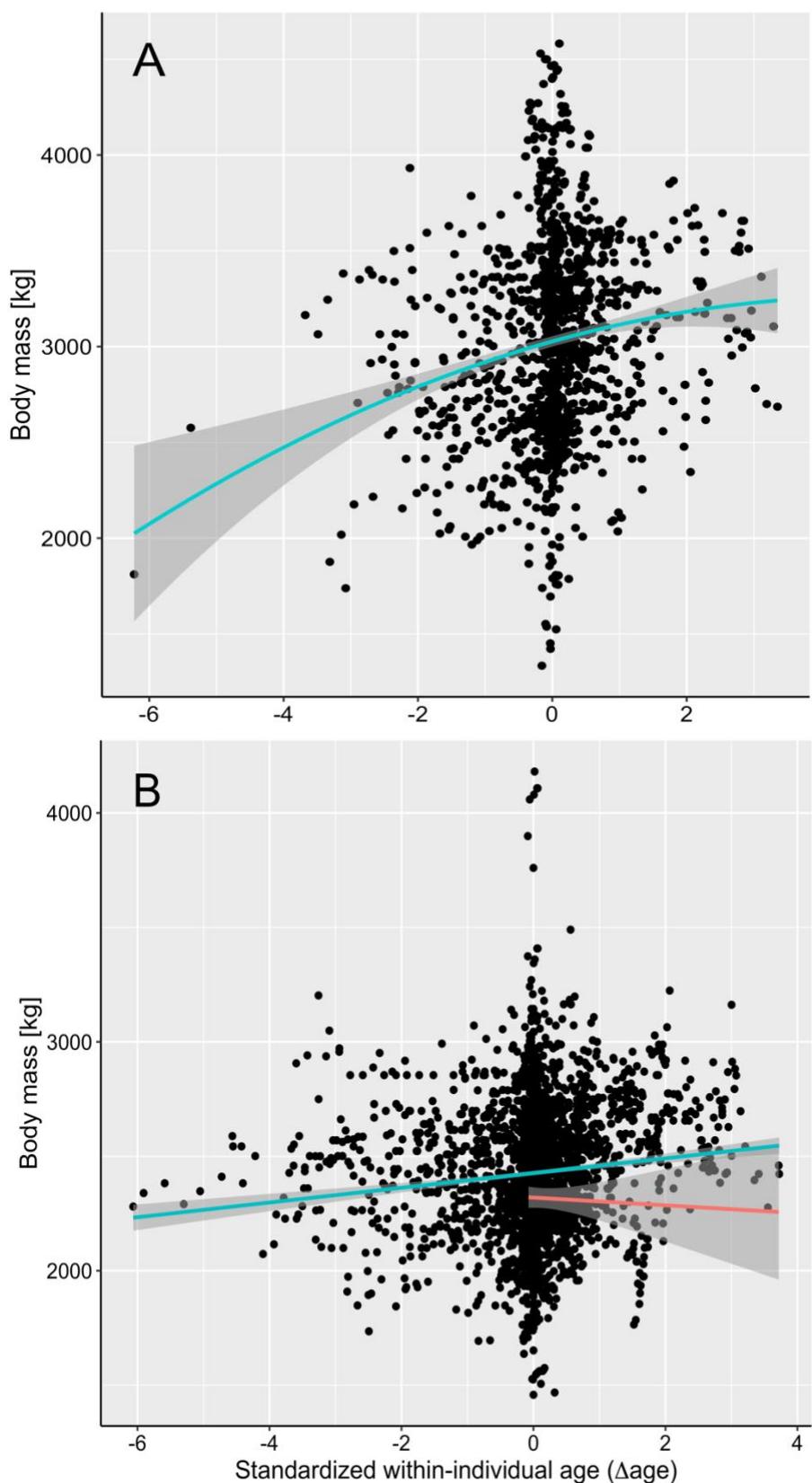
Model type	Model	k	Males		Females	
			AICc	ΔAICc	AICc	ΔAICc
linear	$\log(\text{bm}) \sim \Delta\text{age} + \text{mean age}$	6	-3,174.6	45.61	-5,999.8	22.21
+terminal	$\log(\text{bm}) \sim \text{terminal} + \Delta\text{age} + \text{mean age}$	7	-3,167.5	52.67	-6,010.4	11.58
mean age ²	$\log(\text{bm}) \sim \Delta\text{age} + \text{mean age} + \text{mean age}^2$	7	-3,169.7	50.45	-6,014.6	7.46
+terminal	$\log(\text{bm}) \sim \text{terminal} + \Delta\text{age} + \text{mean age} + \text{mean age}^2$	8	-3,162.7	57.51	-6,022.0	0.00
Δage^2	$\log(\text{bm}) \sim \Delta\text{age} + \Delta\text{age}^2 + \text{mean age}$	7	-3,220.2	0.00	-5,985.1	36.94
+terminal	$\log(\text{bm}) \sim \text{terminal} + \Delta\text{age} + \Delta\text{age}^2 + \text{mean age}$	8	-3,212.9	7.29	-5,995.6	26.39
quadratic	$\log(\text{bm}) \sim \Delta\text{age} + \Delta\text{age}^2 + \text{mean age} + \text{mean age}^2$	8	-3,215.9	4.32	-5,999.9	22.10
+terminal	$\log(\text{bm}) \sim \text{terminal} + \Delta\text{age} + \Delta\text{age}^2 + \text{mean age} + \text{mean age}^2$	9	-3,208.6	11.60	-6,007.3	14.75
threshold	$\log(\text{bm}) \sim \Delta\text{age1} + \Delta\text{age2} + \text{mean age} + \text{mean age}^2$	9	-3,213.4	6.75	-6,012.6	9.44
terminal	$\log(\text{bm}) \sim \text{terminal} + \Delta\text{age1} + \Delta\text{age2} + \text{mean age} + \text{mean age}^2$	10	-3,206.1	14.08	-6,019.2	2.80

345 **Figure Captions**

346

347 **Figure 1.** Body mass ageing trajectories for *a*) males (N=171, n=1,378) and *b*) females (N=322, n=2,695).

348 Prediction of the models selected (table 1) with 95% confidence intervals. Evidence for a terminal


349 decline in females body mass trajectory. The figure shows significantly lighter individuals during their

350 last year of life (red) compared to the rest of life (blue). Δ age: within-individual age; Δ age=0: mean age

351 of males (37.2 years) and females (40.4 years). 1 Δ age = 3.4 and 4.5 years for males and females

352 respectively.

353

354

355

Figure 1