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Converting thermal energy into mechanical work by means of Organic Rankine Cycle is a validated technology to
exploit low-grade waste heat. The typical design process of Organic Rankine Cycle system, which commonly in-
volves working fluid selection, cycle configuration selection, operating parameters optimization, and component
selection and sizing, is time-consuming and highly dependent on engineer’s experience. Thus, it is difficult to
achieve the optimal design in most cases. In recent decades, artificial intelligence has been gradually introduced
into the design of energy system to overcome above shortcomings. In order to clarify the research field of arti-
ficial intelligence technique in Organic Rankine Cycle design and guide artificial intelligence technique to assist
Organic Rankine Cycle design better, this study presents a preliminary literature summary on recent progresses
of artificial intelligence technique in organic Rankine cycle systems design. First, this study analyzes four main
procedures which constitute a typical design process of Organic Rankine Cycle systems and finds that design
problems encountered during design process can be divided into three categories: decision making, parameter
optimization and parameter prediction. In the second section, a detailed literature review on each design proce-
dures using artificial intelligence algorithms is presented. At last, the state of art in this field and the prospects
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for the future work are provided.

1. Introduction

According to the BP Statistical Review of World Energy 2019 [1],
global energy consumption increased by 2.9% in 2018 and will continue
to increase, which will lead to increasing in energy prices and environ-
mental challenges. Therefore, there is a growing interest in effectively
exploiting low and medium grade thermal energy. Solar energy, geother-
mal energy, industrial waste heat, biomass, and ocean thermal energy
are common low and medium grade thermal energy, which have at-
tracted the researchers around the world. Among the currently available
technologies, the Organic Rankine Cycle (ORC) has been considered as a
promising solution to effectively convert low and medium grade thermal
energy into electricity.

For a given heat source, an appropriate ORC system is the key to
efficient utilization of energy of heat source. Therefore, design of ORC
systems has become the focus of researchers. The design of ORC sys-
tems usually includes the following aspects: working fluid selection,
cycle configuration selection, operating parameters optimization, and
component selection and sizing [2]. There are a variety of design vari-
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ables and constraints in the design process, which makes it become a
highly complex problem. Meanwhile, the selection of working fluids,
cycle configuration and component mainly depend on the experience
and knowledge of the engineers, which make the design to become a
knowledge-intensive job and usually needs large-scale expert interven-
tions. Moreover, since the system is highly dependent on heat source
and sink, a redesign is required for almost every system. Therefore, the
design of ORC system is a complex and tedious work, and only a few
professional and experienced engineers or researchers can complete it.

In recent years, with the development of artificial intelligence (AI), a
growing number of countries have launched programs to integrate ma-
chine learning and other AI technique into energy system design pro-
cesses, such as the “DIFFERENTIATE” program launched by the U.S.
Department of Energy’s (DOE’s) Advanced Research Projects Agency-
Energy (ARPA-E) [3]. This trend also appears in the ORC systems de-
sign. In the past few years, Al has made significant progress in pro-
moting the development of ORC systems design such as computer-aided
working fluids design [4], automatic cycle configuration generation or
optimization [5,6], and multi-objective intelligent optimization of op-
erating parameters [7-9]. Compared with the empirical and subjective
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Fig. 1. Simple ORC: (a) schematic diagram; (b) T-s diagram.

design work of humans, Al is more efficient and productive in the ORC
systems design. Intelligent methods such as evolutionary algorithms and
expert system are showing great potential in improving ORC systems de-
sign efficiency and quality. Therefore, more and more researchers are
trying to apply the Al in the design of ORC systems.

However, the relevant studies are still fragmentary and lack of sys-
tematic sorting. As a result, researchers are unable to transform spe-
cific design problems into appropriate general problems, and thus can-
not choose appropriate intelligent algorithms to solve these problems.
Therefore, this study aims to review the existing application of Al algo-
rithms in ORC systems design, provide some practical advice on how to
conduct Al methods to improve ORC systems performance, and clarify
the future development direction of ORC systems design aided with Al
This study is organized as following. Section 2 briefly introduces ORC
systems design problem and categorizes them into three types of prob-
lems. In Section 3, explanation of each design problem and literature
review of corresponding application examples of intelligent algorithms
are presented. Section 4 summarizes the state of art of this research
field and then discusses a new trend in design of ORC systems. In the
last section, main conclusions and contributions of this study are given.

2. Design problems of ORC system

ORC refers to the Rankine cycle which uses organic substances
with low boiling points as working fluid. As a promising technology
for the utilization of low and medium temperature heat source, ORC
is widely used in the utilization of solar energy, geothermal, waste
heat and ocean thermal energy, etc. There are hundreds of common
organic working fluids, including hydrocarbons, hydrofluoroolefins,
hydrochloroflurocarbons, siloxanes, alcohols, fluorinated ethers, ethers
and so on [10]. Due to the variety of organic fluids, the design of ORC
system often needs to choose a suitable working fluid. The simple ORC
includes four processes: evaporation, expansion, condensation and
compression, as shown in Fig. 1. With the further research on ORC,
many new configurations of the ORC have been proposed. Representa-
tive configurations include regenerative ORC (Fig. 2), transcritical ORC
(Fig. 3) and auto-cascade ORC (Fig. 4) [11,12]. For a given heat source,
different cycle configurations can be used to achieve the purpose of
thermal energy utilization. Therefore, cycle configuration selection
is another important part in design of ORC system. Similarly, there
are many types of devices that implement a particular process. For
example, the expansion process can choose turbine, screw expanders,
scroll expanders, reciprocal piston expanders and so on. Since the

type of components significantly affects the investment cost of ORC
system, component selection is also an important part of ORC design. In
addition, the operating parameters also affect the performance of ORC
system. Therefore, the operating parameters also need to be optimized
after the suitable working fluids, cycle configuration and components
are selected. In general, the design variables to be considered in ORC
design include working fluid, cycle configuration, component and
operating parameters. Moreover, different performance indicators are
adopted to evaluate the system, such as safety, economy, efficiency and
environmental effect. For the design of ORC systems, key factors which
should be considered mainly includes performance indicator, system
parameters and different heat sources and sinks, as shown in Fig. 5.

To obtain a system with best performance, it is necessary to carry
out a global optimization. Unfortunately, with so many design variables
and objectives, the design problem of ORC system is a highly complex
and non-linear problem, and cannot be solved by using mathematical
method. Generally speaking, only the optimization of operating param-
eters could be solved theoretically by strict mathematical methods, and
the selection of working fluids, cycle configuration and components can
only be evaluated one by one. Therefore, the traditional design flow of
ORC systems mainly includes four steps, as showed in Fig. 6. Firstly,
available cycle configurations, working fluids and component types are
screened out from some predefined options based on knowledge, expe-
rience and rules. Secondly, amounts of available design options are gen-
erated by using stochastic combination method. Then, for each option,
some design parameters, such as cycle state points, are optimized by
using single or multiple objectives optimization algorithms. Finally, all
available options with optimal parameters are compared and screened
according to predefined objective. After that, the optimal design is ob-
tained. In fact, due to the large number of operating parameters, the op-
timization problem of operating parameters is also a complex nonlinear
problem, so it is almost impossible to use strict mathematical methods
to solve it. Therefore, heuristic optimization algorithm is the only way
to solve the optimization problem of operating parameters. In addition,
it is impossible to evaluate all working fluids, cycle configurations and
components in the actual design because of the large number of options.
It is common practice to select a small number of options for evaluation
based on experience, knowledge and rule. This method is very subjec-
tive and can hardly obtain the optimal design. Therefore, some emerg-
ing methods, such as AL, must be used to overcome the shortcomings of
traditional methods.

Thesteps in traditional design flow can be reclassified as the follow-
ing four procedures: working fluid selection, cycle configuration selec-
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Fig. 2. Regenerative ORC: (a) schematic diagram; (b) T-s diagram.
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Fig. 3. Transcritical ORC: (a) schematic diagram; (b) T-s diagram.

tion, operating parameters optimization and component selection and
sizing [2]. In this study, how to complete each design process is de-
fined as a design problem. However, solving those design problems of
ORC system in line with empirical practice does not guarantee an effi-
cient system. So, more researchers are now applying Al technology to
conduct ORC systems design for better system performance. According
to the characteristic of those design problems, they are classified into
two categories in this study: decision making, parameters optimization.
Moreover, parameter prediction is often involved during the process of
solving the above two problems. The relationship between four design
problems and three categories problems is shown in Fig. 7. Decision
making in general can be divided into two categories: one is based on
heuristic guidelines, and the other is based on the value of the evalu-
ation indicator. For example, the selection of potential working fluids
for an ORC system is in the former category, while the selection of most
efficient working fluids is in the latter category. In this paper, the for-
mer category was called ‘Yes/NO decision problem’, while the latter
was called ‘Max/Min decision problem’. For Yes/NO decision problem,
two decision-making algorithms are usually adopted in design of ORC
system, namely expert system [13] and Case-Based Reasoning method
[14]. Expert system is dependent on expert experience and guidelines

whereas Case-Based Reasoning is based on existing cases. For Max/Min
decision problem, it can be solved by sorting method and optimization
algorithms. The objective of parameters optimization is to find a set of
parameters to obtain a best performance of the ORC system. According
to the number of objective functions, parameter optimization problems
can be divided into single-objective optimization and multi-objective
optimization. Genetic algorithm (GA) and Swarm intelligence algorithm
(SIO) were the most common algorithms to solve such problems. In
the processes of solving decision making and parameter optimization
problems, it is often necessary to calculate some parameters (i.e. per-
formance insiders and objective functions) by building complex mathe-
matical models based on physical principles. These models are complex
and computationally intensive. Therefore, researchers tried to use data-
driven models to predict the values of the required parameters. Data-
driven models developed based on large amounts of data collected from
simulation or experiment. Artificial Neural Network (ANN) and Support
Vector Machine (SVM), which are commonly used algorithms for param-
eter prediction in this research field. The right column of Fig. 6 lists the
intelligent algorithms that are most widely adopted in the design of ORC
system. Detailed descriptions of these intelligent algorithms are readily
available in the public literature and will not be covered in this study.
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3. Literature review of intelligent design for ORC system
3.1. Working fluid selection

Different from the traditional Rankine cycle that only uses water as
working fluid, there are hundreds of organic fluids that can be used in
ORC. Different working fluids have different physical properties which
can affect the efficiency of ORC system, the size of the components, the
system stability and safety, as well as the environmental concerns. For
example, the critical temperature and the normal boiling point deter-

mine the operating temperature range of the working fluids. Thermal
conductivity can affect heat transfer area of heat exchangers. The ozone
depletion potential (ODP), global warming potential (GWP) and the at-
mospheric lifetime (ALT) can determine whether the working fluid is
permitted by environmental regulations. More detailed information can
be found in the Ref. [10]. Therefore, the selection of working fluids is
very important in the design of ORC systems. Generally, to obtain a
suitable working fluid, designer or engineer will propose some heuris-
tic guidelines, which are based on their experience and knowledge, to
identify a list of potential candidates working fluids. Subsequently, each
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candidate working fluids will be evaluated by operating parameters op-
timization for the predefined cycle configuration. If necessary, compo-
nent selection and sizing will be carried out to evaluate the economy
of the whole system. Finally, suitable working fluids will be selected
according to these evaluation results.

In this research field, most researchers conduct their own work by
following the procedures mentioned above. Researchers keep coming up
with new heuristic guidelines, such as Jacob number [15], near-critical
region triangle [16], and so on. In addition, there are some mandatory
government regulations. For example, GWP, ODP, corrosive, flammable,

and toxic standards must meet the relevant requirements. Almost all re-
searchers manually select potential candidates of working fluids from
existing ones. The number of working fluids in the list of potential candi-
dates ranges from a few to hundreds. As more new organic fluids emerge,
the work will become more time-consuming. If an expert system is de-
veloped using heuristic guidelines that are wildly accepted, this will help
reduce the workload of designers. To the authors’ knowledge, no studies
have been conducted on this topic.

The physical property is the main basis for the selection of working
fluids according to heuristic guidelines. Physical properties usually can
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be measured by experimental methods or calculated by various equa-
tions of state. These methods are available in the existing literature
and are not described in detail in this study. However, there are no
available experimental data and calculation methods in some cases. So,
some researches use data-driven model to predict the physical proper-
ties of working fluids. Huster et al. [17,18] used ANN method to pre-
dict the thermodynamic and transport properties of 37 working fluids.
The training data is from the CoolProp. For different sates of working
fluid, they trained different models with different input data (pressure
for the model of saturated state, pressure and entropy for models of sub-
cooled liquid and superheated vapor). Temperature, enthalpy, density,
heat conductivity coefficient, viscosity and Prandtl number are the out-
put variables.

A few researchers have noticed that computer-aided molecular de-
sign (CAMD) can make a difference in the selection of working flu-
ids. In CAMD, working fluids can be described using functional groups,
which can form different fluids by putting them together in different
ways. Then thermodynamic properties of working fluids can be pre-
dicted based on the functional groups which it is composed by using an
equation of state or data-driven models. And the structure of molecule
also can be optimized. In this sense, CAMD method allows researchers
to design a suitable working fluid, which may not exist currently, for a
particular ORC configuration.

Papadopoulos et al. [19] used CAMD method for the first time to
select the suitable pure working fluids for a simple ORC system, and
later applied this method to design the working fluid mixtures for the
same ORC system. Then, Palma-Flores et al. [20] used CAMD method
to identify a new working fluid which could lead to a higher thermal ef-
ficiency. Su et al. [21,22] also used CAMD method to design and select
the working fluids for a simple ORC system with a detail thermody-
namic model. For CAMD method, how to calculate the physical proper-
ties of working fluids according to the functional groups is very impor-
tant. Two common methods are empirical group-contribution methods
[23] and molecular-based equations of state based on statistical associat-
ing fluid theory [24]. Similarly, some researchers developed data-driven
models to calculate the physical properties. Different from the models
mentioned in the previous paragraph, those models should base on the
functional groups [4]. Su et al. [25] developed an ANN model based on
molecular groups and a self-defined topological index to predict normal
boiling point temperature of pure organic fluids. In their another study,
critical temperature and pressure, liquid density and heat capacity were
calculated using empirical correlations based on normal boiling point
temperature.

3.2. Cycle configuration selection

Many researchers have proposed some new cycle configurations
based on the simple ORC, that have been proved to be superior to the
simple ORC system. Such as the multiple ORCs in series or in parallel
[11], cascade ORC [26], multiple stages condensation ORC [27] and so
on. Some studies have shown that cycle configuration can significantly
affect the performance of the ORC system [28]. Therefore, cycle config-
uration selection becomes an important work in the design of ORC sys-
tems. In the traditional design procedure, this part of the work also relies
on the experience and knowledge of designers. Usually, the designer se-
lects some potential candidate configurations from existing ones, and
then carries out subsequent design for each cycle configuration, and de-
termines the final cycle configuration according to the performance of
each design results. This method usually fails to screen out the optimal
cycle configuration and results in a suboptimal solution, because it is
difficult for the designer to include all possible cycle configurations in
the candidate configurations. Moreover, screening results which rely on
the experience are not guaranteed to be reliable.

To overcome the above problems, superstructure method was in-
troduced in cycle configuration selection. Superstructure of ORC con-
figuration is a collection of a huge number of possible cycle config-
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urations which are constructed manually by adding and removing a
process, such as regeneration, reheating, turbine bleeding and multi-
stage cycles, in turn. Therefore, the superstructure consists of all pos-
sible cycle configurations and the optimum cycle configuration can be
obtained through solving subsequent mixed-integer non-linear program-
ming (MINLP) problem. Lee et al. [29] selected the optimal cycle con-
figuration for an ORC system utilizing LNG cryogenic energy. In their
study, the superstructure includes about 1024 possible cycle configu-
ration alternatives. Yu et al. [30] proposed a method to integrate ORC
into heat exchanger networks considering a superstructure with optional
turbine bleeding and regeneration. Bao et al. [31] conducted a simulta-
neous optimization of cycle configuration and working fluid for a three-
stage condensation ORC system, and considered nine cycle configura-
tions in their superstructure.

Although superstructure method can obtain the optimal cycle config-
uration, the modeling of a superstructure is a time-consuming and com-
plex task, and it might include a huge number of cycle configurations
which are infeasible or even meaningless. To overcome those weakness,
Toffolo et al. [6] have developed an improved method based on the su-
perstructure method, namely superstructure-free method or HEATSEP
method [32], which have been successfully applied to the selection or
design of cycle configuration of ORC system [5]. Instead of generating
all possible cycle configurations in advance, this method generates new
configurations from the basic configuration in the optimization process
according to preset combination rule [33,34]. By encoding the cycle
configuration into chromosomes in the GA, this method avoids enumer-
ating all possible cycle configurations, thus saving computing time. The
detail information about this method can be found in references [6].
Lin et al. [35] applied this method in the design of LNG energy recov-
ery ORC system, and obtained the optimal cycle configuration for pure
working fluid and mixture working fluids respectively. Although only a
few researchers have focused on this method, it is more intelligent than
the superstructure method and will be the future research direction.

3.3. Operating parameters optimization

Operating parameters in ORC system refer to the parameters that
can be manually adjusted in the system design, including the cycle state
point, the temperature and mass flow rate of heat source/sink, etc. Op-
erating parameters are very important for the performance of ORC sys-
tems. With any given heat source, ORC system can operate with differ-
ent sets of operating parameters, only a few sets of operating parameters
could result in the best performance. The goal of operating parameters
optimization is to find such a set of operating parameters. Therefore,
operating parameters optimization is a very important work in the de-
sign of ORC systems. The usual method is to first determine the design
variables, objective functions and constraints, then establish an ORC
model to find the relationship between the objective function and de-
sign variables, transform it into an optimization problem, and then ob-
tain the optimal parameters by solving the optimization problem. There
are two processes where intelligent algorithms are used. Generally, the
optimization problem is a nonlinear problem and difficult to solve using
traditional mathematical methods. Therefore, researchers usually use in-
telligent algorithms to solve it, such as GA and PSO. Moreover, physical
models of some ORC systems are very complex, so data-driven models
are used as surrogate models to predict the value of objective functions
based on design variables, which can save a lot of computation time.

For the optimization problem of operating parameters, the size of
the search space depends on the number and range of design variables
(depending on constraints). The former determines the dimensions of
the search space, the latter determines the length of each dimension.
The solution of the optimization problem is to find a position in the
search space where the objective function can get the optimal value.
Generally speaking, larger search space means larger computation and
longer computation time. Different algorithms represent different search
strategies, which can also affect the amount and time of calculation.
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According to the relationship between operating parameters and
thermodynamic cycle, operating parameters can be divided into four
categories: cycle parameters, interaction parameters between the cycle
and heat source or sink, parameters of heat source or sink and compo-
nent parameters. Cycle parameters include thermodynamic parameters
of each state point of the cycle and the parameters related to the working
fluids, which are the most commonly used design variables in operat-
ing parameter optimization of ORC systems. For example, evaporating
pressure or temperature [36, 37], considering pressure or temperature
[38, 39], superheating temperature [40]; subcooling temperature [41],
mass flow rate of working fluids [42] etc. Interaction parameters be-
tween the cycle and heat source or sink, such as pinch point temperature
differences in evaporator or condenser [43, 44], were also considered as
design variables. Parameters of heat source or sink used as design vari-
ables include the inlet or outlet temperature of heat fluid in the evapo-
rator [45], the inlet or outlet temperature of cold fluid in the condenser,
the mass flow rate of heat or cold fluids, the specific heat capacity of
hot or cold fluids and so on. Component parameters include geometric
parameters and performance parameters. Some studies used geometric
parameters of components as design variables, such as fin height of heat
exchangers [46], while others used performance parameters as design
parameters, such as the efficiency of expanders and pumps [47].

Objective functions used in operating parameters optimization usu-
ally involve several different aspects, including the product indicator,
efficiency indicator, economy indicator and environmental impact. The
most commonly used product indicator is net output power [48]. The
commonly used efficiency indicators are thermal efficiency and exergy
efficiency. There are many economic indicators used as the objective
function, such as system investment cost [49], annual profit [50], the
levelized cost of energy [39] and so on. Environmental impacts, such
as emissions of various pollutants [51], are also used as objective func-
tions. According to the number of objective functions to be considered,
optimization problems can be divided into single-objective optimiza-
tion and multi-objective optimization. The single-objective optimization
problem can be solved by standard GA and PSO. For the multi-objective
optimization problem, the standard GA and PSO are not applicable, so
many researchers adopt the Non-dominated sorting genetic algorithm-
II (NSGA-II) and Multi-objective Particle Swarm Optimization (MOPSO)
to find the Pareto Front in the search space.

Fig. 8 shows the number of publications on the topic of operating
parameters optimization of ORC systems using intelligent algorithms.
There are about 170 literatures on this topic. Since 2013, more than
10 literatures are published each year. In those literatures, GA is the
most widely used algorithm. However, many literatures are similar in
methods, so this study will not describe one by one. Only some repre-
sentative literatures are selected for review, as shown in Table 1. As

an important part of optimization problem, the constraint conditions of
operation parameters in ORC design is determined by the conditions of
heat source and sink, physical properties of working fluids and experi-
ence of designers. Constraints of operation parameters are not listed in
Table 1 because these constraints are subjective and do not have much
guiding significance for other studies.

As shown in Table 1, an earlier literature was the study of Wang
et al. [52], who designed a simple ORC system for waste heat recov-
ery in cement industry, took evaporating pressure as the design pa-
rameter and maximum exergy efficiency as the objective function, and
adopted GA to solve the optimization problem. In their work, only one
design variable and one objective function were considered. Zhang et
al. [41] conducted the parameters optimization of a simple ORC sys-
tem for engine waste heat recovery. In their study, four parameters,
evaporating pressure, superheating temperature; condensing tempera-
ture and subcooling temperature, were considered as design parameters,
maximum thermal efficiency was considered as the objective function,
and those parameters were optimized using GA. Wang et al. [47] op-
timized operating parameters of the ORC system for low grade waste
heat recovery. In their study, in addition to evaporating pressure and
condensing temperature, the isentropic efficiency of the expander was
also used as a design parameter. Thermal efficiency was considered as
the objective function and GA was adopted. Wang et al. [53] carried out
an early study on multi-objective parameters optimization of an ORC
for low grade waste heat recovery. In their study, exergy efficiency and
overall capital cost were considered as objective functions. An improved
GA, Non-dominated sorting genetic algorithm-II (NSGA-II), was used to
solve the optimization problem and obtain the Pareto optimum. More-
over, pinch point temperature difference and approach temperature dif-
ference in heat exchangers were also considered as the design variables.
Andreasen et al. [45] also carried out a study single objective parameters
optimization of a simple ORC system utilizing geothermal energy. They
took evaporating pressure, expander inlet temperature, hot fluid outlet
temperature and composition of the working fluid as design variables,
and net power output as the objective function. In contrast to previ-
ous studies reviewed, this study considered heat source conditions and
working fluids as design variables rather than just cycle state parame-
ters and component performance parameters. For the first time, Xi et al.
[54] used PSO instead of GA to solve the parameters optimization prob-
lem in the design of ORC system. Cavazzini et al. [55] used an improved
PSO method to optimize the operating parameters for a sub-critical ORC
system. In their study, they realized the simultaneous optimization of
pure working fluids and operating parameters by continuously and dy-
namically modifying the search space for different particles.

The calculation of fitness function is very important when using in-
telligent algorithms to solve the optimization problem. Generally speak-



Table 1

A summary of parameters optimization studies.

Ref. Year Problem Description Design Variables Objective Algorithms  Heat source & sink Cycle configuration Working fluids
Wang et al. [52] 2009 Optimize the cycle state Turbine inlet pressure Exergy efficiency GA Waste heat Simple ORC R123
points for a simple ORC
Rashidi et al. 2011 Optimize the cycle state Outlet pressures from the second Thermal efficiency, ABC Waste heat & water regenerative Rankine cycle Water;
[56] points for a regenerative and third pumps exergy efficiency and Water-R717
Rankine cycle specific network
Zhang et al. [41] 2011 Optimize the cycle state Evaporating pressure, Thermal efficiency GA Waste heat of the Simple ORC R245fa, R245ca,
points for a simple ORC superheating temperature; internal combustion R236ea, R141b, R123,
condensing temperature, engine R114, R113 and R11
subcooling temperature
Tveitaskog et al. 2012 Optimize design Exhaust outlet temperature, Thermal efficiency and GA Waste heat of exhaust Simple ORC Toluene
[67] parameters for a heat evaporating pressure, condensing  power output gas
recovery system pressure
Wang et al. [47] 2012 Select a suitable cycle Evaporation pressure, Thermal efficiency GA Waste heat of the a simple ORC, an ORC with an  R245fa
configuration for waste condensation temperature and the internal combustion internal heat exchanger (IHE),
heat recovery; expander isentropic efficiency engine an ORC with an open feed
Optimize the cycle state organic fluid heater (OFOH),
points for each an ORC with a closed feed
configuration organic fluid heater (CFOH),
and an ORC with a reheater
Xi et al. [68] 2013 Select a suitable cycle Temperature of heat source Annual cash-flow and  GA Waste heat Simple ORC, ORC with internal 30 chlorine-absent
configuration and working exergy efficiency heat exchanger working fluids
fluid
Larsen et al. [69] 2013 Select a suitable working  heat source inlet temperature Thermal efficiency GA Waste heat Simple ORC, ORC with a 109 working fluids
fluid for different ORC health, fire and recuperator
configurations physical hazards (A
linear combination)
Wang et al. [53] 2013 Optimize the cycle state Turbine inlet pressure, turbine Exergy efficiency and ~ NSGA-II Waste heat Simple ORC R134a
points for a simple ORC inlet temperature, pinch overall capital cost (Multi-
temperature difference, approach objective)
temperature difference and
condenser temperature difference
Wang et al. [70] 2013 Select a suitable working  Turbine inlet temperature, turbine Exergy efficiency and  NSGA-II Waste heat Simple ORC R123, R245fa and
fluid; inlet pressure, pinch temperature  investment (Multi- isobutane
Optimize the cycle state difference, approach temperature objective)
points for a simple ORC difference and condenser
temperature difference
Pierobon et al. 2013 Select a suitable working  the turbine inlet pressure, internal Thermal efficiency GA Waste heat of a Simple ORC Cyclohexane
[71] fluid recuperator pinch points twin-spool gas turbine
Xi et al. [72] 2013 Select a suitable working  Turbine inlet pressure and Exergy efficiency GA Waste heat Simple ORC, single-stage R123, R113, R11,
fluid for each cycle temperature, fractions of the flow regenerative ORC, double-stage R245ca, R245fa and
configuration rate regenerative ORC R141b
Wang et al. [73] 2013 Select a suitable working  Turbine inlet pressure, turbine The ratio of net power GA Waste heat Simple ORC R123, R245fa and
fluid; Optimize the cycle inlet temperature, pinch output to total heat isobutane
state points for a simple temperature difference and transfer area
ORC approach temperature difference
in heat recovery vapor generator
Hajabdollahi et 2013 Select a suitable working ~ Nominal capacity of diesel engine, Thermal efficiency and NSGA-II Waste heat of a diesel Simple ORC R123, R134a, R245fa

al. [42]

fluid and optimize design
parameters for a simple
ORC

diesel operating partial load,
evaporator pressure, condenser
pressure and refrigerant mass flow

rate

the total annual cost

engine

and R22
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Table 1 (continued)

Ref. Year Problem Description Design Variables Objective Algorithms  Heat source & sink Cycle configuration Working fluids
Long et al. [74] 2014 Select a suitable working  Evaporation temperature, heat Overall exergy GA Waste heat Simple ORC n-Pentane, R601a,
fluid and optimize design  source inlet temperature efficiency R142b, Isobutene,
parameters for a simple R600a, R141b, Butane,
ORC system R123, R243ca, R245fa
Cataldo et al. 2014 Select a suitable working  Evaporation temperature and the  The defect of efficiency GA Waste heat Simple ORC More than 10 working
[75] fluid and optimize the condensation temperature and the total heat fluids
state points for a simple exchange area per unit
ORC of power output
Bian et al. [37] 2014 Select a suitable working  Evaporating temperature and The ratio of heat GA Waste heat Simple ORC R11, R113, R123 and
fluid and optimize cycle degree of superheat transfer area to total isopentane
state points for a simple net power output
ORC
Imran et al. [43] 2014 Select a suitable cycle Evaporation pressure, superheat, Maximum thermal NSGA-II Waste heat Simple ORC and regenerative 5 working fluids
configuration and working pinch point temperature efficiency and ORC
fluid; difference in evaporator and minimum specific
Optimize the cycle state condenser investment cost
points
Kalikatzarakis et 2014 Select a suitable working ~ The composition of the working Net Present Value GA and Waste hear of marine  Simple ORC, regenerative ORC 75 fluids
al. [76] fluid and optimize cycle fluid; Mass flow rate, evaporation sQpP propulsion engines and a combination of two ORC
state points for different pressure and condensing pressure
ORC configurations
Larsen et al. [77] 2014 Optimize the cycle state Evaporation pressure and Power output GA Waste heat of a large  Simple ORC R245ca
points for a simple ORC superheating temperature marine two-stroke
diesel engine
Xi et al. [78] 2014 Select a suitable working  Turbine inlet pressure, the turbine Annual cash flow GA Waste heat Simple ORC, ORC with internal 8 different zeotropic
fluid and optimize cycle inlet temperature and the heat exchanger mixtures
state points for different fractions of the zeotropic mixtures
cycle configurations working fluids
Yang et al. [79] 2015 Select a suitable working  Evaporation pressure, superheat Net power output and GA Waste heat of diesel Simple orc R600a, R601a, R245fa,
fluid and optimize cycle degree, condensation temperature total investment cost engine R1234yf and R1234ze
state points for a simple and exhaust temperature at the
ORC outlet of the evaporator
Yang et al. [80] 2015 Optimize cycle state points Evaporation pressure, superheat Net power output per GA Waste heat of a diesel Simple ORC R245fa.
for a simple ORC degree and condensation unit heat transfer area engine
temperature and exergy destruction
rate
Andreasen et al. 2015 Select a suitable working  Expander inlet temperature, the Net power output GA Waste heat Split ORC, recuperated ORC Binary mixtures
[81] fluid and optimize cycle expander inlet pressure, the containing propane,
state points for an ORC composition of the mixture, the butane, isobutane,
intermediate pressure and the pentane or isopentane
outlet temperature of evaporator
Cavazzini et al. 2017 Select a suitable working  Evaporating pressure, temperature Energy efficiency ASD-PSO Waste heat Simple ORC 37 fluids;
[55] fluid and optimize design  difference at the pinch point in
parameters for an ORC both the heat exchangers,
approach point temperature
difference in both the heat
exchangers
Huster et al. [17] 2019 Select a suitable working  High and low pressure, WF mass  Net power, investment GA Waste heat of internal Simple ORC 122 fluids
fluid and optimize design  flow, WF superheating at the cost combustion engine
parameters for an ORC evaporator outlet
Zhao et al. [82] 2019 Optimize design Expander inlet pressure, expander Net power output PSO Waste heat of internal Recuperative ORC R245fa
parameters for a ORC inlet temperature, exhaust combustion engine
temperature at the evaporator
outlet
Xi et al. [83] 2015 Select a suitable working  Turbine inlet pressure and Annual cash flow and GA Waste heat Simple ORC and regenerative 26 fluids

fluid and optimize cycle
state points for an ORC

temperature

exergy efficiency

ORC

(continued on next page)
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Table 1 (continued)

Ref. Year Problem Description Design Variables Objective Algorithms  Heat source & sink Cycle configuration Working fluids
Hajabdollahi [84] 2015 Optimize design The electric cooling ratio and Annual benefit GA Waste heat of diesel Simple ORC —
parameters of the nominal power ratio engine and gas turbine
CCHP-ORC system
Feng et al. [85] 2015 Optimize cycle state points Evaporator outlet temperature, Exergy efficiency and ~ NSGA-II Waste heat Regenerative ORC and simple R123
for each cycle condenser temperature, degree of levelized energy cost ORC
configuration superheat, pinch point
temperature difference and degree
of supercooling
Feng et al. [86] 2015 Optimize cycle state points Evaporator outlet temperature, Exergy efficiency and  NSGA-II Waste heat Regenerative ORC and simple R123
for each cycle evaporator outlet pressure, heat exchanger area ORC
configuration condenser temperature, degree of per unit net power
superheat, pinch point output
temperature difference
Xi et al. [54] 2015 Select a suitable working  Expander inlet temperature and Exergy efficiency PSO Waste heat Transcritical ORC 14 working fluids
fluid and optimize cycle the evaporate pressure
state points for a
transcritical ORC
Gutiérrez et al. 2015 Select a suitable working  Condenser pressure, boiler Gross annual profit GA Waste heat Simple ORC n-Butane, R245fa,
[50] fluid and optimize cycle pressure R123
state points for a simple
ORC
Wang et al. [36] 2015 Select a suitable working  evaporating pressure, intermediate Net power output and PSO Waste heat from a Regenerative ORC butane, R124, R416A,
fluid and optimize cycle pressure, and degree of superheat exergy destruction rate diesel engine and R134a
state points for an ORC
Kalikatzarakis et 2015 Select a suitable synthesis The composition of the working Net present value GA and Waste heat of marine  Simple ORC R245fa, R245ca,
al. [87] and optimize design and fluid; mass flow rate, evaporation SQP propulsion engines R365mfc, R413a
operation parameters pressure and condensing pressure
Nazari et al. [88] 2016 Select a suitable working  Steam turbine inlet pressure, Exergy efficiency and  GA Waste heat of a gas Simple ORC R124, R152a, and
fluid and optimize cycle Organic turbine inlet pressure, product cost rate turbine R134a
state points for a Organic preheater pinch
combined steam-organic temperature
Rankine cycle
Galindo et al. 2016 Optimize cycle state points Evaporation pressure, Volume Coefficient, GA Waste heat of gasoline Simple ORC Ethanol
[38] for a simple ORC condensation pressure, Specific Investment engine
superheating temperature, ethanol Cost and Total area of
mass flow and the temperature at heat exchangers
the boiler outlet in the exhaust
gas side
Nasir et al. [49] 2016 Select a suitable working  VCC Condenser Temperature, VCC  Overall COP GA Waste heat Simple ORC R245fa, R123, R134a,
fluid and optimize cycle Condenser Sub cooling, ORC R1234yf, R1234ze (E),
state points Condenser Pressure Butane and Isobutane
Mahmoudi et al. 2016 Optimize design Fuel cell temperature, the current Product unit cost and GA Waste heat and Simple ORC R245fa
[44] parameters of a combined density, the carbon dioxide maximize the exergy liquefied natural gas
system turbine pressure ratio and the efficiency
pinch point temperature
difference in the evaporator
Ameri et al. [89] 2016 Optimize design Inlet steam pressure to MED, Distilled water NSGA-II Waste heat of a gas Simple ORC R123, R134a and

parameters of a combined
system

pinch point temperature
difference, evaporator pressure,
condenser pressure, refrigerant
mass flow rate and some
geometrical parameters for heat
recovery steam generator

production and the
total cost rate

turbine

R245fa
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v 32 0DYZ T pup Sudq 'S ‘OvYZ ‘q

110001 (0202) I IV pup A3.souq



Table 1 (continued)

Ref. Year Problem Description Design Variables Objective Algorithms  Heat source & sink Cycle configuration Working fluids
Bahari et al. [90] 2016 Optimize state points of Temperature of the cold tank of Efficiency of the GA Waste heat of a Simple ORC —
the combined cycle the Stirling cycle, the pressure overall combined cycle Stirling cycle

ratio and the temperature of the
ORC condenser

Javan et al. [91] 2016 Optimize design Diesel engine capacity, diesel Exergy efficiency, total GA Waste heat of internal Simple ORC R134a, R600, R123,
parameters of a combined engine part load, expander inlet cost rate of the system combustion engine and R11
system pressure, expander extraction

pressure, extraction ratio,
condenser pressure, and
evaporator pressure

Agromayor et al. 2017 Optimize design The expander inlet pressure, the Second law efficiency GA Waste heat Simple ORC, recuperated ORC 29 fluids
[40] parameters for different superheating temperature and the saturated,
cycle configurations approach, and the cold superheated, and transcritical
temperature of the cold source ORCs
Zhang et al. [39] 2018 Optimize design Evaporation temperature, overheat Exergy efficiency, NSGA-II Waste heat source in ~ Simple ORC R141b, R142b, R245ca,
parameters for a ORC degree, condensation temperature, levelised energy cost industry R245fa, R600a, and
undercooling degree, and working R601a
fluid flow rate
Han et al. [92] 2013 Select a suitable working  Turbine inlet pressure and The total irreversible GA Solar energy Simple ORC R600, R600a, R245fa,
fluid for a simple ORC temperature loss of the system R236fa, R236ea, R601,
R601a
Scardigno et al. 2015 Select a suitable working  Evaporating and condensing Energy and exergy NSGAII Solar energy Simple ORC R32, R41, R125, R134a,
[93] fluid and optimize cycle pressure, the maximum efficiencies and the R143a, R152a, R218,
state points for a simple temperature of the collector lowest LEC (levelized R227ea
ORC thermal fluid and a parameter energy cost)

representative of the temperature
profiles in the heat exchangers.

Hajabdollahi et 2015 Select a suitable working  Evaporator pressure, condenser Relative annual benefit GA Solar energy Regenerative ORC R123, R245fa and
al. [94] fluid and optimize cycle pressure, refrigerant mass flow isobutane
state points for an ORC rate, number of solar panel (solar

collector), storage capacity and
regenerator effectiveness

Noorpoor et al. 2016 Optimize design Turb1 inlet temperature, Turb2 Energy and exergy GA Solar energy Cascade ORC R600a
[95] parameters of a combined inlet temperature, Cond1 outlet efficiencies
system temperature, ORC Ex outlet
temperature and Gen pressure
Boyaghchi et al. 2015 Select a suitable working  Nanoparticles volume fraction, Daily thermal NSGA-II Solar and geothermal  Simple ORC R134a, R423A,
[96] fluid and optimize the turbine inlet mass flow rate, efficiency, total energies R1234ze and R134yf
design parameters for a pressure drop of ejector, area ratio product cost, total heat
combined energy system of ejector, turbine inlet pressure,  exchangers area, daily
turbine outlet pressure, turbine exergy efficiency

outlet temperature, pinch
temperature difference of
geothermal heater and collector’s

area
Andreasen et al. 2014 Select a suitable mixture  The composition of the working Net power GA Geothermal Simple ORC 30 zeotropic mixtures
[45] working fluid and optimize fluid, Expander inlet temperature, fluids
design parameters for a Expander inlet pressure, Hot fluid
simple ORC system outlet temperature
Fiaschi et al. [97] 2014 Select a suitable working  Temperatures and mass flow rates Power output GA Geothermal Simple ORC R227ea, R134a,
fluid and optimize cycle of the thermal utility R1234ze, R245fa,
state points for a simple n-butane, n-pentane,
ORC n-hexane, siloxane and
benzene
Kai et al. [48] 2015 Select a suitable working  Evaporation pressure, Net power output GA Geothermal Simple ORC Butane, R236fa,
fluid and optimize cycle superheating of the steam, the R227ea, R236ea,
state points for a simple minimum temperature in the R245fa, R245ca
ORC evaporator

(continued on next page)
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Table 1 (continued)

Ref. Year Problem Description Design Variables Objective Algorithms  Heat source & sink Cycle configuration Working fluids
Cao et al. [98] 2016 Optimize cycle state points Flash pressure, second flash Net power output, GA Geothermal Flash-ORC R245fa
for a flash ORC pressure, organic turbine inlet energy efficiency and
pressure exergy efficiency
Cao et al. [99] 2015 Optimize state points for a Flash pressure, second flash Net power output, GA Geothermal Flash-ORC R245fa
flash ORC pressure, organic turbine inlet thermal efficiency and
pressure exergy efficiency
Li et al. [100] 2016 Optimize cycle state points Number of stages, evaporation output power GA Geothermal Multi-stage ORC R123
temperature of different stage
Imran et al. 2016 Optimize cycle state points Evaporation temperature, pinch Specific investment NSGA-II Geothermal Simple ORC, recuperated ORC,  R245fa
[101] for different cycle point temperature difference and  cost and exergy and regenerative ORC
configurations superheat efficiency
Pierobon et al. 2013 Select a suitable working ~ Maximum pressure for the Thermal efficiency GA Biomass Simple ORC, double stage ORC A hundred fluids
[102] fluid; Optimize bottoming cycle
evaporating pressure for
each cycle configuration
Donateo et al. 2014 Select a suitable working  Evaporator pressure, overheating, Net power, working GA Lower temperature ORC with internal heat R123, R245fa and
[103] fluid and optimize cycle thermal recovering, mass flow rate fluids flow rate and heat sources exchanger R134a
state points overall expander
efficiency
Wang et al. [104] 2016 Select a suitable working  Evaporating temperature and the  Energy efficiency, GA Low grade heat energy Simple ORC R600a, R114, R245fa
fluid and optimize cycle condensing temperature exergy efficiency, and R245ca
state points payback period and
annual emission
reduction
Khaljani et al. 2015 Optimize the design Air compressor pressure ratio, Exergy efficiency and ~ NSGA-II Fuel Simple ORC R113, R123, R245fa
[105] parameters for a isentropic efficiencies of air total cost rate of the and R600
cogeneration system compressor and gas turbine, air system
preheater outlet temperature,
turbine inlet temperature, Pinch
point temperatures of HRSG and
evaporator, condenser and
evaporator temperatures
Ebrahimi et al. 2016 Optimize design Mass flow and pressure at the Energy nominee, GA Fuel Simple ORC
[106] parameters of a combined inlet of ejector, evaporating exergy nominee,
system temperature, compression ratio, integrated
minimum temperature of exhaust energy-exergy function
gas
Wang et al. [107] 2018 Optimize design Evaporating temperature, Levelized cost of Multi- Ocean Thermal Energy Simple ORC R717, R152a, R134a,
parameters for a ORC condensing temperature, warm energy (LCOE) and objective R227ea, R600a and
seawater temperature at the exergy efficiency PSO R601
outlet of evaporator, cool seawater
temperature at the outlet of
condenser, degree of superheat,
and depth of cool seawater
Bao et al.[108]. 2018 Optimize design Condensation temperature and the Net power output, GA Sea water and LNG Multi-stage condensation ORC  R134a
parameters an ORC inlet pressure of the LNG turbine electricity production
cost (EPC) and annual
net income
Sun et al. [109] 2017 Optimize the cycle state Turbine inlet pressure and Exergy efficiency PSO LNG two-stage ORC 20 fluids

points

condensing temperature
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ing, fitness function is the objective function or its deformation. The
usual method is to establish mathematical models based on physical
laws or empirical correlations to calculate fitness functions. However,
those models are usually complex and time-consuming because there
are a lot of equations and input parameters are required during the cal-
culation procedure. Therefore, some researchers tried to use data-driven
models instead of mathematical models. Data-driven models ignore the
physical principles and figure out the underlying relationship between
design variables and objective functions based on a large amount of
data that already exists. ANN is most widely used to build data-driven
models. Meanwhile, SVM is also gradually adopted. ANN is especially
suitable for complex nonlinear problems. The data, which are used to
build data-driven models, are usually from experiments or mathematical
models based on physical principles or empirical correlations. And these
data are split into a training set which is used to build the model and a
testing set which is used to measure the accuracy. Data-driven models
can greatly improve the computing speed of fitness function and reduce
the time spent on optimization calculation.

Rashidi et al. [56] carried out a parameters optimization of an ORC
system based on ANN and Artificial Bees Colony (ABC). In their study,
they used ANN to predict the thermal efficiency, exergy efficiency and
specific network, which are objective functions of optimization problem.
Massimiani et al. [57] used ANN to obtain analytic expressions for all
objective functions and constrains of the defined optimization problem
for an ORC system, thus transforming the original complex optimization
problem into a derivative-free optimization problem. Then they solved
the derivative-free optimization problem using the active set algorithm.
Emadi and Mahmoudimehr [58] also used ANN to estimate the objective
functions when they used GA to solve the multi-objective optimization
problem of a cascade ORC system. Compared to using a mathematical
model, using ANN can reduce optimization run time from 16 h to 10 min
for each optimization execution.

However, the accuracy and generalization of the data-driven model
depend on the training data. Most data-driven models perform poorly
when the input data are beyond the range of training data. Therefore,
some researchers only use data-driven models to calculate complex in-
termediate parameters and mathematical models to calculate objective
functions, which was called the hybrid model. This can reduce part of
the calculation time without affecting the accuracy of models.

3.4. Component selection and sizing

After working fluids, cycle configuration and operating parameters
of the ORC system are determined, the next step is to select and de-
sign the components used in the ORC system. For most ORC systems,
the main components include heat exchangers, pump, and expander.
With the development of technology, there are more and more types
of equipment. Although different types of equipment have similar func-
tions, they differ greatly in cost and efficiency. Therefore, the types of
component will affect the overall performance and investment cost of
the system. The goal of components selection is to obtain suitable com-
ponents which can result in the high overall system performance. Com-
ponent selection is usually done by engineers according to some heuris-
tic guidelines, which is often limited by the engineer’s experience, ca-
pabilities, and time constraints and will result in suboptimum selection
results. Expert system is a potential solution to solve this question. How-
ever, as far as the authors know, there are few expert systems designed
specifically for ORC system component selection. Only Richard Law et
al. [13] developed a knowledge-based system for the selection and pre-
liminary design of equipment for waste heat recovery. This system can
select the appropriate technique according to the heat source and sink
conditions and product requirements, and carry out the preliminary de-
sign of the selected technique.

After component selection is completed, proper sizing of components
needs to be determined, because it is very important for an efficient ORC
system operation. The conventional sizing method is based on the design
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condition and some safety factors. In this process, a large number of geo-
metric parameters are determined empirically. As a result, although the
components can meet the demands, they are mostly uneconomical and
inefficient. Therefore, research was conducted attempting to optimize
the size of components to achieve higher economy and efficiency.

GA and PSO were usually used for components sizing. Cinnella et al.
[59] conducted a multi-objective optimization for 11 geometric param-
eters of the turbine by using GA. In their work, they gave a set of optimal
geometric parameters of the airfoil, which can lead the minimum mean
drag coefficient and its standard deviation. Erbas et al. [60] also car-
ried out the geometric parameters optimization of turbines using GA,
taking into account 6 design variables and two objective functions (full
load efficiency and off-design efficiency). Rahbar et al. [61-63] firstly
optimized 9 parameters of the turbine with efficiency as the objective
function, and then optimized those parameters with efficiency and over-
all size as the objective function. In their studies, there used standard
GA and NSGA-II respectively. Later, they used other three parameters as
design variables to optimize the size of the radial inflow turbine. Zhai
et al. [64] also used GA to optimize size of the turbine, while they con-
sidered the entire ORC system model rather than just the component
model.

Because heat exchangers and other equipment are widely used in
the industrial field, only a few studies are about the size optimization
of heat exchangers used in ORC systems. Imran et al. [65] carried out
a multi-objective optimization of evaporator used in ORC system. They
chose the chevron type plate evaporator and took length, width and
plate spacing as the design variables. The objection functions are cost
of evaporator and total pressure drop, and NSGA-II was used. Xu et al.
[66] conducted a multi-objective optimization of evaporator and con-
denser for a subcritical ORC system. They considered 9 design variables
and three objective functions, including thermal efficiency, specific cost
and heat exchanger area per unit power output. GA was used to solve the
optimization problem and fuzzy multi-criteria decision-making method
was used to select suitable type of heat exchanger. Liu et al. [46] car-
ried out a multi-objective optimization of fin-and-tube evaporator using
PSO. Inlet radius of the tube side, the inlet radius of the shell side, fin
height, fin thickness and fin spacing were considered as design variables,
and total annual cost, volume of tube bundle, and exhaust pressure drop
were considered as objective functions.

4. Discussion and further work
4.1. Summary of research status

From the existing literatures, the application of artificial intelligence
in design of ORC systems mainly includes three aspects: decision mak-
ing, parameters optimization and parameter prediction. Among these
aspects, parameters optimization is the most concerned by researchers,
while there are few researches related to decision making and parameter
prediction based on data-driven model.

4.1.1. Decision-making

Although expert system is a good decision-making tool, there are
few researches on the development of expert systems for design of ORC
systems. In the selection of working fluids and components, there are a
lot of heuristic guidelines. Therefore, it is necessary to organize these
heuristic guidelines into an expert system to preselect of working fluids
and components. The essence of decision making based on expert sys-
tem is to use computer program to do repetitive work instead of human.
In ORC design, it is only used to exclude unsuitable working fluids, cycle
configuration, or component types according to simple guidelines. For
example, it can be used to select working fluids which flammability, cor-
rosivity, temperature range and other parameters meet the predefined
standards, as shown in Fig. 9. Moreover, the CBR is an efficient and fast
method to make initial decision based on previous data. However, this
decision method cannot guarantee the optimal result. It only be used as
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Fig. 9. An expert system for working fluids preselect-
ing.
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Fig. 10. Characteristics of parameters optimization in ORC systems design.

a reference in the early stage of design. However, in the design of ORC
systems, decision making will play a smaller and smaller role.

4.1.2. Parameters optimization

Fig. 10 shows the characteristics of parameters optimization in de-
sign of ORC systems. The design variables which have been considered
in existing literature mainly involves four aspects: cycle parameters, in-
teraction parameters between the cycle and heat source or sink, parame-
ters of heat source or sink and component parameters. It contains almost
all the variables in the ORC design except the type of working fluids
and the cycle configuration. And the most commonly considered pa-
rameters are cycle state parameters. The objective function which have
been considered in existing literature mainly involves product indica-
tor, efficiency indicator, economic indicators and environmental impact.
Among them, product indicator and efficiency indicator are the most
commonly adopted. In the early stage, researchers only considered one
objective function. In recent years, most researchers have considered
multiple objective functions. Meanwhile, economic indicator and envi-
ronmental impact have been paid more and more attention. For the cal-
culation of objective function, researchers began to use the data-driven

model or hybrid model to replace the complex mathematical model. In
the future, the solution of parameters optimization problem in design
of ORC system would be based on intelligent algorithm and data-driven
model. In addition to GA and PSO commonly used in existing researches,
many new intelligent optimization algorithms have been developed in
recent years, such as quantum genetic algorithm [77], flower pollination
algorithm [78], shuffled frog leaping algorithm [79] and so on. This re-
quires flexible selection of different algorithms when solving parameters
optimization problems in following researches.

4.1.3. Parameters prediction

In recent years, with the rapid development of machine learning, re-
searchers have tried to extract some valuable information from a large
amount of data. One of the embodiments of this trend in ORC design
is the parameter prediction method based on data-driven model that is
widely concerned based on data-driven model. Table 2 presents a sum-
mary of data-driven models discussed in this paper. ANN is most widely
used methods for parameter prediction, owing to their good nonlinear
mapping ability and high degree of parallel processing of information
capacity. As shown in Table 2, the published data-driven model mainly



Table 2

A summary of data-driven models discussed in this study.

Ref. Year Input features Output Algorithms Research Objective Level
Arslan et al. [110] 2011 Vapor fraction of geothermal water, working fluids, outlet Generated power and required ANN Predict value of objective function during operating System
temperature of geothermal water from the system, outlet circulation pump power parameters optimization for an ORC-binary system
temperature of working fluid from evaporator and outlet using geothermal energy
temperature of working fluid from condenser, outlet
pressure of working fluid from evaporator
Rashidi et al. [56] 2011 Outlet pressures from the second and third pumps Thermal efficiency, exergy ANN Predict value of objective function during operating System
efficiency and specific network parameters optimization for a regenerative ORC system
with two feedwater heaters
Arslan et al. [111] 2014 Vapor fraction of geothermal water, working fluids, outlet Generated power and required ANN Predict the performance of ORC-Binary power plant System
temperature of geothermal water from the system, outlet circulation pump power
temperature of working fluid from evaporator, and outlet
temperature of working fluid from condenser
Zhang et al. [112] 2014 Mass flow rate and the inlet temperature at evaporator of Energy conversion efficiency SVM Predict value of objective function during operating System
waste heat parameters optimization for controlled simple ORC
system
Agromayor et al. [40] 2017 Evaporation temperature and the condensation temperature  Thermal efficiency, exergy ANN Predict value of objective function during multi-objective System
efficiency and the annual emission optimization for a simple ORC system and a
reduction, and the minimization regenerative ORC system
of payback period
Zhang et al. [113] 2017 Vehicle speed, the traffic lights at the intersection, the Temperature and the mass flow SVM Predict dynamic behavior of heat source to adjust System
automobile gear position and clutch state rate of exhaust gas operating parameters of a simple ORC system
Dong et al. [114] 2018 Hot water temperature at the evaporator inlet, hot water power output SVM; ANN Predict the performance of an experimental rig of a System
temperature at the evaporator outlet/pre-heater’s inlet, hot simple ORC, and compare the differences of two
water temperature at the pre-heater’s outlet, cooling water algorithms
temperature at the condenser inlet, cooling water
temperature at the condenser outlet, working fluid
temperature at the expander inlet/evaporator outlet,
working fluid temperature at the expander
outlet/condenser inlet, the working fluid temperature at
the pre-heater outlet/the evaporator inlet and the working
fluid temperature at the condenser outlet/working fluid
pump inlet
Kilig et al. [115] 2019 Working fluids, steam generator temperature, condenser Efficiency ANN Predict the performance of a simple ORC system System
temperature, subcooling temperature, and superheating
temperature
Palagi et al. [116] 2019 Temperature and pressure of the working fluid at the inlet of Mass flow rate and pressure of ANN Predict the dynamic behavior of a simple ORC system System
the turbine, mass flow rate and temperature of the thermal working fluids
oil at the inlet of the evaporator
Zhi et al. [117] 2019 Heat source temperature, heat sink temperature, mass flow Thermal efficiency, exergy ANN Predict the best operating parameters and performance of System
rate of R1234ze(E), pump efficiency, turbine efficiency, and efficiency, best high pressure a transcritical ORC system
regenerator effectiveness
Khosravi et al. [118] 2019 Solar radiation, well temperature, working fluid mass flow Net power output, energy ANN Predict the performance of a geothermal based-ORC System
rate, turbine output pressure, surface area of the solar efficiency, exergy efficiency and equipped with solar system
collector and preheater inlet pressure levelized cost of energy (LCOE)
Herawan et al. [119] 2017 Throttle angle, engine speed, vehicle speed, and exhaust Power output ANN Predict the performance of turbine in the ORC system Component
temperature which were driven by waste heat of an aspirated spark
ignition engine
Yang et al. [120] 2018 Working fluid volume flow rate, expander torque, expander Power output of the single screw  ANN Predict value of objective function during parameters Component
inlet pressure, expander outlet pressure, expander inlet expander optimization of a simple ORC for diesel engine waste
temperature, condenser outlet temperature and pump heat recovery
outlet pressure
Huster et al. [18] 2019 Pressure, entropy and enthalpy Physics property of working fluids ANN Predict the physics property of working fluids during the Working fluids
calculation of a simple ORC performance
Huster et al. [17] 2019 Pressure, temperature Physics property of working fluids ANN Predict the physics property of working fluids during the Working fluids
calculation of a simple ORC performance
Luo et al. [121] 2019 Molecular groups, topological index Normal boiling temperature, ANN Predict the key properties to calculate other properties Working fluids

critical pressures
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Fig. 11. MINLP optimization problem for ORC design.

involves three aspects: working fluids, components, and system. More-
over, most of the researches are aimed at establishing an alternative
model for performance calculation of ORC systems, because the con-
ventional mathematical model is very complex and time-consuming. In
some studies, a data-driven model has been used to calculate the fitness
function to reduce the computation time of the optimization process.
This is exactly the development trend in the future mentioned in the
previous paragraph. It is worth mentioning that the accuracy and gen-
eralization ability of data-driven model are very important for the appli-
cation of that model. Therefore, how to train a high accuracy and strong
generalization ability of data-driven is the key of parameter prediction.
The performance of the data-driven model depends on the algorithm
and training data. Current studies show that ANN is a good algorithm to
deal with parameter prediction in ORC system. However, there are other
algorithms need to be studied, such as SVM. In addition to selecting the
appropriate algorithm, training data collection is very important. The
training data should cover the whole range of all design variables. Com-
pared with collecting experimental data, it is more feasible to obtain
training data through mathematical model. In addition, if the training
data cannot cover the whole range of design variables, the model needs
to be retrained during the calculation.

4.2. A new trend in ORC systems design

Although the use of Al technique has made it easier to design ORC
systems, these factors including working fluids, cycle configurations
and components are not really integrated into a global optimization
problem. The separation of working fluids selection, cycle configuration
selection, operating parameters optimization and component selection
and sizing may lead to suboptimal solutions if the preselection of the
working fluids, cycle configurations or component type fails. To capture
the trade-offs between the different factors, a potential approach is to
integrate the various factors into an integrated optimization problem. In
previous studies, only the operating parameters and geometric parame-
ters of the components are usually the parameters that can be optimized.
CAMD method [4] can generate all possible organic working fluids with
different functional groups as the element. This allows the working flu-
ids to be integrated into the optimization problem as a design variable.

Similarly, superstructure method [29] includes almost all cycle config-
urations. Therefore, cycle configurations also can be integrated into the
optimization problem as a design variable. In this way, ORC design can
obtain the optimal design by solving a global optimization problem, as
shown as in Fig. 11. Schilling et al. [122] have made some worthwhile
attempts. In their study, they proposed a novel method base on CAMD
and superstructure to solve the integrated design problem of working
fluid, state points and cycle configuration for ORC systems. For such
integrated optimization problem, the design variables should include
the type of working fluids, cycle configuration, the type of component,
component geometric parameters, and operating parameters mentioned
in Section 3.3. It is worth mentioning that the first three variables are
discrete variables. Therefore, such integrated optimization problem is a
mixed integer nonlinear programming (MINLP) optimization problem.
The MINLP optimization problem is an important problem in mathe-
matics [123]. However, such integrated optimization involves a variety
of design variables and constraints, which make it difficult to solve the
problem. The most difficult part in solving the integrated optimization is
the quick search of the design space and the quick calculation of the ob-
jective function. Intelligent algorithm is a powerful tool for quick search
in the design space. At present, the more effective algorithm is a two-
level hybrid algorithm of GA and sequential quadratic programming al-
gorithm (SQP) [35]. In outer level, GA is used to find the best integer
solutions, then the original MINIP decomposes to a series of nonlinear
programming problems which are solved by SQP. In order to calculate
the objective function, a complex mathematical model containing many
physical principles needs to be established, such as physical property
calculation equations, cycle performance calculation equations and so
on. The calculation of this mathematical model is very time-consuming.
To calculate the objective function quickly, data-driven models should
be used partly or completely instead of complex mathematical models.

5. Conclusion

In this study, design problems, solving methods with artificial intelli-
gence technique and application cases in the design of Organic Rankine
Cycle system are summarized for the first time. The main findings and
contributions of this paper are summarized as following:
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1) The design process of Organic Rankine Cycle systems contains four
steps. In the process of step completion, three problems are mainly
involved, i.e. decision making, parameters optimization and param-
eter prediction. The corresponding solving methods and application
examples are also presented and these results can be used as refer-
ences for subsequent studies.

2) The selection of working fluids, cycle configurations and component
types belongs to the category of decision-making problem. This study
introduces two solving methods which are expert system and case-
based reasoning, and expert system is the most promising method.
However, few studies have been done on customized expert system
for design of Organic Rankine Cycle systems, which would be the
direction of future research.

3

~

Except for decision making, other design problems could be trans-

formed into a parameter optimization problem. Genetic algorithm
is used to solve the optimization problem in most studies. Apart
from the standard genetic algorithm, several improved algorithms
have been adopted to obtain the better performance. The calcula-
tion of fitness function is very important for the implementation of
genetic algorithm. Conventional fitness calculation methods are usu-
ally based on a complex mathematical model whose calculation of-
ten has heavy computing burden. Due to the fast computing speed
and high computing accuracy of data-driven models, many studies
use data-driven models to calculate fitness.

4

—

Working fluids, cycle configurations and operating parameters are

optimized simultaneously by solving a mixed integer nonlinear pro-
gramming optimization problem, that is a new trend in design of
Organic Rankine Cycle systems.
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