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Abstract 

We report an evaluation of prediction accuracy for eye, hair and skin pigmentation based on 

genomic and phenotypic data for over 6,500 admixed Latin Americans (the CANDELA 

dataset). We examined the impact on prediction accuracy of three main factors: (i) The 

methods of prediction, including classical statistical methods and machine learning 

approaches, (ii) The inclusion of non-genetic predictors, continental genetic ancestry and 

pigmentation SNPs in the prediction models, and (iii) Compared two sets of pigmentation 

SNPs: the commonly-used HIrisPlex-S set (developed in Europeans) and novel SNP sets we 

defined here based on genome-wide association results in the CANDELA sample. We find 

that Random Forest or regression are globally the best performing methods. Although 

continental genetic ancestry has substantial power for prediction of pigmentation in Latin 

Americans, the inclusion of pigmentation SNPs increases prediction accuracy considerably, 

particularly for skin color. For hair and eye color, HIrisPlex-S has a similar performance to 

the CANDELA-specific prediction SNP sets. However, for skin pigmentation the 

performance of HIrisPlex-S is markedly lower than the SNP set defined here, including 

predictions in an independent dataset of Native American data. These results reflect the 

relatively high variation in hair and eye color among Europeans for whom HIrisPlex-S was 

developed, whereas their variation in skin pigmentation is comparatively lower. Furthermore, 

we show that the dataset used in the training of prediction models strongly impacts on the 

portability of these models across Europeans and Native Americans.  

 

Keywords: DNA phenotyping, eye-color, hair-color, skin-color, pigmentation prediction, 

admixture, Latin Americans 
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Introduction 

 There is growing interest in the use of genetic data for the prediction of physical 

appearance, particularly in forensic, historical and paleo-anthropological studies[1–3]. Strong 

impetus for these studies has been provided by Genome Wide Association Studies (GWAS) 

of traits such as pigmentation, which have enabled the identification of single nucleotide 

polymorphisms (SNPs) associated with eye, hair and skin color[4–6]. Early prediction studies 

evaluated the accuracy of predicting eye color from SNP data[7–10] and these analyses have 

been more recently extended to hair [11,12], and skin pigmentation[13]. As a result, sets of 

SNPs have now been proposed for the simultaneous prediction of eye, hair and skin 

color[14,15]. However, so far, these studies have had a strong European bias[7,10,11,14,16]. 

The pigmentation SNPs for prediction have been selected from GWAS performed mainly in 

Northern Europeans[4,5,17] and prediction models also optimized mostly in European 

datasets[17–21]. Furthermore, evaluation of the accuracy of these prediction tools has also 

been performed essentially in European-derived population samples[18–20,22]. 

 Among major continental populations, Europeans show the largest variation in eye 

and hair color, whereas the variation in skin color in Europeans is relatively lower compared 

to other continental regions such as Africa or South Asia[23–28]. The other continental 

regions have narrower variation in eye and hair color, mostly within the brown-black range; 

although fine-scale quantitative measurement still allows us to discern this variability and 

identify genetic variants unique to those populations[27,29–31]. Interestingly, even though 

the underlying biological mechanisms are broadly similar for these different types of 

pigmentations, their genetic architecture is substantially different, as eye and hair 

pigmentation are chiefly controlled by a handful of large-effect variants, whereas skin 

pigmentation is observed to be more polygenic and the impact of any single variant is 

smaller[6,16,24–27]. Consequently, studies assessing the portability of pigmentation 
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prediction systems derived primarily on European cohorts have reported good portability for 

eye and hair phenotypes in other non-European continental populations, where most samples 

were correctly predicted to be in the brown-black category, whereas portability for skin color 

in other continental populations was poorer[23,32,33]; for example, all light-skinned 

Japanese individuals were incorrectly predicted to be of dark skin color[23]. The convergent 

evolution of lighter skin color in different regions of Eurasia, as reported previously in the 

CANDELA cohort[31] and elsewhere[26,34,35], is the likely cause for this discrepancy, and 

highlights the importance of using diverse cohorts for building skin pigmentation prediction 

models. 

Latin Americans represent one of the largest recently admixed populations world-

wide. The history of Latin America has involved extensive admixture, particularly between 

Native Americans, Europeans and sub-Saharan Africans (with respective estimates of 

ancestry share: 38%, 52% and 6%[36]). Consistent with its partly European ancestry, a recent 

GWAS for pigmentation traits in Latin Americans in the CANDELA cohort detected 

phenotypic effects for a number of loci previously identified in Europeans[31]. In addition to 

these, novel pigmentation SNPs with genome-wide significant association were also 

identified in that study. These included SNPs polymorphic only in East Asians and Native 

Americans, consistent with the independent evolution of skin pigmentation in West and East 

Eurasia[26,34,35]. The admixed ancestry of Latin America and the finding in the region of 

pigmentation variants not present in Europeans emphasizes the need to evaluate the accuracy 

of tools currently available for prediction of pigmentation traits in this population.  

 Here we aimed to evaluate the accuracy of prediction of pigmentation traits in Latin 

Americans in the large Latin American dataset (the CANDELA cohort) recently used in 

GWASs of physical appearance, including for hair, eye and skin pigmentation[31,36–41]. We 

focused on comparing the accuracy of prediction methods, the predictors included in models, 
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and the SNP sets used for prediction. We find that Random Forest and regression are 

generally the method with best performance, depending on the predicted trait. We also find 

that the inclusion of pigmentation SNPs increases the accuracy of prediction models 

substantially over that obtained by the inclusion of other predictors. Finally, the HIrisPlex-S 

has a similar performance to a CANDELA-specific set of prediction SNPs except for skin 

pigmentation. 

 

Materials and Methods 

Study sample: phenotypes, genetic data and covariates 

We analyzed data previously studied by the CANDELA consortium for GWAS of 

pigmentation traits[31,36–39]. The consortium gathered genetic and phenotypic data from 

over 6,500 individuals recruited in five Latin American countries: Mexico (N=~1,200), 

Colombia (N=~1,700), Peru(N=~1,230), Chile (N=~1,730) and Brazil (N=~630).  

Pigmentation traits evaluated directly on the research subjects consists of (A) hair 

pigmentation (recorded in four categories: 1-red/reddish, 2-blond, 3-dark blond/light brown 

or 4-brown/black. However, due to their very low frequency (<0.6%), individuals in the 

‘red/reddish’ category were not included here), (B) eye color, recorded as five ordered 

categories: 1-blue/gray, 2-honey, 3-green, 4-light brown, 5-dark brown/black. For increasing 

consistency with previous publications[10,13,42–44], here we recoded these data into just 

three categories: 1-Blue/Gray, 2-Intermediate (honey or green) and 3-Brown/Black (light 

brown or dark brown/black) and (C) a quantitative measure of skin pigmentation from an 

area unexposed to sunlight (the Melanin Index MI, obtained by reflectometry). We also had 

available additional measures of iris pigmentation, extracted from digital photographs, using 

the HCL color space (Hue, Chroma and Luminance). Hue being an angle (recorded in arc 

degree), we linearized this trait with cosine and shifted the angle by 15° in order to maximize 
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the number of samples in the range [0,180°]; hence the trait considered is cos(Hue+15). The 

frequency distribution for these traits in the CANDELA dataset is shown in Supplementary 

Figure S1.  

For comparison with other studies[13,42], we converted the skin MI into a three-level 

categorical trait. For this, we selected CANDELA individuals with 100% European ancestry 

(N=70) and examined their facial photographs in order to label them as very pale or pale. 

Similarly, we selected CANDELA individuals with highest African ancestry (>39%; N=23) 

and examined their photographs in order to label them as dark or very dark. We plotted the 

distribution of the MI for individuals in the very pale, pale, dark and very dark categories and 

identified MI values of 33 and 47 as thresholds for categorical skin color: fair (MI <33; N= 

2,506), intermediate (MI 33-47; N=3,840) and dark (MI>47; N=180) classified as dark (see 

Supplementary figure S2). These thresholds are in line with values obtained in another study 

of admixed Brazilians[45]. 

The genetic data consisted of ~9 million genotypes, ~700k of which were obtained 

experimentally by genotyping Illumina’s Omni Express chip, the remainder obtained by 

imputation as described in Adhikari et al[31]. We applied several filters to the CANDELA 

dataset prior to the trait prediction analyses. Firstly, we retained only individuals aged 18 to 

45. Secondly, we removed 8 pairs of individuals whose pairwise probability of IBD was 

estimated close to 1, to discard potential sample mix-ups (hence, 16 individuals removed), 

and individuals whose estimated African ancestry was more than European and native 

ancestry estimations (23 individuals), as those were considered as genetic outliers and thus 

excluded. Finally, we excluded all individuals with missing data on any of the covariates 

(age, sex, BMI). Note that BMI was considered as a covariate since we found it significantly 

correlated to some pigmentation phenotypes; that correlation is most likely a confounding 

effect of continental genetic ancestry. The final sample size used in the analyses was: 6,495 
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for hair color, 6,526 for MI, 6,529 for categorical eye color and 5,738 for quantitative eye 

color traits – Hue, Chroma and Luminance. These three eye color phenotypes constitute the 

bicone color space model – HCL scale for human perception of eye colors (previously 

explained by Adhikari et al[31]). 

 

Pigmentation SNP sets used for prediction  

We used two sets of SNPs for the prediction analyses of pigmentation traits.  

Firstly, as a benchmark we used HIrisplex-S, a SNP set that has been developing over 

the years for the prediction of eye, hair and skin pigmentation mainly in Europeans[7,11,14] 

HIrisplex-S currently includes 41 SNPs, 22 of which were directly genotyped in the 

CANDELA samples (genotypes for the remaining 19 SNPs being imputed). In our analyses, 

we only retained SNPs with MAF >= 1% in the CANDELA data, reducing the HIrisplex-S 

set used here to 34 SNPs (see Supplementary table S1). 

Secondly, we devised “CANDELA” (CAN) SNP sets for prediction of each 

pigmentation trait (E-eye; H-hair; S-skin) based on results from a GWAS conducted in the 

CANDELA sample[31]. To pre-select SNPs for each trait, we used the following protocol: 

(1) selection of all SNPs with GWAS association p-values <1E-5, (2) grouping (clumping) of 

SNPs in high LD and (3) for each SNP group, selection of the SNP with highest predictive 

power (it is well-known that the most significant marker is not necessarily the best predictive 

marker[46]). In this way we pre-selected 1,471 SNPs relevant for skin pigmentation 

prediction, 207 for hair pigmentation prediction and 701 for eye pigmentation prediction. 

These SNPs were then ranked based on conditional predictive power for each trait, in order to 

search for the set of predictive SNPs with the least SNPs included. Details of the approach 

used are provided in Supplementary method S1, and the resulting CAN-E, CAN-S and CAN-

H sets described in the Results section. 
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Prediction methods and models evaluated 

A broad array of statistical methods have been employed in the literature to predict 

pigmentation traits, such as (multiple) linear[17,47] or (multinomial) logistic 

regression[10,11], decision trees[17,48], neural networks[17,49], and naïve Bayes 

classifiers[33,42,50]. Each method has its advantages and disadvantages, and are better suited 

for certain types of traits, e.g. linear regression for quantitative traits[17,47] and logistic 

regression for categorical traits[10,11]. 

The overall strategy we used for performing pigmentation prediction in the 

CANDELA dataset is shown in Figure 1. Linear Regression (LR) or Multinomial Logistic 

Regression (MLR) were used as the reference methods for quantitative or categorical traits, 

respectively. These two methods were used to evaluate three prediction models, incorporating 

an increasing number of predictors (Fig. 1A): 

1- Using only non-genetic covariates as predictors: 

� ~ ��� � ��	 � 
�� (equation 1) 

2- Incorporating genetic ancestry to model 1:      

� ~ ��� � ��	 � 
�� � 
���������� � �����������  (equation 2) 

Here we included as predictors the estimates of European and African ancestry 

(obtained by unsupervised admixture estimation on genome-wide data). Native 

American ancestry was omitted so as to avoid collinearity (since the three continental 

ancestries sum to 1).  

3- Incorporating pigmentation SNPs to model 2: 

� ~ ��� � ��	 � 
�� � 
���������� � ����������� �  ∑ ���

��
����� , (equation 3) 

where SNPsets refers to SNPs included either in the HIrisPlex-S or CAN sets defined above.  
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For the third (full) model, in addition to regression, the following statistical and 

machine-learning methods were used, in order to evaluate their relative performance for 

prediction: Random Forest (RF), Extreme Gradient Boosting (XGB), Artificial Neural 

Network (ANN), Ordinal regression (OR) and Stepwise regression (SR). We provide more 

details on their implementation in Supplementary method S2. 

Figure 1. Study overview. (A) Models tested, predictors used and prediction methods: 
multinomial regression (MLR), linear regression (LR), ordinal regression (OR), stepwise 
regression (SR), random forests (RF), extreme gradient boosting (XGB) and artificial neural 
network (ANN). (B) 10-fold cross-validation: the full data is randomly split into 10 equally-
sized data sub-groups. For each of the 10 sub-groups, the estimation of model parameters (C) 
or optimization of model hyperparameters (D) was performed on a pool of the nine remaining 
sub-groups. 
 

 

 

Evaluation of prediction accuracy  

To measure prediction accuracy in quantitative traits, we used the coefficient of 

determination (��, the proportion of phenotype variance that is explained by the model, 

measured as 1 � ����� �����⁄ , where �����  and �����  respectively stand for the residual and 
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total sum of squares). For categorical traits, we used a metric denoted “accuracy” that is the 

proportion of correctly classified individuals in confusion matrices. For these traits, we also 

computed the Area Under the ROC Curve (AUC – ranging from 0.5 to 1) as well as the 

expected accuracies from two benchmark strategies (either using the categories’ frequency – 

PropStrat, or always guessing the most frequent category – maxP; see Supplementary Method 

S3) for comparison.  

Accuracy of prediction was evaluated using 10-fold cross validation (10-fold CV) 

(Fig. 1B).  For this, the full dataset is split into 10 approximately equal subsets based on a 

stratified sampling on the trait (so that trait distribution is similar across subsets). Each of the 

1/10th subsets is used as test data for evaluating prediction accuracy of methods trained using 

the other 9/10th of the data. For regression methods (MLR, LR, SR, OR), coefficient 

parameters are estimated in the training data (Fig. 1C). For Machine Learning models, the 

training data is further split into a tuning data (70% of the training data) and validation data 

(30% of the training data). The parameter space for these methods are tuned creating a grid of 

all possible combinations of the hyperparameters and the particular combination producing 

best result on the validation data is selected as the set of optimal combination for the whole 

training data (see Supplementary Method S2). All possible permutations of binding nine folds 

for training produces 10 different train-test data combinations and the hyperparameters are 

tuned based on that subsequently gives rise to 10 prediction accuracy results (Fig. 1D). These 

measures of goodness of fit are used in a boxplot, or the average of them is used as a single 

prediction accuracy metric of the method. This helps us in avoiding inflation in the results 

and the predictions are more robust to small changes in the data.  
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Prediction of MI in Native American individuals of unknown phenotype 

Genotype and geo-localization data for 104 Native American individuals (with an 

estimated >99% Native American ancestry) from 16 Native American populations were 

available from a previous study[40]. We analysed genotypes for these ‘pure’ Native 

American individuals, predicted their MI, and regressed these predicted values on the amount 

of solar radiation at the site of population sampling. We trained two RF models (one with 

CAN-S and one with HIrisPlex-S) using 550 CANDELA individuals with >= 80% native 

ancestry and using sex as the only covariate. Solar radiation levels were defined as insolation 

incident on a horizontal surface (in kWh/m2/day) as reported in the NASA Surface 

meteorology and Solar Energy (SSE) Web site (https://eosweb.larc.nasa.gov/sse/) (data 

previously used in[31]).  

 

Results 

Below we compare the performance of HIrisplex-S with SNP sets devised here for the 

prediction of eye (CAN-E), hair (CAN-H) and skin (CAN-S) from summary statistics of a 

pigmentation GWAS performed in the CANDELA sample (Materials and Methods and 

Supplementary method S1). The sets devised here consist of: 56 (CAN-E), 101 (CAN-H) and 

120 (CAN-S) pigmentation-associated SNPs and are detailed in Supplementary table S2. 

Consistent with the genetic correlation of eye, hair and skin pigmentation, some SNPs are 

shared across the CAN-E/H/S sets, as well as with the HIrisPlex-S set. The overlap between 

these four SNP sets is shown in Figure 2.  
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Figure 2. Overlap between SNP sets used for prediction of pigmentation traits. CAN-E, 
CAN- S and CAN-H refer, respectively, to SNP sets designed here for the prediction of eye, 
skin and hair pigmentation, based on a GWAS performed in the CANDELA sample[31]. 
HIrisPlex-S is a SNP assay developed for simultaneous Eye, Hair and Skin color 
prediction[14]. Numbers refer to SNPs shared between SNP sets. 
 

 
 

 

Prediction Accuracy in relation to models, methods and pigmentation SNP sets 

Figure 3 presents the accuracy of prediction for various phenotypes of eye, hair and 

skin color. For categorical traits, the baseline model (i.e. including only non-genetic 

predictors: age, sex and BMI), reaches 84.9% and 81.7% accuracy (proportion of correctly 

classified individuals) for eye and hair color, respectively. That level of accuracy is actually 

also reached by always guessing the phenotype to be the most frequent category (maxP 

strategy, see Supplementary table S3 and Supplementary Method S2). This high accuracy 

obtained by a deterministic strategy probably relates to the highly skewed trait distribution in 

the CANDELA individuals: ~ 82% having black/dark brown hair and 85% having 

Brown/Black eyes. Alternately, randomly guessing the phenotypes based solely on the 
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frequency of the traits (PropStrat; cyan line in Figure 3) also yields good levels of accuracy 

(~74% and ~69% for categorical eye and hair color, respectively).  

Figure 3. Prediction accuracy in relation to models, methods and pigmentation SNP 
sets. For continuous traits (Hue (transformed), Luminance, Chroma and Melanin Index; top 
and middle panels) we used R2 as measure of prediction accuracy. For categorical traits (Eye 
and Hair color; bottom panels) accuracy is the proportion of correctly classified individuals. 
Magenta and blue lines indicate the accuracy obtained when only non-genetic predictors or 
non-genetic + genomic ancestry are included in regression models, respectively. For 
categorical traits, the performance of a random guessing strategy (PropStrat) was also 
evaluated (cyan line). For these traits, the average accuracy of the deterministic maxP 
strategy is numerically the same as the accuracy obtained when only non-genetic predictors 
are used (magenta line), hence is not shown separately in this figure. For the full prediction 
model (non-genetic predictors + genetic ancestry + pigmentation SNPs) the performance of 
regression and four additional prediction methods was evaluated (bars are colored: green = 
LR/MLR; yellow = SR/OR; brown = RF; pink = XGB; purple = ANN). Detailed numerical 
values are given in Supplementary Table S3. The pigmentation SNP set incorporated in the 
prediction models is indicated at the bottom of the plots.  
 
 

 
 

It is important to keep the maxP strategy in context when assessing prediction 

performance for categorical traits, since it represents how skewed the trait distribution is – a 

binary trait with a frequency distribution of 90% and 10% of the two categories will have 

90% accuracy under the simplest maxP strategy (even though its sensitivity will be 0 for the 
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rare category; see Supplementary Method S2). Thus, a skew in the trait distribution causes an 

upward shift in accuracy of prediction methods, especially those methods which are biased to 

the most frequent category, making them appear better-performing than they actually are. 

The PropStrat strategy is comparatively less biased as it gives proportional weight to the rare 

category (hence non-zero sensitivity for this category), and thus has lower accuracy than the 

maxP strategy. It is therefore a better benchmark to compare the performance of other 

strategies for assessing their gain in accuracy. Conversely, a comparison of those strategies to 

the maxP benchmark better represents their relative change in incorrect classification rather 

than the relative gain in correct classification (i.e. gain in accuracy).  

Although the accuracies of these basic strategies are already high due to our skewed 

trait distributions, adding genetic ancestry to the model has a further impact, especially for 

hair color: it decreases the proportion of error by ~6% (from 18.3% of error to 17.1% - 

detailed numbers in Supplementary table S3). Then the further addition of pigmentation 

SNPs has an even larger effect: the remaining proportion of errors decreases by another 

~16% and ~27% respectively for hair and eye color. It is also noticeable that the gain in 

prediction brought by SNPs relatively to that brought by genetic ancestries is much larger for 

eye color (~14x) than for hair color (~3x).  

For continuous traits, we observe a large increase in prediction accuracy (R2) when 

genetic ancestry is incorporated in regression models, relative to the baseline (including only 

non-genetic predictors). Furthermore, when pigmentation SNP sets are incorporated in the 

regression model, accuracy usually more than doubles over that obtained with genetic 

ancestry plus non-genetic covariates (green bar versus blue line in Figure 3). When using this 

full prediction model, lowest LR prediction accuracy was observed for Chroma (R2 ~0.12) 

and highest for Luminance (R2 ~0.58), two quantitative estimates of eye color variation.  
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Comparing different prediction methods for the full model (i.e. incorporating all 

predictors) we do not observe large differences in performance, with the exception of a 

relatively lower accuracy of regression for Hue and Chroma. For those two traits, RF 

markedly outperforms regression methods, more than doubling the accuracy of LR in the 

case of Chroma. For the two other continuous traits (Luminance and Melanin Index), 

regression models are as effective as machine learning models (Figure 3). We also note that 

those rank similarly throughout categorical and continuous traits: RF is almost always better 

than the other tree-based model (extreme gradient boosting; XGB) and artificial neural 

networks (ANN) always underperform compared to tree-based models. 

Regarding the SNP sets tested, we observe little difference in prediction accuracy 

across traits and methods although the number of SNPs is larger in the sets that we designed 

(56 to 120 SNPs) than in HIrisPlex-S (34 SNPs). Continuous skin pigmentation (Melanin 

Index) stands nonetheless as an exception: for that specific trait, CAN-S consistently 

outperforms HIrisPlex-S (particularly with regression methods). We have further assessed the 

impact of limiting the number of SNPs from the CAN sets to the top 10, 20 or 30 SNPs. A 

reduction in the number of SNPs had little effect for most traits, to the noticeable exception 

of Melanin Index for which considering the top 30 SNPs (i.e. 25% of the CAN-S SNP set) 

yields less than 90% of the prediction R2 achieved with the whole set (see Supplementary 

table S7). Also, we ranked the SNPs by their variable importance (returned by the RF 

models) for each trait (see Supplementary table S4 and figure S3). Three SNPs, from three 

known pigmentation genes (SLC45A2, HERC2 and SLC24A5), are consistently among the 

top ones throughout traits and are common to HIrisPlex-S and the 3 CAN SNP sets.  

 

Prediction accuracy at varying levels of European/Native American ancestry 
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Since a substantial fraction of individuals in the CANDELA sample have minimal 

African ancestry, we sought to evaluate prediction accuracy specifically for varying levels of 

European/Native American ancestry in the CANDELA sample. To this aim, we pooled 

individuals with negligible African ancestry in ~20% ancestry bins (so that the smallest pool 

size included at least 570 individuals) and examined prediction accuracy in the pools (see 

Supplementary table S5). Furthermore, for categorical traits, we ensured that at least two trait 

categories, each with >20 individuals, were observed in the pools, which led to withdraw the 

most Native-American pool. We assessed prediction accuracy using RF, a full model (i.e. 

equation 3 but without genetic ancestry as predictor) including only pigmentation SNPs 

having >1% MAF in the pool of individuals being tested. 

For the categorical traits, there is a drop in prediction accuracy (from ~95% to ~70%) 

at increasing European ancestry (Figure 4). However, as European ancestry increases there is 

greater accuracy relative to random guessing based on trait frequency, probably reflecting the 

trait being less variable at higher Native American ancestry levels. For the quantitative eye 

pigmentation variables (particularly H and L, Figure 4), as the percentage of European 

ancestry increases there is a trend for an increase in trait variation (red line in Figure 4) and 

also in prediction R2. For skin pigmentation (MI) we observe an opposite trend in trait 

variability in relation to ancestry, relative to hair/eye color: variation in MI decreases at 

increasing European ancestry. There is also a trend towards an increase in the performance of 

the CAN-S SNP set at decreasing European ancestry: in individuals with <20% European 

ancestry CAN-S has an accuracy that is nearly twice that observed for HIrisPlex-S. Although 

CAN-S tends to outperform HIrisPlex-S in most comparisons, it is only for MI that such a 

large difference in performance was observed. In summary, across all pigmentation traits we 

observe a gain in prediction accuracy for the Native American/European ancestry bins 
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showing greater phenotypic diversity, with CAN SNPs markedly outperforming HIrisPlex-S 

only for MI in individuals with low (<20%) European ancestry. 

Figure 4. Prediction accuracy for individuals with varying Native American/European 
admixture. Prediction was assessed in individual bins varying ~20% in admixture (bottom 
axis; for eye and hair pigmentation <20 individuals with >80% Native Ancestry were 
available in each trait category, thus preventing estimation of prediction accuracy). Colored 
bars indicate accuracy obtained with Random Forest models using non-genetic + 
pigmentation SNP sets as predictors (R2 being used as prediction measure for quantitative 
traits: Hue, Luminance, Chroma and Melanin index). Blue bars indicate the CAN-E/H/S SNP 
sets. Yellow bars indicate the HIrisPlex-S set. The standard deviation of the quantitative traits 
in each ancestry bin is indicated as a red line. For the categorical traits (Eye and Hair Color), 
accuracy (proportion of correctly classified individuals) is used as the metric for prediction 
measures. Accuracy obtained without genetic predictors using a guessing strategy is indicated 
with a horizontal blue line for Proportional Strategy (random guessing) and magenta line for 
maxP (deterministic guessing). Detailed numerical values are given in Supplementary Table 
S8 and S9. 
 

 

 

Prediction accuracy in CANDELA relative to other population samples 

Several studies have examined accuracy of prediction of the HIrisPlexS SNP set for 

categorical pigmentation traits using an online tool (https://hirisplex.erasmusmc.nl, referred 

to here as HIrisPlexS-Online), which implements MLR prediction models trained in a 

reference dataset (consisting mostly of Europeans)[7,11,14]. Table 1 compares the published 
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estimates with those we obtained here with the CAN and HIrisPlex-S SNP sets using our 

implementation of MLR models trained in the CANDELA data (for skin color, we 

transformed MI into a 3-level categorical variable: fair, intermediate and dark; as described in 

Materials and Methods). For a more accurate comparison to HIrisPlexS-Online, these models 

were trained using SNPs only, without basic covariates or ancestry. 

Prediction accuracy estimates for eye color have been reported for HIrisPlex-S-Online 

in a Latin American sample (99 individuals from Venezuela and Brazil) and in a European 

sample[10,14,15]. The light (blue/gray) and dark (Brown/Black) color categories have similar 

prediction accuracies across studies (~90-93%), except for the prediction of light eye color 

reported for HIrisPlex-S-Online in the Venezuelan/Brazilian sample, where accuracy is much 

lower (85%). The main difference in eye-color prediction across studies lies in the 

intermediate category. No intermediate eye colors were predicted by HIrisPlex-S-Online in 

the Venezuelan/Brazilian sample. Our predictions in the CANDELA sample have markedly 

higher accuracy than reported for HIrisPlex-S-Online in Europeans, both when the prediction 

model was trained in the CANDELA data or in the reference HIrisPlex-S data (respectively 

89% and 85%, versus 73% in Europeans). Prediction accuracy, in the CANDELA sample, of 

the CAN-S and HIrisPlex-S SNP sets was identical.  

Estimates for hair color prediction accuracy using HIrisPlex-S-Online have been 

reported for a European sample[44]. Prediction accuracy estimates obtained here for the 

CANDELA sample are higher than reported in Europeans for all hair colors, except in the 

case of intermediate hair-color (i.e. brown) predicted with HIrisPlex-S-Online. The highest 

hair-color prediction accuracy was consistently obtained with the CAN-H SNP set, although 

the difference relative to the HIrisPlex-S, with models trained in the CANDELA data, is 

small.  
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Concerning categorical skin color, we observe that predictions from HIrisPlex-S-

Online have markedly lower accuracy in the CANDELA sample than reported for a world-

wide sample. Model training in the CANDELA dataset increases prediction accuracy 

substantially both for HIrisPlex-S and CAN-S, although the accuracy values obtained are still 

below the published estimates for HIrisPlex-S. As for hair color, the CAN-S SNP set 

consistently outperforms HIrisPlex-S, but only marginally. 

 

Portability of models for pigmentation prediction in individuals with high Native 

Ancestry 

Considering the impact of training datasets in the performance of HIrisPlex-S (Table 

1), we specifically examined the portability of RF models developed in two training datasets 

with extreme differences in ancestry (extracted from the CANDELA sample – see 

Supplementary figure S4): (i) a highly European training dataset (European ancestry >= 80% 

and Native American ancestry < 20%) and (ii) a highly Native training dataset (European 

ancestry < 20% and Native American ancestry >= 80%). We examined the performance of 

the resulting prediction models in a subset of the highly Native test dataset (Figure 5) in a 

cross-validation scheme. We observe that models developed in the highly Native training 

dataset have a better performance than those developed in the highly European training 

dataset for Chrome, Luminance and MI. The most striking difference in performance is seen 

for MI, where the model trained with highly Native data has a prediction accuracy ~6 times 

that of the model trained in highly European data (Figure 5). Hue is the only trait for which 

the model trained in the highly European dataset outperforms the model trained in the highly 

Native dataset, but prediction accuracy in this case is extremely low (<2%). 
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Figure 5. Portability of prediction models trained in highly European/Native American 
cohorts. For each continuous trait (cos(H+15), C, L and Melanin Index) we compare 
prediction accuracy on the same test data (a highly Native ancestry cohort). The prediction 
models were trained either on a highly Native (Blue) or highly European (Pink) cohort 
established from the CANDELA sample. For testing, we created equally-sized 4-folds for 
each pool of individuals. We built the RF models using three of the folds and evaluated 
prediction accuracy in the left-out fold from the Native ancestry cohort (see Supplementary 
figure S4). 
 

 

Prediction of skin pigmentation in Native Americans 

 We examined prediction performance of the CAN-S and HIrisPlex-S sets in a highly 

Native dataset independent of CANDELA by predicting MI in 117 individuals from 17 

Native American populations[40]. As above, we trained RF prediction models using 
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CANDELA individuals with >= 80% native ancestry. Since performance could not be 

measured directly in this dataset (due to the lack of phenotypic data), we examined the 

correlation of predicted skin pigmentation (MI) with solar radiation levels at the site of 

population sampling (Figure 6). Previous surveys of skin pigmentation in native populations 

from across the world have found a correlation between skin pigmentation and solar 

radiation[51], an observation that has been interpreted as the result of selection throughout 

human evolution. In the Native Americans examined here we obtained correlations of 0.543 

(p-value 2 x 10-9) and 0.163 (p-value 0.1) with the CAN-S and HIrisPlex-S SNP sets, 

respectively (Figure 6). 

Figure 6. Solar radiation levels and skin pigmentation (MI) predicted with CAN-S and 
HIrisplex-S SNP sets. (a) Annual average of insolation incident on a horizontal surface 
(kWh/m^2/day - data from NASA Surface meteorology and Solar Energy, 2008) and location 
of the Native American population sampled. The predicted MI and solar radiation levels at 
the sampling site for 104 individuals from 16 Native American populations is shown in (b) 
CAN-S and (c) HIrisPlex-S.  
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Discussion 

Our results agree with previous studies in finding that regression and RF generally 

outperform other prediction methods (MLR being the approach implemented in HIrisPlex-S-

Online). Owing to their tree-based structures, RF and XGB implicitly model the underlying 

genetic interaction across SNPs, and studies have noted the presence of epistasis (SNP-SNP 

interactions) between major pigmentation SNPs to some degree for various pigmentation 

traits, suggesting that prediction accuracy can be further increased by specifically allowing 

for interaction between SNPs[23,24,52]. Since tree-based models implicitly model epistasis 

including complex higher-order interactions, the difference of their prediction accuracy to 

additive linear/logistic models may also shed light on the genetic architecture of the traits. It 

is tempting to hypothesize that SNP interactions may have a more substantial impact on the 

genetic architecture of Hue and Chroma phenotypes[31,53], especially considering that these 

traits are relatively more non-linear in nature (e.g. Hue is an angle, i.e. a circular trait)[52]. 

Furthermore, the differences in prediction accuracy are much larger from linear to tree-based 

models (up to +0.19 gain in R2 – see Supplementary table S3) than they are from HIrisPlex-S 

to CAN-E (up to +0.014 gain in R2) whereas these two SNP sets only have 5 SNPs in 

common. We might therefore expect that such relevant interactions would be limited to a 

handful of SNPs, consistent with the literature which primarily observed interactions between 

major pigmentation SNPs[23,24,31]. Conversely, we may expect a greater additive 

polygenicity[23,25] in the case of skin pigmentation. Linear models overperform tree-based 

models for that trait (Figure 3) and the number of SNPs in the model has an impact on the 

prediction accuracy, as suggests the +0.07 gain in R2 from HIrisPlex-S (34 SNPs) to CAN-S 

(120 SNPs). In line with these observations, we also noted that prediction accuracies are 

relatively lower for Melanin Index than for other continuous traits when constraining the 

number of SNPs in the model (see Supplementary table S6 and S7). 
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Previous studies[31,36,54,55] have shown that genetic ancestry correlates with 

pigmentation, probably resulting from the variable allele frequency across continents of 

certain pigmentation-related alleles. Consistent with this, we observe that continental genetic 

ancestry has significant predictive power (Figure 3, Supplementary table S3) and that the 

SNPs retained for prediction rank among the most correlated to continental ancestry 

components (see Supplementary table S2). Inclusion in the prediction models of 

pigmentation SNP sets selected from the GWAS further increases predictive power, 

markedly for quantitative pigmentation traits. Candidate SNPs on an average add twice the 

prediction accuracy of that brought in by the genetic ancestry for the quantitative traits. For 

the categorical traits, the difference is smaller but comparatively candidate SNPs decreases 

the proportion of incorrect classification by a larger amount than does continental genetic 

ancestry, especially for eye color. 

The difference in predictive power for categorical traits is partly the result of their 

intrinsic lower informativeness relative to quantitative traits. This is particularly so for hair 

and eye color, as the CANDELA sample has a highly skewed phenotypic distribution for 

these traits: 82% of individuals in the CANDELA sample are assigned to the darkest category 

for eye and 85% for hair color. This skewed phenotypic distribution is consistent with the 

fact that world-wide lightly pigmented eyes and hair are essentially Western Eurasian traits, 

while there is considerable variation in skin pigmentation outside Europe[23–28]. That is, the 

occurrence of lightly pigmented hair and eyes in the CANDELA sample is essentially a 

reflection of its partly European ancestry. This may explain why the HIrisPlex-S SNP set 

built primarily in Europeans performs equally well to the CAN SNP set built on our more 

diverse admixed samples, and matches what has been observed in the literature for predicting 

eye and hair color in non-European populations[23,32,33].  
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By contrast, prediction of skin pigmentation is influenced by the genetic architecture 

of this trait in all three populations contributing to admixture in Latin America (Native 

Americans, Europeans and Africans). Consistent with this, our analysis along a Native 

American-European ancestry gradient show the highest gain in prediction accuracy for the 

ancestry bins with the greatest phenotypic diversity: that is, the highest European bin for 

eye/hair color and the highest Native American bin for skin color. In the bin with lowest 

European ancestry, there is hardly any gain in prediction accuracy for eye/hair color over the 

deterministic maxP strategy, as almost all individuals in that bin are in the highly pigmented 

category. On the other hand, this bin has the highest variation in skin pigmentation, also 

shows the greatest accuracy for the CAN-S, and this SNP set strongly outperforms HIrisPlex-

S prediction for this ancestry bin (Figure 4) – all these facts together emphasize that skin 

color prediction in admixed Latin Americans is substantially influenced by the genetic 

architecture of this trait in non-European populations. Our observation of a stronger 

correlation of predicted skin with solar radiation levels in pigmentation in Native Americans 

for the CAN-S set, relative to HIrisPlex-S is also consistent with this, and with literature 

reporting comparatively poor portability of European-based pigmentation prediction models 

on non-European populations[23,32,33].  

Although quantitative traits are intrinsically more informative than categorical ones, 

anthropological and forensic applications of pigmentation prediction are usually interested in 

a few discrete categories, often just two (e.g. blue v. non-blue eyes) or three (light, 

intermediate or dark color). In that setting we find that for the CANDELA dataset there is 

little difference in the prediction performance of HIrisPlex-S (which, in addition, was 

shrunken from 41 SNPs to 34 polymorphic SNPs in our dataset), relative to the CAN SNP 

sets developed here. However, we observe a strong impact of the training dataset used for 

optimizing the prediction methods, both in the extreme scenario explored in Figure 5, and 
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when comparing the prediction accuracies we obtained here with those published previously 

(Table 1). These observations question the portability across human populations of models 

developed using a training dataset with a different genetic makeup. This is most sharply 

illustrated by the difference in performance between the online implementation of HIrisPlex-

S and the results we obtained when training models with this SNP set in the CANDELA data, 

particularly for skin pigmentation categories (Table 1). These observations thus caution 

against the use of the online implementation of HIrisPlex-S for the prediction of pigmentation 

traits in non-Europeans.  
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Tables 
 
Table 1. Overall Accuracy (%) and trait AUC (%) for categorical eye (A), hair (B) and 
skin (C) color obtained here and in other studies (% frequency of trait in sample is 
shown in parentheses). 
 
(A) 

Sample 
CANDELA 

N=6,529 
Venezuela/Brazilb 

N = 99 
Europeansd 

N=2,364 
SNP set  CAN-Ea HIrisPlex-S HIrisPlexS-Online 

Overall Accuracy  89 89 87    83 

1. Blue/gray (3) 93 93  93 (12) 85 (68) 91 

2. Intermediate (13) 89  89  85  (23) NA (10) 73 

3. Brown/black  (85) 92 92  90  (64) 91 (23) 93 

 
 
 (B) 

Sample 
CANDELA 

N=6,495 
Europeansc 

N = 385 
SNP set  CAN-H HIrisPlex-S HIrisPlexS-Online 

Overall Accuracy   85 84 56  71 
1.Red (0) NA NA NA (25) 90 
2. Blond (3) 94 92 90 (54) 75 
3. Brown (16) 82 81 65 (9) 72 
4. Black (82) 87 85 80 (12) 78 

 
(C) 
 

Sample 
CANDELA 

N=6,526 
World-wide 
N=1,159e 

SNP set  CAN-S HIrisPlex-S HIrisPlex-S-Online 

Overall Accuracy    73 72 26  87 

1. Fair (38) 83 81 78 (92) 97 

2. Intermediate (59) 77 77 32 (3) 83 

3. Dark  (3) 86 84 81 (5) 96 

 
 
HIrisPlexS-Online: https://hirisplex.erasmusmc.nl 
 
a Obtained using a model with only SNPs as predictors (no covariates) and with MLR as prediction method. 

b Obtained using HIrisPlex as described in  Freire-Aradas et al. 2014[43]. 

c Obtained using HIrisPlex-S as described in Branicki et al 2011[44], here accuracy is calculated from a 4-way 

classification setup. 

d Obtained from the specificity reported in Liu et al 2009[10]  

e This prediction values reported in Walsh et al 2017[13] were obtained from the prediction of the 194 samples 

from Maronas et al 2014[42] 
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