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Abstract

We report an evaluation of prediction accuracy for eye, hair and skin pigmentation based on
genomic and phenotypic data for over 6,500 admixed Latin Americans (the CANDELA
dataset). We examined the impact on prediction accuracy of three main factors: (i) The
methods of prediction, including classical statistical methods and machine learning
approaches, (ii) The inclusion of non-genetic predictors, continental genetic ancestry and
pigmentation SNPsin the prediction models, and (iii) Compared two sets of pigmentation
SNPs: the commonly-used HIrisPlex-S set (developed in Europeans) and novel SNP sets we
defined here based on genome-wide association resultsin the CANDELA sample. We find
that Random Forest or regression are globally the best performing methods. Although
continental genetic ancestry has substantial power for prediction of pigmentation in Latin
Americans, the inclusion of pigmentation SNPs increases prediction accuracy considerably,
particularly for skin color. For hair and eye color, HlrisPlex-S has a similar performance to
the CANDELA-specific prediction SNP sets. However, for skin pigmentation the
performance of HIrisPlex-Sis markedly lower than the SNP set defined here, including
predictions in an independent dataset of Native American data. These results reflect the
relatively high variation in hair and eye color among Europeans for whom HIrisPlex-S was
developed, whereas their variation in skin pigmentation is comparatively lower. Furthermore,
we show that the dataset used in the training of prediction models strongly impacts on the

portability of these models across Europeans and Native Americans.

Keywords: DNA phenotyping, eye-color, hair-color, skin-color, pigmentation prediction,

admixture, Latin Americans
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Introduction

There is growing interest in the use of genetic data for the prediction of physical
appearance, particularly in forensic, historical and paleo-anthropological studies[1-3]. Strong
impetus for these studies has been provided by Genome Wide Association Studies (GWAYS)
of traits such as pigmentation, which have enabled the identification of single nucleotide
polymorphisms (SNPs) associated with eye, hair and skin color[4—6]. Early prediction studies
evaluated the accuracy of predicting eye color from SNP data] 7-10] and these analyses have
been more recently extended to hair [11,12], and skin pigmentation[13]. As aresult, sets of
SNPs have now been proposed for the simultaneous prediction of eye, hair and skin
color[14,15]. However, so far, these studies have had a strong European bias[7,10,11,14,16].
The pigmentation SNPs for prediction have been selected from GWAS performed mainly in
Northern Europeans[4,5,17] and prediction models also optimized mostly in European
datasets[17-21]. Furthermore, evaluation of the accuracy of these prediction tools has also
been performed essentialy in European-derived population samples[18-20,22].

Among major continental populations, Europeans show the largest variation in eye
and hair color, whereas the variation in skin color in Europeansis relatively lower compared
to other continental regions such as Africaor South Asia[23-28]. The other continental
regions have narrower variation in eye and hair color, mostly within the brown-black range;
although fine-scale quantitative measurement still allows us to discern this variability and
identify genetic variants unique to those populations[27,29-31]. Interestingly, even though
the underlying biological mechanisms are broadly similar for these different types of
pigmentations, their genetic architecture is substantially different, as eye and hair
pigmentation are chiefly controlled by a handful of large-effect variants, whereas skin
pigmentation is observed to be more polygenic and the impact of any single variant is

smaller[6,16,24—27]. Consequently, studies assessing the portability of pigmentation
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prediction systems derived primarily on European cohorts have reported good portability for
eye and hair phenotypes in other non-European continental populations, where most samples
were correctly predicted to be in the brown-black category, whereas portability for skin color
in other continental populations was poorer[23,32,33]; for example, all light-skinned
Japanese individuals were incorrectly predicted to be of dark skin color[23]. The convergent
evolution of lighter skin color in different regions of Eurasia, as reported previously in the
CANDELA cohort[31] and elsewhere] 26,34,35], is the likely cause for this discrepancy, and
highlights the importance of using diverse cohorts for building skin pigmentation prediction
models.

Latin Americans represent one of the largest recently admixed populations world-
wide. The history of Latin America has involved extensive admixture, particularly between
Native Americans, Europeans and sub-Saharan Africans (with respective estimates of
ancestry share: 38%, 52% and 6%[36]). Consistent with its partly European ancestry, a recent
GWAS for pigmentation traitsin Latin Americans in the CANDELA cohort detected
phenotypic effects for a number of loci previously identified in Europeans[31]. In addition to
these, novel pigmentation SNPs with genome-wide significant association were also
identified in that study. These included SNPs polymorphic only in East Asians and Native
Americans, consistent with the independent evolution of skin pigmentation in West and East
Eurasia[26,34,35]. The admixed ancestry of Latin America and the finding in the region of
pigmentation variants not present in Europeans emphasi zes the need to evaluate the accuracy
of tools currently available for prediction of pigmentation traits in this population.

Here we aimed to evaluate the accuracy of prediction of pigmentation traitsin Latin
Americans in the large Latin American dataset (the CANDELA cohort) recently used in
GWASs of physical appearance, including for hair, eye and skin pigmentation[31,36-41]. We

focused on comparing the accuracy of prediction methods, the predictors included in models,
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and the SNIP sets used for prediction. We find that Random Forest and regression are
generally the method with best performance, depending on the predicted trait. We a'so find
that the inclusion of pigmentation SNPs increases the accuracy of prediction models
substantially over that obtained by the inclusion of other predictors. Finally, the HirisPlex-S
has asimilar performance to a CANDELA-specific set of prediction SNPs except for skin

pigmentation.

Materials and Methods
Study sample: phenotypes, genetic data and covariates
We analyzed data previously studied by the CANDELA consortium for GWAS of
pigmentation traits[31,36-39]. The consortium gathered genetic and phenotypic data from
over 6,500 individuals recruited in five Latin American countries: Mexico (N=~1,200),
Colombia (N=~1,700), Peru(N=~1,230), Chile (N=~1,730) and Brazil (N=~630).
Pigmentation traits evaluated directly on the research subjects consists of (A) hair
pigmentation (recorded in four categories: 1-red/reddish, 2-blond, 3-dark blond/light brown
or 4-brown/black. However, due to their very low frequency (<0.6%), individualsin the
‘red/reddish’ category were not included here), (B) eye color, recorded as five ordered
categories: 1-blue/gray, 2-honey, 3-green, 4-light brown, 5-dark brown/black. For increasing
consistency with previous publications[10,13,42—44], here we recoded these data into just
three categories: 1-Blue/Gray, 2-Intermediate (honey or green) and 3-Brown/Black (light
brown or dark brown/black) and (C) a quantitative measure of skin pigmentation from an
area unexposed to sunlight (the Melanin Index M, obtained by reflectometry). We also had
available additional measures of iris pigmentation, extracted from digital photographs, using
the HCL color space (Hue, Chroma and Luminance). Hue being an angle (recorded in arc

degree), we linearized this trait with cosine and shifted the angle by 15° in order to maximize
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the number of samplesin the range [0,180°]; hence the trait considered is cos(Huet+15). The
frequency distribution for these traits in the CANDELA dataset is shown in Supplementary
Figure S1.

For comparison with other studies[13,42], we converted the skin M1 into athree-level
categorical trait. For this, we selected CANDELA individuals with 100% European ancestry
(N=70) and examined their facial photographs in order to label them as very pale or pale.
Similarly, we selected CANDELA individuals with highest African ancestry (>39%; N=23)
and examined their photographs in order to label them as dark or very dark. We plotted the
distribution of the M1 for individualsin the very pale, pale, dark and very dark categories and
identified M1 values of 33 and 47 as thresholds for categorical skin color: fair (MI <33; N=
2,506), intermediate (M1 33-47; N=3,840) and dark (M1>47; N=180) classified as dark (see
Supplementary figure S2). These thresholds are in line with values obtained in another study
of admixed Brazilians[45].

The genetic data consisted of ~9 million genotypes, ~700k of which were obtained
experimentally by genotyping Illumina’ s Omni Express chip, the remainder obtained by
imputation as described in Adhikari et al[31]. We applied several filtersto the CANDELA
dataset prior to the trait prediction anayses. Firstly, we retained only individuals aged 18 to
45. Secondly, we removed 8 pairs of individuals whose pairwise probability of IBD was
estimated close to 1, to discard potential sample mix-ups (hence, 16 individuals removed),
and individuals whose estimated African ancestry was more than European and native
ancestry estimations (23 individuals), as those were considered as genetic outliers and thus
excluded. Finally, we excluded all individuals with missing data on any of the covariates
(age, sex, BMI). Note that BM| was considered as a covariate since we found it significantly
correlated to some pigmentation phenotypes; that correlation is most likely a confounding

effect of continental genetic ancestry. The final sample size used in the analyses was: 6,495
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for hair color, 6,526 for MI, 6,529 for categorical eye color and 5,738 for quantitative eye
color traits — Hue, Chroma and Luminance. These three eye color phenotypes constitute the
bicone color space model — HCL scale for human perception of eye colors (previously

explained by Adhikari et al[31]).

Pigmentation SNP sets used for prediction

We used two sets of SNPs for the prediction analyses of pigmentation traits.

Firstly, as abenchmark we used Hirisplex-S, a SNP set that has been developing over
the years for the prediction of eye, hair and skin pigmentation mainly in Europeans]7,11,14]
HIrisplex-S currently includes 41 SNPs, 22 of which were directly genotyped in the
CANDELA samples (genotypes for the remaining 19 SNPs being imputed). In our analyses,
we only retained SNPs with MAF >= 1% in the CANDELA data, reducing the HIrisplex-S
set used here to 34 SNPs (see Supplementary table S1).

Secondly, we devised “CANDELA” (CAN) SNP setsfor prediction of each
pigmentation trait (E-eye; H-hair; S-skin) based on results from a GWAS conducted in the
CANDELA sample[31]. To pre-select SNPs for each trait, we used the following protocol:
(2) selection of all SNPswith GWAS association p-values <1E-5, (2) grouping (clumping) of
SNPsin high LD and (3) for each SNP group, selection of the SNP with highest predictive
power (it is well-known that the most significant marker is not necessarily the best predictive
marker[46]). In this way we pre-selected 1,471 SNPs relevant for skin pigmentation
prediction, 207 for hair pigmentation prediction and 701 for eye pigmentation prediction.
These SNPs were then ranked based on conditional predictive power for each trait, in order to
search for the set of predictive SNPs with the least SNPs included. Details of the approach
used are provided in Supplementary method S1, and the resulting CAN-E, CAN-S and CAN-

H sets described in the Results section.
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Prediction methods and models evaluated

A broad array of statistical methods have been employed in the literature to predict
pigmentation traits, such as (multiple) linear[17,47] or (multinomial) logistic
regression[10,11], decision trees[17,48], neural networks[17,49], and naive Bayes
classifiers[33,42,50]. Each method has its advantages and disadvantages, and are better suited
for certain types of traits, e.g. linear regression for quantitative traits[17,47] and logistic
regression for categorical traits[10,11].

The overall strategy we used for performing pigmentation prediction in the
CANDELA dataset is shown in Figure 1. Linear Regression (LR) or Multinomial Logistic
Regression (MLR) were used as the reference methods for quantitative or categorical traits,
respectively. These two methods were used to evaluate three prediction models, incorporating
an increasing number of predictors (Fig. 1A):

1- Using only non-genetic covariates as predictors:
y~ Age + Sex + BMI (equation 1)
2- Incorporating genetic ancestry to model 1:
y~ Age + Sex + BMI + EURypcestry + AFRgncestry (equation 2)

Here we included as predictors the estimates of European and African ancestry

(obtained by unsupervised admixture estimation on genome-wide data). Native

American ancestry was omitted so as to avoid collinearity (since the three continental

ancestriessumto 1).

3- Incorporating pigmentation SNPs to model 2:
y ~Age + Sex + BMI + EUR gpcestry + AFRgncestry + 2 jesnpsers SNP;, (€quation 3)

where SNPsets refers to SNPs included either in the HirisPlex-S or CAN sets defined above.
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For the third (full) model, in addition to regression, the following statistical and

machine-learning methods were used, in order to evaluate their relative performance for

prediction: Random Forest (RF), Extreme Gradient Boosting (XGB), Artificial Neural

Network (ANN), Ordinal regression (OR) and Stepwise regression (SR). We provide more

details on their implementation in Supplementary method S2.

Figure 1. Study overview. (A) Models tested, predictors used and prediction methods:
multinomial regression (MLR), linear regression (LR), ordinal regression (OR), stepwise
regression (SR), random forests (RF), extreme gradient boosting (XGB) and artificial neural
network (ANN). (B) 10-fold cross-validation: the full datais randomly split into 10 equally-
sized data sub-groups. For each of the 10 sub-groups, the estimation of model parameters (C)
or optimization of model hyperparameters (D) was performed on apool of the nine remaining

sub-groups.
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Evaluation of prediction accuracy

To measure prediction accuracy in quantitative traits, we used the coefficient of

determination (R?, the proportion of phenotype variance that is explained by the model,

measured as1 — S5, /5S¢, Where SS,..; and SS,,,; respectively stand for the residual and
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total sum of squares). For categorical traits, we used a metric denoted “accuracy” that isthe
proportion of correctly classified individuals in confusion matrices. For these traits, we also
computed the Area Under the ROC Curve (AUC —ranging from 0.5 to 1) as well as the
expected accuracies from two benchmark strategies (either using the categories' frequency —
PropStrat, or always guessing the most frequent category — maxP; see Supplementary M ethod
S3) for comparison.

Accuracy of prediction was evaluated using 10-fold cross validation (10-fold CV)
(Fig. 1B). For this, the full dataset is split into 10 approximately equal subsets based on a
stratified sampling on the trait (so that trait distribution is similar across subsets). Each of the
1/10™ subsets is used as test data for evaluating prediction accuracy of methods trained using
the other 9/10" of the data. For regression methods (MLR, LR, SR, OR), coefficient
parameters are estimated in the training data (Fig. 1C). For Machine Learning models, the
training datais further split into atuning data (70% of the training data) and validation data
(30% of the training data). The parameter space for these methods are tuned creating a grid of
all possible combinations of the hyperparameters and the particular combination producing
best result on the validation data is selected as the set of optimal combination for the whole
training data (see Supplementary Method S2). All possible permutations of binding nine folds
for training produces 10 different train-test data combinations and the hyperparameters are
tuned based on that subsequently gives rise to 10 prediction accuracy results (Fig. 1D). These
measures of goodness of fit are used in a boxplot, or the average of them isused as asingle
prediction accuracy metric of the method. This helps usin avoiding inflation in the results

and the predictions are more robust to small changes in the data.
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Prediction of MI in Native American individuals of unknown phenotype

Genotype and geo-localization data for 104 Native American individuals (with an
estimated >99% Native American ancestry) from 16 Native American populations were
available from a previous study[40]. We analysed genotypes for these ‘pure’ Native
American individuals, predicted their M1, and regressed these predicted values on the amount
of solar radiation at the site of population sampling. We trained two RF models (one with
CAN-S and one with HIrisPlex-S) using 550 CANDELA individuals with >= 80% native
ancestry and using sex as the only covariate. Solar radiation levels were defined as insolation
incident on a horizontal surface (in kWh/m?day) as reported in the NASA Surface
meteorology and Solar Energy (SSE) Web site (https://eosweb.larc.nasa.gov/sse/) (data

previously used in[31]).

Results

Below we compare the performance of Hirisplex-S with SNP sets devised here for the
prediction of eye (CAN-E), hair (CAN-H) and skin (CAN-S) from summary statistics of a
pigmentation GWAS performed in the CANDELA sample (Materials and Methods and
Supplementary method S1). The sets devised here consist of: 56 (CAN-E), 101 (CAN-H) and
120 (CAN-S) pigmentation-associated SNPs and are detailed in Supplementary table S2.
Consistent with the genetic correlation of eye, hair and skin pigmentation, some SNPs are
shared across the CAN-E/H/S sets, as well as with the HIrisPlex-S set. The overlap between

these four SNP sets is shown in Figure 2.
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Figure 2. Overlap between SNP setsused for prediction of pigmentation traits. CAN-E,
CAN- Sand CAN-H refer, respectively, to SNP sets designed here for the prediction of eye,
skin and hair pigmentation, based on a GWAS performed in the CANDELA sample[31].
HlrisPlex-Sis a SNP assay developed for simultaneous Eye, Hair and Skin color
prediction[14]. Numbers refer to SNPs shared between SNP sets.

CAN-E ‘

CAN-S

112

Prediction Accuracy in relation to models, methods and pigmentation SNP sets

Figure 3 presents the accuracy of prediction for various phenotypes of eye, hair and
skin color. For categorical traits, the baseline model (i.e. including only non-genetic
predictors: age, sex and BMI), reaches 84.9% and 81.7% accuracy (proportion of correctly
classified individuals) for eye and hair color, respectively. That level of accuracy is actually
also reached by always guessing the phenotype to be the most frequent category (maxP
strategy, see Supplementary table S3 and Supplementary Method S2). This high accuracy
obtained by adeterministic strategy probably relates to the highly skewed trait distribution in
the CANDELA individuals: ~ 82% having black/dark brown hair and 85% having

Brown/Black eyes. Alternately, randomly guessing the phenotypes based solely on the
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frequency of the traits (PropStrat; cyan line in Figure 3) also yields good levels of accuracy
(~74% and ~69% for categorical eye and hair color, respectively).

Figure 3. Prediction accuracy in relation to models, methods and pigmentation SNP
sets. For continuous traits (Hue (transformed), Luminance, Chromaand Melanin Index; top
and middle panels) we used R? as measure of prediction accuracy. For categorical traits (Eye
and Hair color; bottom panels) accuracy is the proportion of correctly classified individuals.
Magenta and blue lines indicate the accuracy obtained when only non-genetic predictors or
non-genetic + genomic ancestry are included in regression models, respectively. For
categorical traits, the performance of arandom guessing strategy (PropStrat) was also
evaluated (cyan line). For these traits, the average accuracy of the deterministic maxP
strategy is numerically the same as the accuracy obtained when only non-genetic predictors
are used (magentaline), hence is not shown separately in this figure. For the full prediction
model (non-genetic predictors + genetic ancestry + pigmentation SNPs) the performance of
regression and four additional prediction methods was evaluated (bars are colored: green =
LR/MLR; yellow = SR/OR; brown = RF; pink = XGB; purple = ANN). Detailed numerical
values are given in Supplementary Table S3. The pigmentation SNP set incorporated in the
prediction modelsis indicated at the bottom of the plots.
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It isimportant to keep the maxP strategy in context when assessing prediction
performance for categorical traits, sinceit represents how skewed the trait distribution is—a
binary trait with afrequency distribution of 90% and 10% of the two categories will have

90% accuracy under the simplest maxP strategy (even though its sensitivity will be O for the
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rare category; see Supplementary Method S2). Thus, askew in the trait distribution causes an
upward shift in accuracy of prediction methods, especially those methods which are biased to
the most frequent category, making them appear better-performing than they actually are.
The PropStrat strategy is comparatively less biased asit gives proportional weight to the rare
category (hence non-zero sensitivity for this category), and thus has lower accuracy than the
maxP strategy. It is therefore a better benchmark to compare the performance of other
strategies for assessing their gain in accuracy. Conversely, a comparison of those strategies to
the maxP benchmark better represents their relative change in incorrect classification rather
than the relative gain in correct classification (i.e. gain in accuracy).

Although the accuracies of these basic strategies are already high due to our skewed
trait distributions, adding genetic ancestry to the model has a further impact, especially for
hair color: it decreases the proportion of error by ~6% (from 18.3% of error t0 17.1% -
detailed numbers in Supplementary table S3). Then the further addition of pigmentation
SNPs has an even larger effect: the remaining proportion of errors decreases by another
~16% and ~27% respectively for hair and eye color. It is also noticeable that the gain in
prediction brought by SNPs relatively to that brought by genetic ancestries is much larger for
eye color (~14x) than for hair color (~3x).

For continuous traits, we observe alarge increase in prediction accuracy (R?) when
genetic ancestry isincorporated in regression models, relative to the baseline (including only
non-genetic predictors). Furthermore, when pigmentation SNP sets are incorporated in the
regression model, accuracy usually more than doubles over that obtained with genetic
ancestry plus non-genetic covariates (green bar versus blue line in Figure 3). When using this
full prediction model, lowest LR prediction accuracy was observed for Chroma (R? ~0.12)

and highest for Luminance (R* ~0.58), two quantitative estimates of eye color variation.
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Comparing different prediction methods for the full model (i.e. incorporating all
predictors) we do not observe large differences in performance, with the exception of a
relatively lower accuracy of regression for Hue and Chroma. For those two traits, RF
markedly outperforms regression methods, more than doubling the accuracy of LR in the
case of Chroma. For the two other continuous traits (Luminance and Melanin Index),
regression models are as effective as machine learning models (Figure 3). We also note that
those rank similarly throughout categorical and continuous traits: RF is almost always better
than the other tree-based model (extreme gradient boosting; XGB) and artificial neural
networks (ANN) always underperform compared to tree-based models.

Regarding the SNP sets tested, we observe little difference in prediction accuracy
across traits and methods although the number of SNPs is larger in the sets that we designed
(56 to 120 SNPs) than in HIrisPlex-S (34 SNPs). Continuous skin pigmentation (Melanin
Index) stands nonetheless as an exception: for that specific trait, CAN-S consistently
outperforms HIrisPlex-S (particularly with regression methods). We have further assessed the
impact of limiting the number of SNPs from the CAN sets to the top 10, 20 or 30 SNPs. A
reduction in the number of SNPs had little effect for most traits, to the noticeable exception
of Melanin Index for which considering the top 30 SNPs (i.e. 25% of the CAN-S SNP set)
yields less than 90% of the prediction R? achieved with the whole set (see Supplementary
table S7). Also, we ranked the SNPs by their variable importance (returned by the RF
models) for each trait (see Supplementary table $4 and figure S3). Three SNPs, from three
known pigmentation genes (SLC45A2, HERC2 and SLC24A5), are consistently among the

top ones throughout traits and are common to HirisPlex-S and the 3 CAN SNP sets.

Prediction accuracy at varying levels of European/Native American ancestry
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Since a substantial fraction of individuals in the CANDELA sample have minimal
African ancestry, we sought to evaluate prediction accuracy specifically for varying levels of
European/Native American ancestry in the CANDELA sample. To this aim, we pooled
individuals with negligible African ancestry in ~20% ancestry bins (so that the smallest pool
sizeincluded at least 570 individuals) and examined prediction accuracy in the pools (see
Supplementary table S5). Furthermore, for categorical traits, we ensured that at |east two trait
categories, each with >20 individuals, were observed in the pools, which led to withdraw the
most Native-American pool. We assessed prediction accuracy using RF, afull model (i.e.
equation 3 but without genetic ancestry as predictor) including only pigmentation SNPs
having >1% MAF in the pool of individuals being tested.

For the categorical traits, thereis adrop in prediction accuracy (from ~95% to ~70%)
at increasing European ancestry (Figure 4). However, as European ancestry increases there is
greater accuracy relative to random guessing based on trait frequency, probably reflecting the
trait being less variable at higher Native American ancestry levels. For the quantitative eye
pigmentation variables (particularly H and L, Figure 4), as the percentage of European
ancestry increasesthereisatrend for an increase in trait variation (red line in Figure 4) and
also in prediction R?. For skin pigmentation (M) we observe an opposite trend in trait
variability in relation to ancestry, relative to hair/eye color: variation in M| decreases at
increasing European ancestry. There is also a trend towards an increase in the performance of
the CAN-S SNP set at decreasing European ancestry: in individuals with <20% European
ancestry CAN-S has an accuracy that is nearly twice that observed for HirisPlex-S. Although
CAN-S tends to outperform HIrisPlex-S in most comparisons, it is only for Ml that such a
large difference in performance was observed. In summary, across al pigmentation traits we

observe again in prediction accuracy for the Native American/European ancestry bins
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showing greater phenotypic diversity, with CAN SNPs markedly outperforming HlrisPlex-S
only for MI in individuals with low (<20%) European ancestry.

Figure 4. Prediction accuracy for individuals with varying Native American/Eur opean
admixture. Prediction was assessed in individual bins varying ~20% in admixture (bottom
axis; for eye and hair pigmentation <20 individuals with >80% Native Ancestry were
available in each trait category, thus preventing estimation of prediction accuracy). Colored
bars indicate accuracy obtained with Random Forest models using non-genetic +
pigmentation SNP sets as predictors (R? being used as prediction measure for quantitative
traits: Hue, Luminance, Chroma and Melanin index). Blue bars indicate the CAN-E/H/S SNP
sets. Yellow bars indicate the HirisPlex-S set. The standard deviation of the quantitative traits
in each ancestry bin isindicated as ared line. For the categorical traits (Eye and Hair Color),
accuracy (proportion of correctly classified individuals) is used as the metric for prediction
measures. Accuracy obtained without genetic predictors using a guessing strategy is indicated
with ahorizontal blue line for Proportional Strategy (random guessing) and magenta line for
maxP (deterministic guessing). Detailed numerical values are given in Supplementary Table
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Prediction accuracy in CANDEL A relativeto other population samples
Severd studies have examined accuracy of prediction of the HlrisPlexS SNP set for

categorical pigmentation traits using an online tool (https://hirisplex.erasmusmc.nl, referred

to here as HIrisPlexS-Online), which implements MLR prediction models trained in a

reference dataset (consisting mostly of Europeans)[7,11,14]. Table 1 compares the published
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estimates with those we obtained here with the CAN and HIrisPlex-S SNP sets using our
implementation of MLR modelstrained in the CANDELA data (for skin color, we
transformed M1 into a 3-level categorical variable: fair, intermediate and dark; as described in
Materials and Methods). For a more accurate comparison to HirisPlexS-Online, these models
were trained using SNPs only, without basic covariates or ancestry.

Prediction accuracy estimates for eye color have been reported for HirisPlex-S-Online
in aLatin American sample (99 individuals from Venezuela and Brazil) and in a European
sample[10,14,15]. The light (blue/gray) and dark (Brown/Black) color categories have similar
prediction accuracies across studies (~90-93%), except for the prediction of light eye color
reported for HirisPlex-S-Online in the Venezuelan/Brazilian sample, where accuracy is much
lower (85%). The main difference in eye-color prediction across studies liesin the
intermediate category. No intermediate eye colors were predicted by HIrisPlex-S-Onlinein
the Venezuelan/Brazilian sample. Our predictionsin the CANDELA sample have markedly
higher accuracy than reported for HirisPlex-S-Online in Europeans, both when the prediction
model was trained in the CANDELA data or in the reference HIrisPlex-S data (respectively
89% and 85%, versus 73% in Europeans). Prediction accuracy, in the CANDELA sample, of
the CAN-S and HIrisPlex-S SNP sets was identical.

Estimates for hair color prediction accuracy using HlrisPlex-S-Online have been
reported for a European sample[44]. Prediction accuracy estimates obtained here for the
CANDELA sample are higher than reported in Europeans for al hair colors, except in the
case of intermediate hair-color (i.e. brown) predicted with HirisPlex-S-Online. The highest
hair-color prediction accuracy was consistently obtained with the CAN-H SNP set, although
the difference relative to the HirisPlex-S, with modelstrained in the CANDELA data, is

small.
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Concerning categorical skin color, we observe that predictions from HirisPlex-S-
Online have markedly lower accuracy in the CANDELA sample than reported for aworld-
wide sample. Model training in the CANDELA dataset increases prediction accuracy
substantially both for HlrisPlex-S and CAN-S, although the accuracy values obtained are still
below the published estimates for HirisPlex-S. Asfor hair color, the CAN-S SNP set

consistently outperforms HirisPlex-S, but only marginally.

Portability of modelsfor pigmentation prediction in individuals with high Native
Ancestry

Considering the impact of training datasets in the performance of HirisPlex-S (Table
1), we specifically examined the portability of RF models developed in two training datasets
with extreme differences in ancestry (extracted from the CANDELA sample — see
Supplementary figure $4): (i) ahighly European training dataset (European ancestry >= 80%
and Native American ancestry < 20%) and (ii) a highly Native training dataset (European
ancestry < 20% and Native American ancestry >= 80%). We examined the performance of
the resulting prediction models in a subset of the highly Native test dataset (Figure 5) ina
cross-validation scheme. We observe that models developed in the highly Native training
dataset have a better performance than those developed in the highly European training
dataset for Chrome, Luminance and MI. The most striking difference in performanceis seen
for M1, where the model trained with highly Native data has a prediction accuracy ~6 times
that of the model trained in highly European data (Figure 5). Hue is the only trait for which
the model trained in the highly European dataset outperforms the model trained in the highly

Native dataset, but prediction accuracy in this case is extremely low (<2%).
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Figure 5. Portability of prediction modelstrained in highly European/Native American
cohorts. For each continuous trait (cos(H+15), C, L and Melanin Index) we compare
prediction accuracy on the same test data (a highly Native ancestry cohort). The prediction
models were trained either on a highly Native (Blue) or highly European (Pink) cohort
established from the CANDELA sample. For testing, we created equally-sized 4-folds for
each pool of individuals. We built the RF models using three of the folds and evaluated
prediction accuracy in the left-out fold from the Native ancestry cohort (see Supplementary

figure $4).
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Prediction of skin pigmentation in Native Americans
We examined prediction performance of the CAN-S and HIrisPlex-S setsin a highly
Native dataset independent of CANDELA by predicting M1 in 117 individuals from 17

Native American populations[40]. As above, we trained RF prediction models using
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CANDELA individuals with >= 80% native ancestry. Since performance could not be
measured directly in this dataset (due to the lack of phenotypic data), we examined the
correlation of predicted skin pigmentation (M1) with solar radiation levels a the site of
population sampling (Figure 6). Previous surveys of skin pigmentation in native populations
from across the world have found a correlation between skin pigmentation and solar
radiation[51], an observation that has been interpreted as the result of selection throughout
human evolution. In the Native Americans examined here we obtained correlations of 0.543
(p-value 2 x 10°°) and 0.163 (p-value 0.1) with the CAN-S and HirisPlex-S SNP sets,
respectively (Figure 6).

Figure 6. Solar radiation levelsand skin pigmentation (M 1) predicted with CAN-S and
Hlirisplex-S SNP sets. (a) Annual average of insolation incident on ahorizontal surface
(KWh/nm\2/day - datafrom NASA Surface meteorology and Solar Energy, 2008) and location
of the Native American population sampled. The predicted M1 and solar radiation levels at

the sampling site for 104 individuals from 16 Native American populations is shown in (b)
CAN-S and (c) HIrisPlex-S.
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Discussion

Our results agree with previous studies in finding that regression and RF generally
outperform other prediction methods (MLR being the approach implemented in HirisPlex-S-
Online). Owing to their tree-based structures, RF and XGB implicitly model the underlying
genetic interaction across SNPs, and studies have noted the presence of epistasis (SNP-SNP
interactions) between major pigmentation SNPs to some degree for various pigmentation
traits, suggesting that prediction accuracy can be further increased by specifically allowing
for interaction between SNPs[23,24,52]. Since tree-based models implicitly model epistasis
including complex higher-order interactions, the difference of their prediction accuracy to
additive linear/logistic models may also shed light on the genetic architecture of the traits. It
is tempting to hypothesize that SNP interactions may have a more substantial impact on the
genetic architecture of Hue and Chroma phenotypes[31,53], especially considering that these
traits are relatively more non-linear in nature (e.g. Hue is an angle, i.e. acircular trait)[52].
Furthermore, the differences in prediction accuracy are much larger from linear to tree-based
models (up to +0.19 gain in R? — see Supplementary table S3) than they are from HirisPlex-S
to CAN-E (up to +0.014 gain in R?) whereas these two SNP sets only have 5 SNPsin
common. We might therefore expect that such relevant interactions would be limited to a
handful of SNPs, consistent with the literature which primarily observed interactions between
major pigmentation SNPs[23,24,31]. Conversely, we may expect a greater additive
polygenicity[23,25] in the case of skin pigmentation. Linear models overperform tree-based
models for that trait (Figure 3) and the number of SNPsin the model has an impact on the
prediction accuracy, as suggests the +0.07 gain in R? from HirisPlex-S (34 SNPs) to CAN-S
(120 SNPs). In line with these observations, we also noted that prediction accuracies are
relatively lower for Melanin Index than for other continuous traits when constraining the

number of SNPs in the model (see Supplementary table S6 and S7).
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Previous studies[ 31,36,54,55] have shown that genetic ancestry correlates with
pigmentation, probably resulting from the variable allele frequency across continents of
certain pigmentation-related alleles. Consistent with this, we observe that continental genetic
ancestry has significant predictive power (Figure 3, Supplementary table S3) and that the
SNPs retained for prediction rank among the most correlated to continental ancestry
components (see Supplementary table S2). Inclusion in the prediction models of
pigmentation SNP sets selected from the GWAS further increases predictive power,
markedly for quantitative pigmentation traits. Candidate SNPs on an average add twice the
prediction accuracy of that brought in by the genetic ancestry for the quantitative traits. For
the categorical traits, the difference is smaller but comparatively candidate SNPs decreases
the proportion of incorrect classification by alarger amount than does continental genetic
ancestry, especialy for eye color.

The difference in predictive power for categorical traitsis partly the result of their
intrinsic lower informativeness relative to quantitative traits. Thisis particularly so for hair
and eye color, asthe CANDELA sample has a highly skewed phenotypic distribution for
these traits: 82% of individuals in the CANDELA sample are assigned to the darkest category
for eye and 85% for hair color. This skewed phenotypic distribution is consistent with the
fact that world-wide lightly pigmented eyes and hair are essentially Western Eurasian traits,
while thereis considerable variation in skin pigmentation outside Europe[23-28]. That is, the
occurrence of lightly pigmented hair and eyesin the CANDELA sampleis essentially a
reflection of its partly European ancestry. This may explain why the HirisPlex-S SNP set
built primarily in Europeans performs equally well to the CAN SNP set built on our more
diverse admixed samples, and matches what has been observed in the literature for predicting

eye and hair color in non-European populations[23,32,33].
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By contrast, prediction of skin pigmentation is influenced by the genetic architecture
of thistrait in all three populations contributing to admixture in Latin America (Native
Americans, Europeans and Africans). Consistent with this, our analysis along a Native
American-European ancestry gradient show the highest gain in prediction accuracy for the
ancestry bins with the greatest phenotypic diversity: that is, the highest European bin for
eye/hair color and the highest Native American bin for skin color. In the bin with lowest
European ancestry, thereis hardly any gain in prediction accuracy for eye/hair color over the
deterministic maxP strategy, as amost all individuals in that bin are in the highly pigmented
category. On the other hand, this bin has the highest variation in skin pigmentation, also
shows the greatest accuracy for the CAN-S, and this SNP set strongly outperforms HIrisPlex-
S prediction for this ancestry bin (Figure 4) — all these facts together emphasize that skin
color prediction in admixed Latin Americans is substantially influenced by the genetic
architecture of thistrait in non-European populations. Our observation of a stronger
correlation of predicted skin with solar radiation levelsin pigmentation in Native Americans
for the CAN-S set, relative to HIrisPlex-Sis also consistent with this, and with literature
reporting comparatively poor portability of European-based pigmentation prediction models
on non-European populations[23,32,33].

Although quantitative traits are intrinsically more informative than categorical ones,
anthropological and forensic applications of pigmentation prediction are usualy interested in
afew discrete categories, often just two (e.g. blue v. non-blue eyes) or three (light,
intermediate or dark color). In that setting we find that for the CANDELA dataset thereis
little difference in the prediction performance of HirisPlex-S (which, in addition, was
shrunken from 41 SNPs to 34 polymorphic SNPs in our dataset), relative to the CAN SNP
sets devel oped here. However, we observe a strong impact of the training dataset used for

optimizing the prediction methods, both in the extreme scenario explored in Figure 5, and
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when comparing the prediction accuracies we obtained here with those published previously

(Table 1). These observations question the portability across human populations of models

developed using atraining dataset with a different genetic makeup. Thisis most sharply

illustrated by the difference in performance between the online implementation of HirisPlex-

S and the results we obtained when training models with this SNP set in the CANDELA data,

particularly for skin pigmentation categories (Table 1). These observations thus caution

against the use of the online implementation of HIrisPlex-S for the prediction of pigmentation

traits in non-Europeans.
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Tables

Table 1. Overall Accuracy (%) and trait AUC (%) for categorical eye (A), hair (B) and
skin (C) color obtained here and in other studies (% frequency of trait in sampleis
shown in par entheses).

(A)
CANDELA Venezuela/Brazil® Europeans”
Sample N=6,529 N =99 N=2,364
SNP set CAN-E2 | HIrisPlex-S HIrisPlexS-Online
Overall Accuracy 89 89 87 83
1. Blue/gray 3 93 93 93 (12) 85 (68) 91
2. Intermediate (13) 89 89 85 (23) NA (10) 73
3. Brown/black (85) 92 92 90 (64) o1 (23) 93
(B) C
CANDELA Europeans
Sample N=6,495 N = 385
SNP set CAN-H HlrisPlex-S HIrisPlexS-Online
Overall Accuracy 85 84 56 71
1.Red (0) NA NA NA (25) 90
2. Blond (3) 94 92 Q0 (54) 75
3. Brown (16) 82 81 65 9) 72
4. Black (82) 87 85 80 (12) 78
©)
CANDELA World-wide
Sample N=6526 N=1,159°
SNP set CAN-S HirisPlex-S HirisPlex-S-Online
Overall Accuracy 73 72 26 87
1. Fair (38) 83 81 78 (92) 97
2. Intermediate (59) 77 77 32 €) 83
3. Dark (3 86 84 81 ) 96

HIrisPlexS-Online: https://hirisplex.erasmusmc.nl

Obtained using a model with only SNPs as predictors (no covariates) and with MLR as prediction method.

b Obtained using HirisPlex asdescribed in Freire-Aradas et al. 2014[43].

¢ Obtained using HirisPlex-S as described in Branicki et al 2011[44], here accuracy is calculated from a 4-way
classification setup.

9 Obtained from the specificity reported in Liu et al 2009[10]

This prediction values reported in Walsh et al 2017[13] were obtained from the prediction of the 194 samples

from Maronas et al 2014[42]
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