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a b s t r a c t 

Converting thermal energy into mechanical work by means of Organic Rankine Cycle is a validated technology to 

exploit low-grade waste heat. The typical design process of Organic Rankine Cycle system, which commonly in- 

volves working fluid selection, cycle configuration selection, operating parameters optimization, and component 

selection and sizing, is time-consuming and highly dependent on engineer’s experience. Thus, it is difficult to 

achieve the optimal design in most cases. In recent decades, artificial intelligence has been gradually introduced 

into the design of energy system to overcome above shortcomings. In order to clarify the research field of arti- 

ficial intelligence technique in Organic Rankine Cycle design and guide artificial intelligence technique to assist 

Organic Rankine Cycle design better, this study presents a preliminary literature summary on recent progresses 

of artificial intelligence technique in organic Rankine cycle systems design. First, this study analyzes four main 

procedures which constitute a typical design process of Organic Rankine Cycle systems and finds that design 

problems encountered during design process can be divided into three categories: decision making, parameter 

optimization and parameter prediction. In the second section, a detailed literature review on each design proce- 

dures using artificial intelligence algorithms is presented. At last, the state of art in this field and the prospects 

for the future work are provided. 

1

 

g  

t  

m  

e  

m  

a  

t  

t  

p  

e

 

e  

s  

t  

c  

c  

a  

h  

c  

a  

k  

t  

a  

d  

p

 

g  

c  

c  

D  

E  

s  

m  

w  

o  

h

2

(

. Introduction 

According to the BP Statistical Review of World Energy 2019 [1] ,

lobal energy consumption increased by 2.9% in 2018 and will continue

o increase, which will lead to increasing in energy prices and environ-

ental challenges. Therefore, there is a growing interest in effectively

xploiting low and medium grade thermal energy. Solar energy, geother-

al energy, industrial waste heat, biomass, and ocean thermal energy

re common low and medium grade thermal energy, which have at-

racted the researchers around the world. Among the currently available

echnologies, the Organic Rankine Cycle (ORC) has been considered as a

romising solution to effectively convert low and medium grade thermal

nergy into electricity. 

For a given heat source, an appropriate ORC system is the key to

fficient utilization of energy of heat source. Therefore, design of ORC

ystems has become the focus of researchers. The design of ORC sys-

ems usually includes the following aspects: working fluid selection,

ycle configuration selection, operating parameters optimization, and

omponent selection and sizing [2] . There are a variety of design vari-
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bles and constraints in the design process, which makes it become a

ighly complex problem. Meanwhile, the selection of working fluids,

ycle configuration and component mainly depend on the experience

nd knowledge of the engineers, which make the design to become a

nowledge-intensive job and usually needs large-scale expert interven-

ions. Moreover, since the system is highly dependent on heat source

nd sink, a redesign is required for almost every system. Therefore, the

esign of ORC system is a complex and tedious work, and only a few

rofessional and experienced engineers or researchers can complete it. 

In recent years, with the development of artificial intelligence (AI), a

rowing number of countries have launched programs to integrate ma-

hine learning and other AI technique into energy system design pro-

esses, such as the “DIFFERENTIATE ” program launched by the U.S.

epartment of Energy’s (DOE’s) Advanced Research Projects Agency-

nergy (ARPA-E) [3] . This trend also appears in the ORC systems de-

ign. In the past few years, AI has made significant progress in pro-

oting the development of ORC systems design such as computer-aided

orking fluids design [4] , automatic cycle configuration generation or

ptimization [ 5 , 6 ], and multi-objective intelligent optimization of op-

rating parameters [7–9] . Compared with the empirical and subjective
article under the CC BY-NC-ND license. 
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Fig. 1. Simple ORC: (a) schematic diagram; (b) T-s diagram. 
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esign work of humans, AI is more efficient and productive in the ORC

ystems design. Intelligent methods such as evolutionary algorithms and

xpert system are showing great potential in improving ORC systems de-

ign efficiency and quality. Therefore, more and more researchers are

rying to apply the AI in the design of ORC systems. 

However, the relevant studies are still fragmentary and lack of sys-

ematic sorting. As a result, researchers are unable to transform spe-

ific design problems into appropriate general problems, and thus can-

ot choose appropriate intelligent algorithms to solve these problems.

herefore, this study aims to review the existing application of AI algo-

ithms in ORC systems design, provide some practical advice on how to

onduct AI methods to improve ORC systems performance, and clarify

he future development direction of ORC systems design aided with AI.

his study is organized as following. Section 2 briefly introduces ORC

ystems design problem and categorizes them into three types of prob-

ems. In Section 3 , explanation of each design problem and literature

eview of corresponding application examples of intelligent algorithms

re presented. Section 4 summarizes the state of art of this research

eld and then discusses a new trend in design of ORC systems. In the

ast section, main conclusions and contributions of this study are given.

. Design problems of ORC system 

ORC refers to the Rankine cycle which uses organic substances

ith low boiling points as working fluid. As a promising technology

or the utilization of low and medium temperature heat source, ORC

s widely used in the utilization of solar energy, geothermal, waste

eat and ocean thermal energy, etc. There are hundreds of common

rganic working fluids, including hydrocarbons, hydrofluoroolefins,

ydrochloroflurocarbons, siloxanes, alcohols, fluorinated ethers, ethers

nd so on [10] . Due to the variety of organic fluids, the design of ORC

ystem often needs to choose a suitable working fluid. The simple ORC

ncludes four processes: evaporation, expansion, condensation and

ompression, as shown in Fig. 1 . With the further research on ORC,

any new configurations of the ORC have been proposed. Representa-

ive configurations include regenerative ORC ( Fig. 2 ), transcritical ORC

 Fig. 3 ) and auto-cascade ORC ( Fig. 4 ) [ 11 , 12 ]. For a given heat source,

ifferent cycle configurations can be used to achieve the purpose of

hermal energy utilization. Therefore, cycle configuration selection

s another important part in design of ORC system. Similarly, there

re many types of devices that implement a particular process. For

xample, the expansion process can choose turbine, screw expanders,

croll expanders, reciprocal piston expanders and so on. Since the
ype of components significantly affects the investment cost of ORC

ystem, component selection is also an important part of ORC design. In

ddition, the operating parameters also affect the performance of ORC

ystem. Therefore, the operating parameters also need to be optimized

fter the suitable working fluids, cycle configuration and components

re selected. In general, the design variables to be considered in ORC

esign include working fluid, cycle configuration, component and

perating parameters. Moreover, different performance indicators are

dopted to evaluate the system, such as safety, economy, efficiency and

nvironmental effect. For the design of ORC systems, key factors which

hould be considered mainly includes performance indicator, system

arameters and different heat sources and sinks, as shown in Fig. 5 . 

To obtain a system with best performance, it is necessary to carry

ut a global optimization. Unfortunately, with so many design variables

nd objectives, the design problem of ORC system is a highly complex

nd non-linear problem, and cannot be solved by using mathematical

ethod. Generally speaking, only the optimization of operating param-

ters could be solved theoretically by strict mathematical methods, and

he selection of working fluids, cycle configuration and components can

nly be evaluated one by one. Therefore, the traditional design flow of

RC systems mainly includes four steps, as showed in Fig. 6 . Firstly,

vailable cycle configurations, working fluids and component types are

creened out from some predefined options based on knowledge, expe-

ience and rules. Secondly, amounts of available design options are gen-

rated by using stochastic combination method. Then, for each option,

ome design parameters, such as cycle state points, are optimized by

sing single or multiple objectives optimization algorithms. Finally, all

vailable options with optimal parameters are compared and screened

ccording to predefined objective. After that, the optimal design is ob-

ained. In fact, due to the large number of operating parameters, the op-

imization problem of operating parameters is also a complex nonlinear

roblem, so it is almost impossible to use strict mathematical methods

o solve it. Therefore, heuristic optimization algorithm is the only way

o solve the optimization problem of operating parameters. In addition,

t is impossible to evaluate all working fluids, cycle configurations and

omponents in the actual design because of the large number of options.

t is common practice to select a small number of options for evaluation

ased on experience, knowledge and rule. This method is very subjec-

ive and can hardly obtain the optimal design. Therefore, some emerg-

ng methods, such as AI, must be used to overcome the shortcomings of

raditional methods. 

Thesteps in traditional design flow can be reclassified as the follow-

ng four procedures: working fluid selection, cycle configuration selec-
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Fig. 2. Regenerative ORC: (a) schematic diagram; (b) T-s diagram. 

Fig. 3. Transcritical ORC: (a) schematic diagram; (b) T-s diagram. 
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ion, operating parameters optimization and component selection and

izing [2] . In this study, how to complete each design process is de-

ned as a design problem. However, solving those design problems of

RC system in line with empirical practice does not guarantee an effi-

ient system. So, more researchers are now applying AI technology to

onduct ORC systems design for better system performance. According

o the characteristic of those design problems, they are classified into

wo categories in this study: decision making, parameters optimization.

oreover, parameter prediction is often involved during the process of

olving the above two problems. The relationship between four design

roblems and three categories problems is shown in Fig. 7 . Decision

aking in general can be divided into two categories: one is based on

euristic guidelines, and the other is based on the value of the evalu-

tion indicator. For example, the selection of potential working fluids

or an ORC system is in the former category, while the selection of most

fficient working fluids is in the latter category. In this paper, the for-

er category was called ‘Yes/NO decision problem’, while the latter

as called ‘Max/Min decision problem’. For Yes/NO decision problem,

wo decision-making algorithms are usually adopted in design of ORC

ystem, namely expert system [13] and Case-Based Reasoning method

14] . Expert system is dependent on expert experience and guidelines
hereas Case-Based Reasoning is based on existing cases. For Max/Min

ecision problem, it can be solved by sorting method and optimization

lgorithms. The objective of parameters optimization is to find a set of

arameters to obtain a best performance of the ORC system. According

o the number of objective functions, parameter optimization problems

an be divided into single-objective optimization and multi-objective

ptimization. Genetic algorithm (GA) and Swarm intelligence algorithm

SIO) were the most common algorithms to solve such problems. In

he processes of solving decision making and parameter optimization

roblems, it is often necessary to calculate some parameters (i.e. per-

ormance insiders and objective functions) by building complex mathe-

atical models based on physical principles. These models are complex

nd computationally intensive. Therefore, researchers tried to use data-

riven models to predict the values of the required parameters. Data-

riven models developed based on large amounts of data collected from

imulation or experiment. Artificial Neural Network (ANN) and Support

ector Machine (SVM), which are commonly used algorithms for param-

ter prediction in this research field. The right column of Fig. 6 lists the

ntelligent algorithms that are most widely adopted in the design of ORC

ystem. Detailed descriptions of these intelligent algorithms are readily

vailable in the public literature and will not be covered in this study. 
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Fig. 4. Auto-cascade ORC: (a) schematic diagram; (b) T-s diagram. 

Fig 5. Key factors considered in design of ORC 

systems. 
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. Literature review of intelligent design for ORC system 

.1. Working fluid selection 

Different from the traditional Rankine cycle that only uses water as

orking fluid, there are hundreds of organic fluids that can be used in

RC. Different working fluids have different physical properties which

an affect the efficiency of ORC system, the size of the components, the

ystem stability and safety, as well as the environmental concerns. For

xample, the critical temperature and the normal boiling point deter-
ine the operating temperature range of the working fluids. Thermal

onductivity can affect heat transfer area of heat exchangers. The ozone

epletion potential (ODP), global warming potential (GWP) and the at-

ospheric lifetime (ALT) can determine whether the working fluid is

ermitted by environmental regulations. More detailed information can

e found in the Ref. [10] . Therefore, the selection of working fluids is

ery important in the design of ORC systems. Generally, to obtain a

uitable working fluid, designer or engineer will propose some heuris-

ic guidelines, which are based on their experience and knowledge, to

dentify a list of potential candidates working fluids. Subsequently, each
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Fig. 6. The traditional design flow of ORC system. 

Fig. 7. ORC systems design problem classification and algorithms. 
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fl  
andidate working fluids will be evaluated by operating parameters op-

imization for the predefined cycle configuration. If necessary, compo-

ent selection and sizing will be carried out to evaluate the economy

f the whole system. Finally, suitable working fluids will be selected

ccording to these evaluation results. 

In this research field, most researchers conduct their own work by

ollowing the procedures mentioned above. Researchers keep coming up

ith new heuristic guidelines, such as Jacob number [15] , near-critical

egion triangle [16] , and so on. In addition, there are some mandatory

overnment regulations. For example, GWP, ODP, corrosive, flammable,
nd toxic standards must meet the relevant requirements. Almost all re-

earchers manually select potential candidates of working fluids from

xisting ones. The number of working fluids in the list of potential candi-

ates ranges from a few to hundreds. As more new organic fluids emerge,

he work will become more time-consuming. If an expert system is de-

eloped using heuristic guidelines that are wildly accepted, this will help

educe the workload of designers. To the authors’ knowledge, no studies

ave been conducted on this topic. 

The physical property is the main basis for the selection of working

uids according to heuristic guidelines. Physical properties usually can
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e measured by experimental methods or calculated by various equa-

ions of state. These methods are available in the existing literature

nd are not described in detail in this study. However, there are no

vailable experimental data and calculation methods in some cases. So,

ome researches use data-driven model to predict the physical proper-

ies of working fluids. Huster et al. [ 17 , 18 ] used ANN method to pre-

ict the thermodynamic and transport properties of 37 working fluids.

he training data is from the CoolProp. For different sates of working

uid, they trained different models with different input data (pressure

or the model of saturated state, pressure and entropy for models of sub-

ooled liquid and superheated vapor). Temperature, enthalpy, density,

eat conductivity coefficient, viscosity and Prandtl number are the out-

ut variables. 

A few researchers have noticed that computer-aided molecular de-

ign (CAMD) can make a difference in the selection of working flu-

ds. In CAMD, working fluids can be described using functional groups,

hich can form different fluids by putting them together in different

ays. Then thermodynamic properties of working fluids can be pre-

icted based on the functional groups which it is composed by using an

quation of state or data-driven models. And the structure of molecule

lso can be optimized. In this sense, CAMD method allows researchers

o design a suitable working fluid, which may not exist currently, for a

articular ORC configuration. 

Papadopoulos et al. [19] used CAMD method for the first time to

elect the suitable pure working fluids for a simple ORC system, and

ater applied this method to design the working fluid mixtures for the

ame ORC system. Then, Palma-Flores et al. [20] used CAMD method

o identify a new working fluid which could lead to a higher thermal ef-

ciency. Su et al. [ 21 , 22 ] also used CAMD method to design and select

he working fluids for a simple ORC system with a detail thermody-

amic model. For CAMD method, how to calculate the physical proper-

ies of working fluids according to the functional groups is very impor-

ant. Two common methods are empirical group-contribution methods

23] and molecular-based equations of state based on statistical associat-

ng fluid theory [24] . Similarly, some researchers developed data-driven

odels to calculate the physical properties. Different from the models

entioned in the previous paragraph, those models should base on the

unctional groups [4] . Su et al. [25] developed an ANN model based on

olecular groups and a self-defined topological index to predict normal

oiling point temperature of pure organic fluids. In their another study,

ritical temperature and pressure, liquid density and heat capacity were

alculated using empirical correlations based on normal boiling point

emperature. 

.2. Cycle configuration selection 

Many researchers have proposed some new cycle configurations

ased on the simple ORC, that have been proved to be superior to the

imple ORC system. Such as the multiple ORCs in series or in parallel

11] , cascade ORC [26] , multiple stages condensation ORC [27] and so

n. Some studies have shown that cycle configuration can significantly

ffect the performance of the ORC system [28] . Therefore, cycle config-

ration selection becomes an important work in the design of ORC sys-

ems. In the traditional design procedure, this part of the work also relies

n the experience and knowledge of designers. Usually, the designer se-

ects some potential candidate configurations from existing ones, and

hen carries out subsequent design for each cycle configuration, and de-

ermines the final cycle configuration according to the performance of

ach design results. This method usually fails to screen out the optimal

ycle configuration and results in a suboptimal solution, because it is

ifficult for the designer to include all possible cycle configurations in

he candidate configurations. Moreover, screening results which rely on

he experience are not guaranteed to be reliable. 

To overcome the above problems, superstructure method was in-

roduced in cycle configuration selection. Superstructure of ORC con-

guration is a collection of a huge number of possible cycle config-
rations which are constructed manually by adding and removing a

rocess, such as regeneration, reheating, turbine bleeding and multi-

tage cycles, in turn. Therefore, the superstructure consists of all pos-

ible cycle configurations and the optimum cycle configuration can be

btained through solving subsequent mixed-integer non-linear program-

ing (MINLP) problem. Lee et al. [29] selected the optimal cycle con-

guration for an ORC system utilizing LNG cryogenic energy. In their

tudy, the superstructure includes about 1024 possible cycle configu-

ation alternatives. Yu et al. [30] proposed a method to integrate ORC

nto heat exchanger networks considering a superstructure with optional

urbine bleeding and regeneration. Bao et al. [31] conducted a simulta-

eous optimization of cycle configuration and working fluid for a three-

tage condensation ORC system, and considered nine cycle configura-

ions in their superstructure. 

Although superstructure method can obtain the optimal cycle config-

ration, the modeling of a superstructure is a time-consuming and com-

lex task, and it might include a huge number of cycle configurations

hich are infeasible or even meaningless. To overcome those weakness,

offolo et al. [6] have developed an improved method based on the su-

erstructure method, namely superstructure-free method or HEATSEP

ethod [32] , which have been successfully applied to the selection or

esign of cycle configuration of ORC system [5] . Instead of generating

ll possible cycle configurations in advance, this method generates new

onfigurations from the basic configuration in the optimization process

ccording to preset combination rule [ 33 , 34 ]. By encoding the cycle

onfiguration into chromosomes in the GA, this method avoids enumer-

ting all possible cycle configurations, thus saving computing time. The

etail information about this method can be found in references [6] .

in et al. [35] applied this method in the design of LNG energy recov-

ry ORC system, and obtained the optimal cycle configuration for pure

orking fluid and mixture working fluids respectively. Although only a

ew researchers have focused on this method, it is more intelligent than

he superstructure method and will be the future research direction. 

.3. Operating parameters optimization 

Operating parameters in ORC system refer to the parameters that

an be manually adjusted in the system design, including the cycle state

oint, the temperature and mass flow rate of heat source/sink, etc. Op-

rating parameters are very important for the performance of ORC sys-

ems. With any given heat source, ORC system can operate with differ-

nt sets of operating parameters, only a few sets of operating parameters

ould result in the best performance. The goal of operating parameters

ptimization is to find such a set of operating parameters. Therefore,

perating parameters optimization is a very important work in the de-

ign of ORC systems. The usual method is to first determine the design

ariables, objective functions and constraints, then establish an ORC

odel to find the relationship between the objective function and de-

ign variables, transform it into an optimization problem, and then ob-

ain the optimal parameters by solving the optimization problem. There

re two processes where intelligent algorithms are used. Generally, the

ptimization problem is a nonlinear problem and difficult to solve using

raditional mathematical methods. Therefore, researchers usually use in-

elligent algorithms to solve it, such as GA and PSO. Moreover, physical

odels of some ORC systems are very complex, so data-driven models

re used as surrogate models to predict the value of objective functions

ased on design variables, which can save a lot of computation time. 

For the optimization problem of operating parameters, the size of

he search space depends on the number and range of design variables

depending on constraints). The former determines the dimensions of

he search space, the latter determines the length of each dimension.

he solution of the optimization problem is to find a position in the

earch space where the objective function can get the optimal value.

enerally speaking, larger search space means larger computation and

onger computation time. Different algorithms represent different search

trategies, which can also affect the amount and time of calculation. 
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Fig. 8. Statistical information of publications about operating parameters optimization: (a) Number of publications by year; (b) Number of publications on algorithm. 
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t  
According to the relationship between operating parameters and

hermodynamic cycle, operating parameters can be divided into four

ategories: cycle parameters, interaction parameters between the cycle

nd heat source or sink, parameters of heat source or sink and compo-

ent parameters. Cycle parameters include thermodynamic parameters

f each state point of the cycle and the parameters related to the working

uids, which are the most commonly used design variables in operat-

ng parameter optimization of ORC systems. For example, evaporating

ressure or temperature [ 36 , 37 ], considering pressure or temperature

 38 , 39 ], superheating temperature [40] ; subcooling temperature [41] ,

ass flow rate of working fluids [42] etc. Interaction parameters be-

ween the cycle and heat source or sink, such as pinch point temperature

ifferences in evaporator or condenser [ 43 , 44 ], were also considered as

esign variables. Parameters of heat source or sink used as design vari-

bles include the inlet or outlet temperature of heat fluid in the evapo-

ator [45] , the inlet or outlet temperature of cold fluid in the condenser,

he mass flow rate of heat or cold fluids, the specific heat capacity of

ot or cold fluids and so on. Component parameters include geometric

arameters and performance parameters. Some studies used geometric

arameters of components as design variables, such as fin height of heat

xchangers [46] , while others used performance parameters as design

arameters, such as the efficiency of expanders and pumps [47] . 

Objective functions used in operating parameters optimization usu-

lly involve several different aspects, including the product indicator,

fficiency indicator, economy indicator and environmental impact. The

ost commonly used product indicator is net output power [48] . The

ommonly used efficiency indicators are thermal efficiency and exergy

fficiency. There are many economic indicators used as the objective

unction, such as system investment cost [49] , annual profit [50] , the

evelized cost of energy [39] and so on. Environmental impacts, such

s emissions of various pollutants [51] , are also used as objective func-

ions. According to the number of objective functions to be considered,

ptimization problems can be divided into single-objective optimiza-

ion and multi-objective optimization. The single-objective optimization

roblem can be solved by standard GA and PSO. For the multi-objective

ptimization problem, the standard GA and PSO are not applicable, so

any researchers adopt the Non-dominated sorting genetic algorithm-

I (NSGA-II) and Multi-objective Particle Swarm Optimization (MOPSO)

o find the Pareto Front in the search space. 

Fig. 8 shows the number of publications on the topic of operating

arameters optimization of ORC systems using intelligent algorithms.

here are about 170 literatures on this topic. Since 2013, more than

0 literatures are published each year. In those literatures, GA is the

ost widely used algorithm. However, many literatures are similar in

ethods, so this study will not describe one by one. Only some repre-

entative literatures are selected for review, as shown in Table 1 . As
n important part of optimization problem, the constraint conditions of

peration parameters in ORC design is determined by the conditions of

eat source and sink, physical properties of working fluids and experi-

nce of designers. Constraints of operation parameters are not listed in

able 1 because these constraints are subjective and do not have much

uiding significance for other studies. 

As shown in Table 1 , an earlier literature was the study of Wang

t al. [52] , who designed a simple ORC system for waste heat recov-

ry in cement industry, took evaporating pressure as the design pa-

ameter and maximum exergy efficiency as the objective function, and

dopted GA to solve the optimization problem. In their work, only one

esign variable and one objective function were considered. Zhang et

l. [41] conducted the parameters optimization of a simple ORC sys-

em for engine waste heat recovery. In their study, four parameters,

vaporating pressure, superheating temperature; condensing tempera-

ure and subcooling temperature, were considered as design parameters,

aximum thermal efficiency was considered as the objective function,

nd those parameters were optimized using GA. Wang et al. [47] op-

imized operating parameters of the ORC system for low grade waste

eat recovery. In their study, in addition to evaporating pressure and

ondensing temperature, the isentropic efficiency of the expander was

lso used as a design parameter. Thermal efficiency was considered as

he objective function and GA was adopted. Wang et al. [53] carried out

n early study on multi-objective parameters optimization of an ORC

or low grade waste heat recovery. In their study, exergy efficiency and

verall capital cost were considered as objective functions. An improved

A, Non-dominated sorting genetic algorithm-II (NSGA-II), was used to

olve the optimization problem and obtain the Pareto optimum. More-

ver, pinch point temperature difference and approach temperature dif-

erence in heat exchangers were also considered as the design variables.

ndreasen et al. [45] also carried out a study single objective parameters

ptimization of a simple ORC system utilizing geothermal energy. They

ook evaporating pressure, expander inlet temperature, hot fluid outlet

emperature and composition of the working fluid as design variables,

nd net power output as the objective function. In contrast to previ-

us studies reviewed, this study considered heat source conditions and

orking fluids as design variables rather than just cycle state parame-

ers and component performance parameters. For the first time, Xi et al.

54] used PSO instead of GA to solve the parameters optimization prob-

em in the design of ORC system. Cavazzini et al. [55] used an improved

SO method to optimize the operating parameters for a sub-critical ORC

ystem. In their study, they realized the simultaneous optimization of

ure working fluids and operating parameters by continuously and dy-

amically modifying the search space for different particles. 

The calculation of fitness function is very important when using in-

elligent algorithms to solve the optimization problem. Generally speak-
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Table 1 

A summary of parameters optimization studies. 

Ref. Year Problem Description Design Variables Objective Algorithms Heat source & sink Cycle configuration Working fluids 

Wang et al. [52] 2009 Optimize the cycle state 

points for a simple ORC 

Turbine inlet pressure Exergy efficiency GA Waste heat Simple ORC R123 

Rashidi et al. 

[56] 

2011 Optimize the cycle state 

points for a regenerative 

Rankine cycle 

Outlet pressures from the second 

and third pumps 

Thermal efficiency, 

exergy efficiency and 

specific network 

ABC Waste heat & water regenerative Rankine cycle Water; 

Water-R717 

Zhang et al. [41] 2011 Optimize the cycle state 

points for a simple ORC 

Evaporating pressure, 

superheating temperature; 

condensing temperature, 

subcooling temperature 

Thermal efficiency GA Waste heat of the 

internal combustion 

engine 

Simple ORC R245fa, R245ca, 

R236ea, R141b, R123, 

R114, R113 and R11 

Tveitaskog et al. 

[67] 

2012 Optimize design 

parameters for a heat 

recovery system 

Exhaust outlet temperature, 

evaporating pressure, condensing 

pressure 

Thermal efficiency and 

power output 

GA Waste heat of exhaust 

gas 

Simple ORC Toluene 

Wang et al. [47] 2012 Select a suitable cycle 

configuration for waste 

heat recovery; 

Optimize the cycle state 

points for each 

configuration 

Evaporation pressure, 

condensation temperature and the 

expander isentropic efficiency 

Thermal efficiency GA Waste heat of the 

internal combustion 

engine 

a simple ORC, an ORC with an 

internal heat exchanger (IHE), 

an ORC with an open feed 

organic fluid heater (OFOH), 

an ORC with a closed feed 

organic fluid heater (CFOH), 

and an ORC with a reheater 

R245fa 

Xi et al. [68] 2013 Select a suitable cycle 

configuration and working 

fluid 

Temperature of heat source Annual cash-flow and 

exergy efficiency 

GA Waste heat Simple ORC, ORC with internal 

heat exchanger 

30 chlorine-absent 

working fluids 

Larsen et al. [69] 2013 Select a suitable working 

fluid for different ORC 

configurations 

heat source inlet temperature Thermal efficiency 

health, fire and 

physical hazards (A 

linear combination) 

GA Waste heat Simple ORC, ORC with a 

recuperator 

109 working fluids 

Wang et al. [53] 2013 Optimize the cycle state 

points for a simple ORC 

Turbine inlet pressure, turbine 

inlet temperature, pinch 

temperature difference, approach 

temperature difference and 

condenser temperature difference 

Exergy efficiency and 

overall capital cost 

NSGA-II 

(Multi- 

objective) 

Waste heat Simple ORC R134a 

Wang et al. [70] 2013 Select a suitable working 

fluid; 

Optimize the cycle state 

points for a simple ORC 

Turbine inlet temperature, turbine 

inlet pressure, pinch temperature 

difference, approach temperature 

difference and condenser 

temperature difference 

Exergy efficiency and 

investment 

NSGA-II 

(Multi- 

objective) 

Waste heat Simple ORC R123, R245fa and 

isobutane 

Pierobon et al. 

[71] 

2013 Select a suitable working 

fluid 

the turbine inlet pressure, internal 

recuperator pinch points 

Thermal efficiency GA Waste heat of a 

twin-spool gas turbine 

Simple ORC Cyclohexane 

Xi et al. [72] 2013 Select a suitable working 

fluid for each cycle 

configuration 

Turbine inlet pressure and 

temperature, fractions of the flow 

rate 

Exergy efficiency GA Waste heat Simple ORC, single-stage 

regenerative ORC, double-stage 

regenerative ORC 

R123, R113, R11, 

R245ca, R245fa and 

R141b 

Wang et al. [73] 2013 Select a suitable working 

fluid; Optimize the cycle 

state points for a simple 

ORC 

Turbine inlet pressure, turbine 

inlet temperature, pinch 

temperature difference and 

approach temperature difference 

in heat recovery vapor generator 

The ratio of net power 

output to total heat 

transfer area 

GA Waste heat Simple ORC R123, R245fa and 

isobutane 

Hajabdollahi et 

al. [42] 

2013 Select a suitable working 

fluid and optimize design 

parameters for a simple 

ORC 

Nominal capacity of diesel engine, 

diesel operating partial load, 

evaporator pressure, condenser 

pressure and refrigerant mass flow 

rate 

Thermal efficiency and 

the total annual cost 

NSGA-II Waste heat of a diesel 

engine 

Simple ORC R123, R134a, R245fa 

and R22 

( continued on next page ) 
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Table 1 ( continued ) 

Ref. Year Problem Description Design Variables Objective Algorithms Heat source & sink Cycle configuration Working fluids 

Long et al. [74] 2014 Select a suitable working 

fluid and optimize design 

parameters for a simple 

ORC system 

Evaporation temperature, heat 

source inlet temperature 

Overall exergy 

efficiency 

GA Waste heat Simple ORC n-Pentane, R601a, 

R142b, Isobutene, 

R600a, R141b, Butane, 

R123, R243ca, R245fa 

Cataldo et al. 

[75] 

2014 Select a suitable working 

fluid and optimize the 

state points for a simple 

ORC 

Evaporation temperature and the 

condensation temperature 

The defect of efficiency 

and the total heat 

exchange area per unit 

of power output 

GA Waste heat Simple ORC More than 10 working 

fluids 

Bian et al. [37] 2014 Select a suitable working 

fluid and optimize cycle 

state points for a simple 

ORC 

Evaporating temperature and 

degree of superheat 

The ratio of heat 

transfer area to total 

net power output 

GA Waste heat Simple ORC R11, R113, R123 and 

isopentane 

Imran et al. [43] 2014 Select a suitable cycle 

configuration and working 

fluid; 

Optimize the cycle state 

points 

Evaporation pressure, superheat, 

pinch point temperature 

difference in evaporator and 

condenser 

Maximum thermal 

efficiency and 

minimum specific 

investment cost 

NSGA-II Waste heat Simple ORC and regenerative 

ORC 

5 working fluids 

Kalikatzarakis et 

al. [76] 

2014 Select a suitable working 

fluid and optimize cycle 

state points for different 

ORC configurations 

The composition of the working 

fluid; Mass flow rate, evaporation 

pressure and condensing pressure 

Net Present Value GA and 

SQP 

Waste hear of marine 

propulsion engines 

Simple ORC, regenerative ORC 

and a combination of two ORC 

75 fluids 

Larsen et al. [77] 2014 Optimize the cycle state 

points for a simple ORC 

Evaporation pressure and 

superheating temperature 

Power output GA Waste heat of a large 

marine two-stroke 

diesel engine 

Simple ORC R245ca 

Xi et al. [78] 2014 Select a suitable working 

fluid and optimize cycle 

state points for different 

cycle configurations 

Turbine inlet pressure, the turbine 

inlet temperature and the 

fractions of the zeotropic mixtures 

working fluids 

Annual cash flow GA Waste heat Simple ORC, ORC with internal 

heat exchanger 

8 different zeotropic 

mixtures 

Yang et al. [79] 2015 Select a suitable working 

fluid and optimize cycle 

state points for a simple 

ORC 

Evaporation pressure, superheat 

degree, condensation temperature 

and exhaust temperature at the 

outlet of the evaporator 

Net power output and 

total investment cost 

GA Waste heat of diesel 

engine 

Simple orc R600a, R601a, R245fa, 

R1234yf and R1234ze 

Yang et al. [80] 2015 Optimize cycle state points 

for a simple ORC 

Evaporation pressure, superheat 

degree and condensation 

temperature 

Net power output per 

unit heat transfer area 

and exergy destruction 

rate 

GA Waste heat of a diesel 

engine 

Simple ORC R245fa. 

Andreasen et al. 

[81] 

2015 Select a suitable working 

fluid and optimize cycle 

state points for an ORC 

Expander inlet temperature, the 

expander inlet pressure, the 

composition of the mixture, the 

intermediate pressure and the 

outlet temperature of evaporator 

Net power output GA Waste heat Split ORC, recuperated ORC Binary mixtures 

containing propane, 

butane, isobutane, 

pentane or isopentane 

Cavazzini et al. 

[55] 

2017 Select a suitable working 

fluid and optimize design 

parameters for an ORC 

Evaporating pressure, temperature 

difference at the pinch point in 

both the heat exchangers, 

approach point temperature 

difference in both the heat 

exchangers 

Energy efficiency ASD-PSO Waste heat Simple ORC 37 fluids; 

Huster et al. [17] 2019 Select a suitable working 

fluid and optimize design 

parameters for an ORC 

High and low pressure, WF mass 

flow, WF superheating at the 

evaporator outlet 

Net power, investment 

cost 

GA Waste heat of internal 

combustion engine 

Simple ORC 122 fluids 

Zhao et al. [82] 2019 Optimize design 

parameters for a ORC 

Expander inlet pressure, expander 

inlet temperature, exhaust 

temperature at the evaporator 

outlet 

Net power output PSO Waste heat of internal 

combustion engine 

Recuperative ORC R245fa 

Xi et al. [83] 2015 Select a suitable working 

fluid and optimize cycle 

state points for an ORC 

Turbine inlet pressure and 

temperature 

Annual cash flow and 

exergy efficiency 

GA Waste heat Simple ORC and regenerative 

ORC 

26 fluids 

( continued on next page ) 
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Table 1 ( continued ) 

Ref. Year Problem Description Design Variables Objective Algorithms Heat source & sink Cycle configuration Working fluids 

Hajabdollahi [84] 2015 Optimize design 

parameters of the 

CCHP-ORC system 

The electric cooling ratio and 

nominal power ratio 

Annual benefit GA Waste heat of diesel 

engine and gas turbine 

Simple ORC —

Feng et al. [85] 2015 Optimize cycle state points 

for each cycle 

configuration 

Evaporator outlet temperature, 

condenser temperature, degree of 

superheat, pinch point 

temperature difference and degree 

of supercooling 

Exergy efficiency and 

levelized energy cost 

NSGA-II Waste heat Regenerative ORC and simple 

ORC 

R123 

Feng et al. [86] 2015 Optimize cycle state points 

for each cycle 

configuration 

Evaporator outlet temperature, 

evaporator outlet pressure, 

condenser temperature, degree of 

superheat, pinch point 

temperature difference 

Exergy efficiency and 

heat exchanger area 

per unit net power 

output 

NSGA-II Waste heat Regenerative ORC and simple 

ORC 

R123 

Xi et al. [54] 2015 Select a suitable working 

fluid and optimize cycle 

state points for a 

transcritical ORC 

Expander inlet temperature and 

the evaporate pressure 

Exergy efficiency PSO Waste heat Transcritical ORC 14 working fluids 

Gutiérrez et al. 

[50] 

2015 Select a suitable working 

fluid and optimize cycle 

state points for a simple 

ORC 

Condenser pressure, boiler 

pressure 

Gross annual profit GA Waste heat Simple ORC n-Butane, R245fa, 

R123 

Wang et al. [36] 2015 Select a suitable working 

fluid and optimize cycle 

state points for an ORC 

evaporating pressure, intermediate 

pressure, and degree of superheat 

Net power output and 

exergy destruction rate 

PSO Waste heat from a 

diesel engine 

Regenerative ORC butane, R124, R416A, 

and R134a 

Kalikatzarakis et 

al. [87] 

2015 Select a suitable synthesis 

and optimize design and 

operation parameters 

The composition of the working 

fluid; mass flow rate, evaporation 

pressure and condensing pressure 

Net present value GA and 

SQP 

Waste heat of marine 

propulsion engines 

Simple ORC R245fa, R245ca, 

R365mfc, R413a 

Nazari et al. [88] 2016 Select a suitable working 

fluid and optimize cycle 

state points for a 

combined steam-organic 

Rankine cycle 

Steam turbine inlet pressure, 

Organic turbine inlet pressure, 

Organic preheater pinch 

temperature 

Exergy efficiency and 

product cost rate 

GA Waste heat of a gas 

turbine 

Simple ORC R124, R152a, and 

R134a 

Galindo et al. 

[38] 

2016 Optimize cycle state points 

for a simple ORC 

Evaporation pressure, 

condensation pressure, 

superheating temperature, ethanol 

mass flow and the temperature at 

the boiler outlet in the exhaust 

gas side 

Volume Coefficient, 

Specific Investment 

Cost and Total area of 

heat exchangers 

GA Waste heat of gasoline 

engine 

Simple ORC Ethanol 

Nasir et al. [49] 2016 Select a suitable working 

fluid and optimize cycle 

state points 

VCC Condenser Temperature, VCC 

Condenser Sub cooling, ORC 

Condenser Pressure 

Overall COP GA Waste heat Simple ORC R245fa, R123, R134a, 

R1234yf, R1234ze (E), 

Butane and Isobutane 

Mahmoudi et al. 

[44] 

2016 Optimize design 

parameters of a combined 

system 

Fuel cell temperature, the current 

density, the carbon dioxide 

turbine pressure ratio and the 

pinch point temperature 

difference in the evaporator 

Product unit cost and 

maximize the exergy 

efficiency 

GA Waste heat and 

liquefied natural gas 

Simple ORC R245fa 

Ameri et al. [89] 2016 Optimize design 

parameters of a combined 

system 

Inlet steam pressure to MED, 

pinch point temperature 

difference, evaporator pressure, 

condenser pressure, refrigerant 

mass flow rate and some 

geometrical parameters for heat 

recovery steam generator 

Distilled water 

production and the 

total cost rate 

NSGA-II Waste heat of a gas 

turbine 

Simple ORC R123, R134a and 

R245fa 

( continued on next page ) 
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Table 1 ( continued ) 

Ref. Year Problem Description Design Variables Objective Algorithms Heat source & sink Cycle configuration Working fluids 

Bahari et al. [90] 2016 Optimize state points of 

the combined cycle 

Temperature of the cold tank of 

the Stirling cycle, the pressure 

ratio and the temperature of the 

ORC condenser 

Efficiency of the 

overall combined cycle 

GA Waste heat of a 

Stirling cycle 

Simple ORC —

Javan et al. [91] 2016 Optimize design 

parameters of a combined 

system 

Diesel engine capacity, diesel 

engine part load, expander inlet 

pressure, expander extraction 

pressure, extraction ratio, 

condenser pressure, and 

evaporator pressure 

Exergy efficiency, total 

cost rate of the system 

GA Waste heat of internal 

combustion engine 

Simple ORC R134a, R600, R123, 

and R11 

Agromayor et al. 

[40] 

2017 Optimize design 

parameters for different 

cycle configurations 

The expander inlet pressure, the 

superheating temperature 

approach, and the cold 

temperature of the cold source 

Second law efficiency GA Waste heat Simple ORC, recuperated ORC 

and the saturated, 

superheated, and transcritical 

ORCs 

29 fluids 

Zhang et al. [39] 2018 Optimize design 

parameters for a ORC 

Evaporation temperature, overheat 

degree, condensation temperature, 

undercooling degree, and working 

fluid flow rate 

Exergy efficiency, 

levelised energy cost 

NSGA-II Waste heat source in 

industry 

Simple ORC R141b, R142b, R245ca, 

R245fa, R600a, and 

R601a 

Han et al. [92] 2013 Select a suitable working 

fluid for a simple ORC 

Turbine inlet pressure and 

temperature 

The total irreversible 

loss of the system 

GA Solar energy Simple ORC R600, R600a, R245fa, 

R236fa, R236ea, R601, 

R601a 

Scardigno et al. 

[93] 

2015 Select a suitable working 

fluid and optimize cycle 

state points for a simple 

ORC 

Evaporating and condensing 

pressure, the maximum 

temperature of the collector 

thermal fluid and a parameter 

representative of the temperature 

profiles in the heat exchangers. 

Energy and exergy 

efficiencies and the 

lowest LEC (levelized 

energy cost) 

NSGAII Solar energy Simple ORC R32, R41, R125, R134a, 

R143a, R152a, R218, 

R227ea 

Hajabdollahi et 

al. [94] 

2015 Select a suitable working 

fluid and optimize cycle 

state points for an ORC 

Evaporator pressure, condenser 

pressure, refrigerant mass flow 

rate, number of solar panel (solar 

collector), storage capacity and 

regenerator effectiveness 

Relative annual benefit GA Solar energy Regenerative ORC R123, R245fa and 

isobutane 

Noorpoor et al. 

[95] 

2016 Optimize design 

parameters of a combined 

system 

Turb1 inlet temperature, Turb2 

inlet temperature, Cond1 outlet 

temperature, ORC Ex outlet 

temperature and Gen pressure 

Energy and exergy 

efficiencies 

GA Solar energy Cascade ORC R600a 

Boyaghchi et al. 

[96] 

2015 Select a suitable working 

fluid and optimize the 

design parameters for a 

combined energy system 

Nanoparticles volume fraction, 

turbine inlet mass flow rate, 

pressure drop of ejector, area ratio 

of ejector, turbine inlet pressure, 

turbine outlet pressure, turbine 

outlet temperature, pinch 

temperature difference of 

geothermal heater and collector’s 

area 

Daily thermal 

efficiency, total 

product cost, total heat 

exchangers area, daily 

exergy efficiency 

NSGA-II Solar and geothermal 

energies 

Simple ORC R134a, R423A, 

R1234ze and R134yf 

Andreasen et al. 

[45] 

2014 Select a suitable mixture 

working fluid and optimize 

design parameters for a 

simple ORC system 

The composition of the working 

fluid, Expander inlet temperature, 

Expander inlet pressure, Hot fluid 

outlet temperature 

Net power GA Geothermal Simple ORC 30 zeotropic mixtures 

fluids 

Fiaschi et al. [97] 2014 Select a suitable working 

fluid and optimize cycle 

state points for a simple 

ORC 

Temperatures and mass flow rates 

of the thermal utility 

Power output GA Geothermal Simple ORC R227ea, R134a, 

R1234ze, R245fa, 

n-butane, n-pentane, 

n-hexane, siloxane and 

benzene 

Kai et al. [48] 2015 Select a suitable working 

fluid and optimize cycle 

state points for a simple 

ORC 

Evaporation pressure, 

superheating of the steam, the 

minimum temperature in the 

evaporator 

Net power output GA Geothermal Simple ORC Butane, R236fa, 

R227ea, R236ea, 

R245fa, R245ca 

( continued on next page ) 
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Table 1 ( continued ) 

Ref. Year Problem Description Design Variables Objective Algorithms Heat source & sink Cycle configuration Working fluids 

Cao et al. [98] 2016 Optimize cycle state points 

for a flash ORC 

Flash pressure, second flash 

pressure, organic turbine inlet 

pressure 

Net power output, 

energy efficiency and 

exergy efficiency 

GA Geothermal Flash-ORC R245fa 

Cao et al. [99] 2015 Optimize state points for a 

flash ORC 

Flash pressure, second flash 

pressure, organic turbine inlet 

pressure 

Net power output, 

thermal efficiency and 

exergy efficiency 

GA Geothermal Flash-ORC R245fa 

Li et al. [100] 2016 Optimize cycle state points Number of stages, evaporation 

temperature of different stage 

output power GA Geothermal Multi-stage ORC R123 

Imran et al. 

[101] 

2016 Optimize cycle state points 

for different cycle 

configurations 

Evaporation temperature, pinch 

point temperature difference and 

superheat 

Specific investment 

cost and exergy 

efficiency 

NSGA-II Geothermal Simple ORC, recuperated ORC, 

and regenerative ORC 

R245fa 

Pierobon et al. 

[102] 

2013 Select a suitable working 

fluid; Optimize 

evaporating pressure for 

each cycle configuration 

Maximum pressure for the 

bottoming cycle 

Thermal efficiency GA Biomass Simple ORC, double stage ORC A hundred fluids 

Donateo et al. 

[103] 

2014 Select a suitable working 

fluid and optimize cycle 

state points 

Evaporator pressure, overheating, 

thermal recovering, mass flow rate 

Net power, working 

fluids flow rate and 

overall expander 

efficiency 

GA Lower temperature 

heat sources 

ORC with internal heat 

exchanger 

R123, R245fa and 

R134a 

Wang et al. [104] 2016 Select a suitable working 

fluid and optimize cycle 

state points 

Evaporating temperature and the 

condensing temperature 

Energy efficiency, 

exergy efficiency, 

payback period and 

annual emission 

reduction 

GA Low grade heat energy Simple ORC R600a, R114, R245fa 

and R245ca 

Khaljani et al. 

[105] 

2015 Optimize the design 

parameters for a 

cogeneration system 

Air compressor pressure ratio, 

isentropic efficiencies of air 

compressor and gas turbine, air 

preheater outlet temperature, 

turbine inlet temperature, Pinch 

point temperatures of HRSG and 

evaporator, condenser and 

evaporator temperatures 

Exergy efficiency and 

total cost rate of the 

system 

NSGA-II Fuel Simple ORC R113, R123, R245fa 

and R600 

Ebrahimi et al. 

[106] 

2016 Optimize design 

parameters of a combined 

system 

Mass flow and pressure at the 

inlet of ejector, evaporating 

temperature, compression ratio, 

minimum temperature of exhaust 

gas 

Energy nominee, 

exergy nominee, 

integrated 

energy-exergy function 

GA Fuel Simple ORC 

Wang et al. [107] 2018 Optimize design 

parameters for a ORC 

Evaporating temperature, 

condensing temperature, warm 

seawater temperature at the 

outlet of evaporator, cool seawater 

temperature at the outlet of 

condenser, degree of superheat, 

and depth of cool seawater 

Levelized cost of 

energy (LCOE) and 

exergy efficiency 

Multi- 

objective 

PSO 

Ocean Thermal Energy Simple ORC R717, R152a, R134a, 

R227ea, R600a and 

R601 

Bao et al. [108] . 2018 Optimize design 

parameters an ORC 

Condensation temperature and the 

inlet pressure of the LNG turbine 

Net power output, 

electricity production 

cost (EPC) and annual 

net income 

GA Sea water and LNG Multi-stage condensation ORC R134a 

Sun et al. [109] 2017 Optimize the cycle state 

points 

Turbine inlet pressure and 

condensing temperature 

Exergy efficiency PSO LNG two-stage ORC 20 fluids 
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ng, fitness function is the objective function or its deformation. The

sual method is to establish mathematical models based on physical

aws or empirical correlations to calculate fitness functions. However,

hose models are usually complex and time-consuming because there

re a lot of equations and input parameters are required during the cal-

ulation procedure. Therefore, some researchers tried to use data-driven

odels instead of mathematical models. Data-driven models ignore the

hysical principles and figure out the underlying relationship between

esign variables and objective functions based on a large amount of

ata that already exists. ANN is most widely used to build data-driven

odels. Meanwhile, SVM is also gradually adopted. ANN is especially

uitable for complex nonlinear problems. The data, which are used to

uild data-driven models, are usually from experiments or mathematical

odels based on physical principles or empirical correlations. And these

ata are split into a training set which is used to build the model and a

esting set which is used to measure the accuracy. Data-driven models

an greatly improve the computing speed of fitness function and reduce

he time spent on optimization calculation. 

Rashidi et al. [56] carried out a parameters optimization of an ORC

ystem based on ANN and Artificial Bees Colony (ABC). In their study,

hey used ANN to predict the thermal efficiency, exergy efficiency and

pecific network, which are objective functions of optimization problem.

assimiani et al. [57] used ANN to obtain analytic expressions for all

bjective functions and constrains of the defined optimization problem

or an ORC system, thus transforming the original complex optimization

roblem into a derivative-free optimization problem. Then they solved

he derivative-free optimization problem using the active set algorithm.

madi and Mahmoudimehr [58] also used ANN to estimate the objective

unctions when they used GA to solve the multi-objective optimization

roblem of a cascade ORC system. Compared to using a mathematical

odel, using ANN can reduce optimization run time from 16 h to 10 min

or each optimization execution. 

However, the accuracy and generalization of the data-driven model

epend on the training data. Most data-driven models perform poorly

hen the input data are beyond the range of training data. Therefore,

ome researchers only use data-driven models to calculate complex in-

ermediate parameters and mathematical models to calculate objective

unctions, which was called the hybrid model. This can reduce part of

he calculation time without affecting the accuracy of models. 

.4. Component selection and sizing 

After working fluids, cycle configuration and operating parameters

f the ORC system are determined, the next step is to select and de-

ign the components used in the ORC system. For most ORC systems,

he main components include heat exchangers, pump, and expander.

ith the development of technology, there are more and more types

f equipment. Although different types of equipment have similar func-

ions, they differ greatly in cost and efficiency. Therefore, the types of

omponent will affect the overall performance and investment cost of

he system. The goal of components selection is to obtain suitable com-

onents which can result in the high overall system performance. Com-

onent selection is usually done by engineers according to some heuris-

ic guidelines, which is often limited by the engineer’s experience, ca-

abilities, and time constraints and will result in suboptimum selection

esults. Expert system is a potential solution to solve this question. How-

ver, as far as the authors know, there are few expert systems designed

pecifically for ORC system component selection. Only Richard Law et

l. [13] developed a knowledge-based system for the selection and pre-

iminary design of equipment for waste heat recovery. This system can

elect the appropriate technique according to the heat source and sink

onditions and product requirements, and carry out the preliminary de-

ign of the selected technique. 

After component selection is completed, proper sizing of components

eeds to be determined, because it is very important for an efficient ORC

ystem operation. The conventional sizing method is based on the design
ondition and some safety factors. In this process, a large number of geo-

etric parameters are determined empirically. As a result, although the

omponents can meet the demands, they are mostly uneconomical and

nefficient. Therefore, research was conducted attempting to optimize

he size of components to achieve higher economy and efficiency. 

GA and PSO were usually used for components sizing. Cinnella et al.

59] conducted a multi-objective optimization for 11 geometric param-

ters of the turbine by using GA. In their work, they gave a set of optimal

eometric parameters of the airfoil, which can lead the minimum mean

rag coefficient and its standard deviation. Erbas et al. [60] also car-

ied out the geometric parameters optimization of turbines using GA,

aking into account 6 design variables and two objective functions (full

oad efficiency and off-design efficiency). Rahbar et al. [61–63] firstly

ptimized 9 parameters of the turbine with efficiency as the objective

unction, and then optimized those parameters with efficiency and over-

ll size as the objective function. In their studies, there used standard

A and NSGA-II respectively. Later, they used other three parameters as

esign variables to optimize the size of the radial inflow turbine. Zhai

t al. [64] also used GA to optimize size of the turbine, while they con-

idered the entire ORC system model rather than just the component

odel. 

Because heat exchangers and other equipment are widely used in

he industrial field, only a few studies are about the size optimization

f heat exchangers used in ORC systems. Imran et al. [65] carried out

 multi-objective optimization of evaporator used in ORC system. They

hose the chevron type plate evaporator and took length, width and

late spacing as the design variables. The objection functions are cost

f evaporator and total pressure drop, and NSGA-II was used. Xu et al.

66] conducted a multi-objective optimization of evaporator and con-

enser for a subcritical ORC system. They considered 9 design variables

nd three objective functions, including thermal efficiency, specific cost

nd heat exchanger area per unit power output. GA was used to solve the

ptimization problem and fuzzy multi-criteria decision-making method

as used to select suitable type of heat exchanger. Liu et al. [46] car-

ied out a multi-objective optimization of fin-and-tube evaporator using

SO. Inlet radius of the tube side, the inlet radius of the shell side, fin

eight, fin thickness and fin spacing were considered as design variables,

nd total annual cost, volume of tube bundle, and exhaust pressure drop

ere considered as objective functions. 

. Discussion and further work 

.1. Summary of research status 

From the existing literatures, the application of artificial intelligence

n design of ORC systems mainly includes three aspects: decision mak-

ng, parameters optimization and parameter prediction. Among these

spects, parameters optimization is the most concerned by researchers,

hile there are few researches related to decision making and parameter

rediction based on data-driven model. 

.1.1. Decision-making 

Although expert system is a good decision-making tool, there are

ew researches on the development of expert systems for design of ORC

ystems. In the selection of working fluids and components, there are a

ot of heuristic guidelines. Therefore, it is necessary to organize these

euristic guidelines into an expert system to preselect of working fluids

nd components. The essence of decision making based on expert sys-

em is to use computer program to do repetitive work instead of human.

n ORC design, it is only used to exclude unsuitable working fluids, cycle

onfiguration, or component types according to simple guidelines. For

xample, it can be used to select working fluids which flammability, cor-

osivity, temperature range and other parameters meet the predefined

tandards, as shown in Fig. 9 . Moreover, the CBR is an efficient and fast

ethod to make initial decision based on previous data. However, this

ecision method cannot guarantee the optimal result. It only be used as
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Fig. 9. An expert system for working fluids preselect- 

ing. 

Fig. 10. Characteristics of parameters optimization in ORC systems design. 
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 reference in the early stage of design. However, in the design of ORC

ystems, decision making will play a smaller and smaller role. 

.1.2. Parameters optimization 

Fig. 10 shows the characteristics of parameters optimization in de-

ign of ORC systems. The design variables which have been considered

n existing literature mainly involves four aspects: cycle parameters, in-

eraction parameters between the cycle and heat source or sink, parame-

ers of heat source or sink and component parameters. It contains almost

ll the variables in the ORC design except the type of working fluids

nd the cycle configuration. And the most commonly considered pa-

ameters are cycle state parameters. The objective function which have

een considered in existing literature mainly involves product indica-

or, efficiency indicator, economic indicators and environmental impact.

mong them, product indicator and efficiency indicator are the most

ommonly adopted. In the early stage, researchers only considered one

bjective function. In recent years, most researchers have considered

ultiple objective functions. Meanwhile, economic indicator and envi-

onmental impact have been paid more and more attention. For the cal-

ulation of objective function, researchers began to use the data-driven
odel or hybrid model to replace the complex mathematical model. In

he future, the solution of parameters optimization problem in design

f ORC system would be based on intelligent algorithm and data-driven

odel. In addition to GA and PSO commonly used in existing researches,

any new intelligent optimization algorithms have been developed in

ecent years, such as quantum genetic algorithm [77] , flower pollination

lgorithm [78] , shuffled frog leaping algorithm [79] and so on. This re-

uires flexible selection of different algorithms when solving parameters

ptimization problems in following researches. 

.1.3. Parameters prediction 

In recent years, with the rapid development of machine learning, re-

earchers have tried to extract some valuable information from a large

mount of data. One of the embodiments of this trend in ORC design

s the parameter prediction method based on data-driven model that is

idely concerned based on data-driven model. Table 2 presents a sum-

ary of data-driven models discussed in this paper. ANN is most widely

sed methods for parameter prediction, owing to their good nonlinear

apping ability and high degree of parallel processing of information

apacity. As shown in Table 2 , the published data-driven model mainly
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Table 2 

A summary of data-driven models discussed in this study. 

Ref. Year Input features Output Algorithms Research Objective Level 

Arslan et al. [110] 2011 Vapor fraction of geothermal water, working fluids, outlet 

temperature of geothermal water from the system, outlet 

temperature of working fluid from evaporator and outlet 

temperature of working fluid from condenser, outlet 

pressure of working fluid from evaporator 

Generated power and required 

circulation pump power 

ANN Predict value of objective function during operating 

parameters optimization for an ORC-binary system 

using geothermal energy 

System 

Rashidi et al. [56] 2011 Outlet pressures from the second and third pumps Thermal efficiency, exergy 

efficiency and specific network 

ANN Predict value of objective function during operating 

parameters optimization for a regenerative ORC system 

with two feedwater heaters 

System 

Arslan et al. [111] 2014 Vapor fraction of geothermal water, working fluids, outlet 

temperature of geothermal water from the system, outlet 

temperature of working fluid from evaporator, and outlet 

temperature of working fluid from condenser 

Generated power and required 

circulation pump power 

ANN Predict the performance of ORC-Binary power plant System 

Zhang et al. [112] 2014 Mass flow rate and the inlet temperature at evaporator of 

waste heat 

Energy conversion efficiency SVM Predict value of objective function during operating 

parameters optimization for controlled simple ORC 

system 

System 

Agromayor et al. [40] 2017 Evaporation temperature and the condensation temperature Thermal efficiency, exergy 

efficiency and the annual emission 

reduction, and the minimization 

of payback period 

ANN Predict value of objective function during multi-objective 

optimization for a simple ORC system and a 

regenerative ORC system 

System 

Zhang et al. [113] 2017 Vehicle speed, the traffic lights at the intersection, the 

automobile gear position and clutch state 

Temperature and the mass flow 

rate of exhaust gas 

SVM Predict dynamic behavior of heat source to adjust 

operating parameters of a simple ORC system 

System 

Dong et al. [114] 2018 Hot water temperature at the evaporator inlet, hot water 

temperature at the evaporator outlet/pre-heater’s inlet, hot 

water temperature at the pre-heater’s outlet, cooling water 

temperature at the condenser inlet, cooling water 

temperature at the condenser outlet, working fluid 

temperature at the expander inlet/evaporator outlet, 

working fluid temperature at the expander 

outlet/condenser inlet, the working fluid temperature at 

the pre-heater outlet/the evaporator inlet and the working 

fluid temperature at the condenser outlet/working fluid 

pump inlet 

power output SVM; ANN Predict the performance of an experimental rig of a 

simple ORC, and compare the differences of two 

algorithms 

System 

K ı l ı ç et al. [115] 2019 Working fluids, steam generator temperature, condenser 

temperature, subcooling temperature, and superheating 

temperature 

Efficiency ANN Predict the performance of a simple ORC system System 

Palagi et al. [116] 2019 Temperature and pressure of the working fluid at the inlet of 

the turbine, mass flow rate and temperature of the thermal 

oil at the inlet of the evaporator 

Mass flow rate and pressure of 

working fluids 

ANN Predict the dynamic behavior of a simple ORC system System 

Zhi et al. [117] 2019 Heat source temperature, heat sink temperature, mass flow 

rate of R1234ze(E), pump efficiency, turbine efficiency, and 

regenerator effectiveness 

Thermal efficiency, exergy 

efficiency, best high pressure 

ANN Predict the best operating parameters and performance of 

a transcritical ORC system 

System 

Khosravi et al. [118] 2019 Solar radiation, well temperature, working fluid mass flow 

rate, turbine output pressure, surface area of the solar 

collector and preheater inlet pressure 

Net power output, energy 

efficiency, exergy efficiency and 

levelized cost of energy (LCOE) 

ANN Predict the performance of a geothermal based-ORC 

equipped with solar system 

System 

Herawan et al. [119] 2017 Throttle angle, engine speed, vehicle speed, and exhaust 

temperature 

Power output ANN Predict the performance of turbine in the ORC system 

which were driven by waste heat of an aspirated spark 

ignition engine 

Component 

Yang et al. [120] 2018 Working fluid volume flow rate, expander torque, expander 

inlet pressure, expander outlet pressure, expander inlet 

temperature, condenser outlet temperature and pump 

outlet pressure 

Power output of the single screw 

expander 

ANN Predict value of objective function during parameters 

optimization of a simple ORC for diesel engine waste 

heat recovery 

Component 

Huster et al. [18] 2019 Pressure, entropy and enthalpy Physics property of working fluids ANN Predict the physics property of working fluids during the 

calculation of a simple ORC performance 

Working fluids 

Huster et al. [17] 2019 Pressure, temperature Physics property of working fluids ANN Predict the physics property of working fluids during the 

calculation of a simple ORC performance 

Working fluids 

Luo et al. [121] 2019 Molecular groups, topological index Normal boiling temperature, 

critical pressures 

ANN Predict the key properties to calculate other properties Working fluids 
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Fig. 11. MINLP optimization problem for ORC design. 
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nvolves three aspects: working fluids, components, and system. More-

ver, most of the researches are aimed at establishing an alternative

odel for performance calculation of ORC systems, because the con-

entional mathematical model is very complex and time-consuming. In

ome studies, a data-driven model has been used to calculate the fitness

unction to reduce the computation time of the optimization process.

his is exactly the development trend in the future mentioned in the

revious paragraph. It is worth mentioning that the accuracy and gen-

ralization ability of data-driven model are very important for the appli-

ation of that model. Therefore, how to train a high accuracy and strong

eneralization ability of data-driven is the key of parameter prediction.

he performance of the data-driven model depends on the algorithm

nd training data. Current studies show that ANN is a good algorithm to

eal with parameter prediction in ORC system. However, there are other

lgorithms need to be studied, such as SVM. In addition to selecting the

ppropriate algorithm, training data collection is very important. The

raining data should cover the whole range of all design variables. Com-

ared with collecting experimental data, it is more feasible to obtain

raining data through mathematical model. In addition, if the training

ata cannot cover the whole range of design variables, the model needs

o be retrained during the calculation. 

.2. A new trend in ORC systems design 

Although the use of AI technique has made it easier to design ORC

ystems, these factors including working fluids, cycle configurations

nd components are not really integrated into a global optimization

roblem. The separation of working fluids selection, cycle configuration

election, operating parameters optimization and component selection

nd sizing may lead to suboptimal solutions if the preselection of the

orking fluids, cycle configurations or component type fails. To capture

he trade-offs between the different factors, a potential approach is to

ntegrate the various factors into an integrated optimization problem. In

revious studies, only the operating parameters and geometric parame-

ers of the components are usually the parameters that can be optimized.

AMD method [4] can generate all possible organic working fluids with

ifferent functional groups as the element. This allows the working flu-

ds to be integrated into the optimization problem as a design variable.
imilarly, superstructure method [29] includes almost all cycle config-

rations. Therefore, cycle configurations also can be integrated into the

ptimization problem as a design variable. In this way, ORC design can

btain the optimal design by solving a global optimization problem, as

hown as in Fig. 11 . Schilling et al. [122] have made some worthwhile

ttempts. In their study, they proposed a novel method base on CAMD

nd superstructure to solve the integrated design problem of working

uid, state points and cycle configuration for ORC systems. For such

ntegrated optimization problem, the design variables should include

he type of working fluids, cycle configuration, the type of component,

omponent geometric parameters, and operating parameters mentioned

n Section 3.3 . It is worth mentioning that the first three variables are

iscrete variables. Therefore, such integrated optimization problem is a

ixed integer nonlinear programming (MINLP) optimization problem. 

The MINLP optimization problem is an important problem in mathe-

atics [123] . However, such integrated optimization involves a variety

f design variables and constraints, which make it difficult to solve the

roblem. The most difficult part in solving the integrated optimization is

he quick search of the design space and the quick calculation of the ob-

ective function. Intelligent algorithm is a powerful tool for quick search

n the design space. At present, the more effective algorithm is a two-

evel hybrid algorithm of GA and sequential quadratic programming al-

orithm (SQP) [35] . In outer level, GA is used to find the best integer

olutions, then the original MINIP decomposes to a series of nonlinear

rogramming problems which are solved by SQP. In order to calculate

he objective function, a complex mathematical model containing many

hysical principles needs to be established, such as physical property

alculation equations, cycle performance calculation equations and so

n. The calculation of this mathematical model is very time-consuming.

o calculate the objective function quickly, data-driven models should

e used partly or completely instead of complex mathematical models. 

. Conclusion 

In this study, design problems, solving methods with artificial intelli-

ence technique and application cases in the design of Organic Rankine

ycle system are summarized for the first time. The main findings and

ontributions of this paper are summarized as following: 
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1) The design process of Organic Rankine Cycle systems contains four

steps. In the process of step completion, three problems are mainly

involved, i.e. decision making, parameters optimization and param-

eter prediction. The corresponding solving methods and application

examples are also presented and these results can be used as refer-

ences for subsequent studies. 

2) The selection of working fluids, cycle configurations and component

types belongs to the category of decision-making problem. This study

introduces two solving methods which are expert system and case-

based reasoning, and expert system is the most promising method.

However, few studies have been done on customized expert system

for design of Organic Rankine Cycle systems, which would be the

direction of future research. 

3) Except for decision making, other design problems could be trans-

formed into a parameter optimization problem. Genetic algorithm

is used to solve the optimization problem in most studies. Apart

from the standard genetic algorithm, several improved algorithms

have been adopted to obtain the better performance. The calcula-

tion of fitness function is very important for the implementation of

genetic algorithm. Conventional fitness calculation methods are usu-

ally based on a complex mathematical model whose calculation of-

ten has heavy computing burden. Due to the fast computing speed

and high computing accuracy of data-driven models, many studies

use data-driven models to calculate fitness. 

4) Working fluids, cycle configurations and operating parameters are

optimized simultaneously by solving a mixed integer nonlinear pro-

gramming optimization problem, that is a new trend in design of

Organic Rankine Cycle systems. 

eclaration of Competing Interest 

None. 

cknowledgement 

The work described in this paper was supported by the National Key

esearch and Development Plan under Grant No. 2018YFB1501004 . 

eferences 

[1] Dudley B . BP statistical review of world energy; 2019. London, UK . 

[2] Dong S, Habib B, Li B, Yu W, Young B. Organic Rankine Cycle systems design

using a case-based reasoning approach. Ind Eng Chem Res 2019;58(29):198–209

13. doi: 10.1021/acs.iecr.9b01150 . 

[3] DIFFERENTIATE ——design intelligence fostering formidable energy reduction

and enabling numerous totally impactful advanced technology enhancements,

https://arpa-e.energy.gov/?q = arpa-e-programs/differentiate ; 2020 [Accessed 9

March 2020]. 

[4] White MT, Oyewunmi OA, Chatzopoulou MA, Pantaleo AM, Haslam AJ,

Markides CN. Computer-aided working-fluid design, thermodynamic optimisation

and thermoeconomic assessment of ORC systems for waste-heat recovery. Energy

2018;161:1181–98. doi: 10.1016/j.energy.2018.07.098 . 

[5] Toffolo A. A synthesis/design optimization algorithm for Rankine cycle based en-

ergy systems. Energy 2014;66:115–27. doi: 10.1016/j.energy.2014.01.070 . 

[6] Lazzaretto A, Manente G, Toffolo A. SYNTHSEP: a general methodology for

the synthesis of energy system configurations beyond superstructures. Energy

2018;147:924–49. doi: 10.1016/j.energy.2018.01.075 . 

[7] Wang R, Zhao J, Zhu L, Kuang G. Multi-objective optimization of Organic Rank-

ine Cycle for low-grade waste heat recovery, E3S Web. Conf. 2019;118:03053.

doi: 10.1051/e3sconf/201911803053 . 

[8] Fang Y, Yang F, Zhang H. Comparative analysis and multi-objective optimization

of organic Rankine cycle (ORC) using pure working fluids and their zeotropic

mixtures for diesel engine waste heat recovery. Appl Therm Eng 2019:157.

doi: 10.1016/j.applthermaleng.2019.04.114 . 

[9] Bekilo ğlu HE, Bedir H, Anla ş G. Multi-objective optimization of ORC parameters

and selection of working fluid using preliminary radial inflow turbine design. Energ

Convers Manag 2019;183:833–47. doi: 10.1016/j.enconman.2018.12.039 . 

[10] Bao J, Zhao L. A review of working fluid and expander selections for

organic Rankine cycle. Renew Sustain Energy Rev 2013;24:325–42.

doi: 10.1016/j.rser.2013.03.040 . 

[11] Lecompte S, Huisseune H, van den Broek M, Vanslambrouck B, De Paepe M. Re-

view of organic Rankine cycle (ORC) architectures for waste heat recovery. Renew

Sustain Energy Rev 2015;47:448–61. doi: 10.1016/j.rser.2015.03.089 . 
[12] Bao JJ, Zhao L, Zhang WZ. A novel auto-cascade low-temperature solar

Rankine cycle system for power generation. Sol Energy 2011;85(11):2710–19.

doi: 10.1016/j.solener.2011.08.015 . 

[13] Law R, Harvey A, Reay D. A knowledge-based system for low-grade waste

heat recovery in the process industries. Appl Therm Eng 2016;94:590–9.

doi: 10.1016/j.applthermaleng.2015.10.103 . 

[14] Dong S, Habib B, Li B, Yu W, Young B. Organic Rankine Cycle systems design

using a case-based reasoning approach. Ind Eng Chem Res 2019;58(29):198–209

13. doi: 10.1021/acs.iecr.9b01150 . 

[15] He C, Liu C, Zhou M, Xie H, Xu X, Wu S, et al. A new selection principle of working

fluids for subcritical organic Rankine cycle coupling with different heat sources.

Energy 2014;68:283–91. doi: 10.1016/j.energy.2014.02.050 . 

[16] Zhang X, Zhang C, He M, Wang J. Selection and evaluation of dry and isen-

tropic organic working fluids used in Organic Rankine Cycle based on the turn-

ing point on their saturated vapor curves. J Therm Sci 2019;28(4):643–58.

doi: 10.1007/s11630-019-1149-x . 

[17] Huster WR, Schweidtmann AM, Mitsos A. Working fluid selection for organic rank-

ine cycles via deterministic global optimization of design and operation. Optim Eng

2019. doi: 10.1007/s11081-019-09454-1 . 

[18] Huster WR , Schweidtmann AM , Mitsos A . Impact of accurate working fluid prop-

erties on the globally optimal design of an Organic Rankine Cycle. In: Muñoz SG,

Laird CD, Realff MJ, editors. Computer aided chemical engineering. Elsevier; 2019.

p. 427–32 . 

[19] Papadopoulos AI, Stijepovic M, Linke P. On the systematic design and selec-

tion of optimal working fluids for Organic Rankine Cycles. Appl Therm Eng

2010;30(6):760–9. doi: 10.1016/j.applthermaleng.2009.12.006 . 

[20] Palma-Flores O, Flores-Tlacuahuac A, Canseco-Melchor G. Simultaneous molec-

ular and process design for waste heat recovery. Energy 2016;99:32–47.

doi: 10.1016/j.energy.2016.01.024 . 

[21] Su W, Zhao L, Deng S. Developing a performance evaluation model of Organic

Rankine Cycle for working fluids based on the group contribution method. Energy

Convers Manag 2017;132:307–15. doi: 10.1016/j.enconman.2016.11.040 . 

[22] Su W, Zhao L, Deng S. Simultaneous working fluids design and cycle optimiza-

tion for Organic Rankine cycle using group contribution model. Appl Energy

2017;202:618–27. doi: 10.1016/j.apenergy.2017.03.133 . 

[23] Joback KG, Reid RC. Estimation of pure-component properties

from group-contributions. Chem Eng Commun 1987;57(1–6):233–43.

doi: 10.1080/00986448708960487 . 

[24] Lampe M, Stavrou M, Bucker HM, Gross J, Bardow A. Simultaneous optimization

of working fluid and process for Organic Rankine Cycles using PC-SAFT. Ind Eng

Chem Res 2014;53(21):8821–30. doi: 10.1021/ie5006542 . 

[25] Deng S, Su W, Zhao L. A neural network for predicting normal boiling point of

pure refrigerants using molecular groups and a topological index. Int J Refrig

2016;63:63–71. doi: 10.1016/j.ijrefrig.2015.10.025 . 

[26] Choi I, Lee S, Seo Y, Chang D. Analysis and optimization of cascade Rankine

cycle for liquefied natural gas cold energy recovery. Energy 2013;61:179–95.

doi: 10.1016/j.energy.2013.08.047 . 

[27] Bao J, Lin Y, Zhang R, Zhang N, He G. Strengthening power generation effi-

ciency utilizing liquefied natural gas cold energy by a novel two-stage conden-

sation Rankine cycle (TCRC) system. Energy Convers Manag 2017;143:312–25.

doi: 10.1016/j.enconman.2017.04.018 . 

[28] Bao J, Zhang R, Lin Y, Zhang N, Zhang X, He G. Simultaneous optimiza-

tion of system structure and working fluid for the three-stage condensation

Rankine cycle utilizing LNG cold energy. Appl Therm Eng 2018;140:120–30.

doi: 10.1016/j.applthermaleng.2018.05.049 . 

[29] Lee U, Jeon J, Han C, Lim Y. Superstructure based techno-economic optimization

of the organic rankine cycle using LNG cryogenic energy. Energy 2017;137:83–94.

doi: 10.1016/j.energy.2017.07.019 . 

[30] Yu H, Eason J, Biegler LT, Feng X. Process integration and super-

structure optimization of Organic Rankine Cycles (ORCs) with heat ex-

changer network synthesis. Comput Chem Eng 2017;107(dec 5):257–70.

doi: 10.1016/j.compchemeng.2017.05.013 . 

[31] Bao J, Zhang R, Lin Y, Zhang N, Zhang X, He G. Simultaneous optimiza-

tion of system structure and working fluid for the three-stage condensation

Rankine cycle utilizing LNG cold energy. Appl Therm Eng 2018;140:120–30.

doi: 10.1016/j.applthermaleng.2018.05.049 . 

[32] Toffolo A, Lazzaretto A, Morandin M. The HEATSEP method for the synthesis of

thermal systems: an application to the S-Graz cycle. Energy 2010;35(2):976–81.

doi: 10.1016/j.energy.2009.06.030 . 

[33] Lazzaretto A, Toffolo A. A method to separate the problem of heat transfer

interactions in the synthesis of thermal systems. Energy 2008;33(2):163–70.

doi: 10.1016/j.energy.2007.07.015 . 

[34] Toffolo A, Rech S, Lazzaretto A. Combination of elementary processes to form a

general energy system configuration. In: ASME 2017 international mechanical en-

gineering congress and exposition, Tampa, US; 2017 . 

[35] Lin S, Zhao L, Deng S, Zhao D, Wang W, Chen M. Intelligent collaborative attain-

ment of structure configuration and fluid selection for the Organic Rankine cycle.

Appl Energy 2020;264(114):743. doi: 10.1016/j.apenergy.2020.114743 . 

[36] Wang H, Zhang H, Yang F, Song S, Chang Y, Bei C, et al. Parametric optimization

of regenerative organic rankine cycle system for diesel engine based on particle

swarm optimization. Energies 2015;8(9):9751–76. doi: 10.3390/en8099751 . 

[37] Bian S, Wu T, Yang JF. Parametric optimization of Organic Rank-

ine Cycle by genetic algorithm. In: 2nd international conference on

renewable energy and environmental technology; 2014. p. 19–20.

doi: 10.4028/www.scientific.net/AMM.672-674.741 . 

[38] Galindo J, Climent H, Dolz V, Royo-Pascual L. Multi-objective optimiza-

https://doi.org/10.13039/501100012166
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0001
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0001
https://doi.org/10.1021/acs.iecr.9b01150
https://arpa-e.energy.gov/?q=arpa-e-programs/differentiate
https://doi.org/10.1016/j.energy.2018.07.098
https://doi.org/10.1016/j.energy.2014.01.070
https://doi.org/10.1016/j.energy.2018.01.075
https://doi.org/10.1051/e3sconf/201911803053
https://doi.org/10.1016/j.applthermaleng.2019.04.114
https://doi.org/10.1016/j.enconman.2018.12.039
https://doi.org/10.1016/j.rser.2013.03.040
https://doi.org/10.1016/j.rser.2015.03.089
https://doi.org/10.1016/j.solener.2011.08.015
https://doi.org/10.1016/j.applthermaleng.2015.10.103
https://doi.org/10.1021/acs.iecr.9b01150
https://doi.org/10.1016/j.energy.2014.02.050
https://doi.org/10.1007/s11630-019-1149-x
https://doi.org/10.1007/s11081-019-09454-1
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0016
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0016
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0016
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0016
https://doi.org/10.1016/j.applthermaleng.2009.12.006
https://doi.org/10.1016/j.energy.2016.01.024
https://doi.org/10.1016/j.enconman.2016.11.040
https://doi.org/10.1016/j.apenergy.2017.03.133
https://doi.org/10.1080/00986448708960487
https://doi.org/10.1021/ie5006542
https://doi.org/10.1016/j.ijrefrig.2015.10.025
https://doi.org/10.1016/j.energy.2013.08.047
https://doi.org/10.1016/j.enconman.2017.04.018
https://doi.org/10.1016/j.applthermaleng.2018.05.049
https://doi.org/10.1016/j.energy.2017.07.019
https://doi.org/10.1016/j.compchemeng.2017.05.013
https://doi.org/10.1016/j.applthermaleng.2018.05.049
https://doi.org/10.1016/j.energy.2009.06.030
https://doi.org/10.1016/j.energy.2007.07.015
https://doi.org/10.1016/j.apenergy.2020.114743
https://doi.org/10.3390/en8099751
https://doi.org/10.4028/www.scientific.net/AMM.672-674.741


D. Zhao, S. Deng and L. Zhao et al. Energy and AI 1 (2020) 100011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tion of a bottoming Organic Rankine Cycle (ORC) of gasoline engine

using swash-plate expander. Energy Convers Manag 2016;126:1054–65.

doi: 10.1016/j.enconman.2016.08.053 . 

[39] Zhang X, Bai H, Zhao X, Diabat A, Zhang J, Yuan H, et al. Multi-objective opti-

misation and fast decision-making method for working fluid selection in organic

Rankine cycle with low-temperature waste heat source in industry. Energy Convers

Manag 2018;172:200–11. doi: 10.1016/j.enconman.2018.07.021 . 

[40] Agromayor R, Nord LO. Fluid selection and thermodynamic optimization of

organic Rankine cycles for waste heat recovery applications. Energy Procedia

2017;129:527–34. doi: 10.1016/j.egypro.2017.09.180 . 

[41] Zhang HG, Wang EH, Ouyang MG. Fan BY,Study of parameters optimization of

Organic Rankine cycle (ORC) for engine waste heat recovery. In: 2nd international

conference on manufacturing science and engineering, Guilin, China; 2011 . 

[42] Hajabdollahi Z, Hajabdollahi F, Tehrani M, Hajabdollahi H. Thermo-economic en-

vironmental optimization of Organic Rankine Cycle for diesel waste heat recovery.

Energy 2013;63:142–51. doi: 10.1016/j.energy.2013.10.046 . 

[43] Imran M, Park BS, Kim HJ, Lee DH, Usman M, Heo M. Thermo-economic optimiza-

tion of Regenerative Organic Rankine Cycle for waste heat recovery applications.

Energy Convers Manag 2014;87:107–18. doi: 10.1016/j.enconman.2014.06.091 . 

[44] Mahmoudi SMS, Ghavimi AR. Thermoeconomic analysis and multi objective opti-

mization of a molten carbonate fuel cell – supercritical carbon dioxide – Organic

Rankin cycle integrated power system using liquefied natural gas as heat sink. Appl

Therm Eng 2016;107:1219–32. doi: 10.1016/j.applthermaleng.2016.07.003 . 

[45] Andreasen JG, Larsen U, Knudsen T, Pierobon L, Haglind F. Selection and optimiza-

tion of pure and mixed working fluids for low grade heat utilization using organic

rankine cycles. Energy 2014;73:204–13. doi: 10.1016/j.energy.2014.06.012 . 

[46] Liu H, Zhang H, Yang F, Hou X, Yu F, Song S. Multi-objective optimization of

fin-and-tube evaporator for a diesel engine-Organic Rankine Cycle (ORC) com-

bined system using particle swarm optimization algorithm. Energy Convers Manag

2017;151:147–57. doi: 10.1016/j.enconman.2017.08.081 . 

[47] Wang E, Zhang H, Fan B, Wu Y. Optimized performances comparison of or-

ganic Rankine cycles for low grade waste heat recovery. J Mech Sci Technol

2012;26(8):2301–12. doi: 10.1007/s12206-012-0603-4 . 

[48] Kai Z, Mi Z, Yabo W, Zhili S, Shengchun L, Jinghong N. Parametric optimization

of low temperature. ORC Syst 2015. doi: 10.1016/j.egypro.2015.07.374 . 

[49] Nasir MT, Kim KC. Working fluids selection and parametric optimization

of an Organic Rankine Cycle coupled Vapor Compression Cycle (ORC-VCC)

for air conditioning using low grade heat. Energy Build 2016;129:378–95.

doi: 10.1016/j.enbuild.2016.07.068 . 

[50] Gutiérrez-Arriaga CG, Abdelhady F, Bamufleh HS, Serna-González M, El-

Halwagi MM, Ponce-Ortega JM. Industrial waste heat recovery and cogenera-

tion involving Organic Rankine Cycles. Clean Technol Environ 2015;17(3):767–79.

doi: 10.1007/s10098-014-0833-5 . 

[51] Larsen U, Pierobon L, Baldi F, Haglind F, Ivarsson A. Development of a model for

the prediction of the fuel consumption and nitrogen oxides emission trade-off for

large ships. Energy 2015;80:545–55. doi: 10.1016/j.energy.2014.12.009 . 

[52] Wang J, Dai Y, Gao L. Exergy analyses and parametric optimizations for differ-

ent cogeneration power plants in cement industry. Appl Energy 2009;86(6):941–8.

doi: 10.1016/j.apenergy.2008.09.001 . 

[53] Wang J, Yan Z, Wang M, Li M, Dai Y. Multi-objective optimization

of an organic Rankine cycle (ORC) for low grade waste heat recov-

ery using evolutionary algorithm. Energ Convers Manag 2013;71:146–58.

doi: 10.1016/j.enconman.2013.03.028 . 

[54] Xi H , Wang JL , Li MJ , Cheng ZD , He YL . Optimization design and working fluid

selection for transcritical Organic Rankine Cycle based on particle swarm optimiza-

tion. J Eng Thermophys 2015;36(3):461–7 . 

[55] Cavazzini G, Bari S, Pavesi G, Ardizzon G. A multi-fluid PSO-based algorithm for

the search of the best performance of sub-critical Organic Rankine Cycles. Energy

2017;129:42–58. doi: 10.1016/j.energy.2017.04.090 . 

[56] Rashidi MM, Galanis N, Nazari F, Basiri Parsa A, Shamekhi L. Parametric analysis

and optimization of regenerative Clausius and organic Rankine cycles with two

feedwater heaters using artificial bees colony and artificial neural network. Energy

2011;36(9):5728–40. doi: 10.1016/j.energy.2011.06.036 . 

[57] Massimiani A., Palagi L., Sciubba E., Tocci L., Neural networks for small scale ORC

optimization, IV International Seminar on ORC Power Systems, Milan, Italy; 2017.

doi: 10.1016/j.egypro.2017.09.174 . 

[58] Emadi MA, Mahmoudimehr J. Modeling and thermo-economic optimization of a

new multi-generation system with geothermal heat source and LNG heat sink. En-

ergy Convers Manag 2019;189:153–66. doi: 10.1016/j.enconman.2019.03.086 . 

[59] Cinnella P, Hercus SJ. Robust optimization of dense gas flows under

uncertain operating conditions. Comput Fluids 2010;39(10):1893–908.

doi: 10.1016/j.compfluid.2010.06.020 . 

[60] Erba ş M, Biyiko ǧlu A. Design and multi-objective optimization of or-

ganic Rankine turbine. Int J Hydrogen Energy 2015;40(44):343–51 15.

doi: 10.1016/j.ijhydene.2015.04.143 . 

[61] Rahbar K, Mahmoud S, Al-Dadah RK, Moazami N. Parametric analysis and op-

timization of a small-scale radial turbine for Organic Rankine Cycle. Energy

2015;83:696–711. doi: 10.1016/j.energy.2015.02.079 . 

[62] Rahbar K, Mahmoud S, Al-Dadah RK, Moazami N, et al. Preliminary

mean-line design and optimization of a radial turbo-expander for waste

heat recovery using Organic Rankine Cycle. Energy Procedia 2015;75:860–6.

doi: 10.1016/j.egypro.2015.07.188 . 

[63] Rahbar K., Mahmoud S., Al-Dadah R.K., Moazami N., One-dimensional and three-

dimensional numerical optimization and comparison of single-stage supersonic and

dual-stage transonic radial inflow turbines for the ORC. ASME 2016 Power Confer-

ence, Charlotte, North Carolina, USA; 2016. doi: 10.1115/POWER2016-59,508 . 
[64] Zhai L, Xu G, Wen J, Quan Y, Fu J, Wu H, et al. An improved modeling for low-grade

organic Rankine cycle coupled with optimization design of radial-inflow turbine.

Energy Convers Manag 2017;153:60–70. doi: 10.1016/j.enconman.2017.09.063 . 

[65] Imran M, Usman M, Park BS, Kim HJ, Lee DH. Multi-objective optimization of

evaporator of organic Rankine cycle (ORC) for low temperature geothermal heat

source. Appl Therm Eng 2015;80:1–9. doi: 10.1016/j.applthermaleng.2015.01.034 .

[66] Xu J, Luo X, Chen Y, Mo S. Multi-criteria design optimization and screening

of heat exchangers for a subcritical ORC. Energy Procedia 2015;75:1639–45.

doi: 10.1016/j.egypro.2015.07.397 . 

[67] Tveitaskog KA, Haglind F. Optimization of advanced liquid natural gas-fuelled com-

bined cycle machinery systems for a high-speed ferry. In: ASME turbo expo 2012:

turbine technical conference and exposition, Copenhagen, Denmark; 2012 . 

[68] Xi H, Li M, He Y, Tao W. CE diagram: a quantitative evaluation criterion for waste

heat recovery power system and working fluids with applications. J Xi’an Jiaotong

Univ 2013;47(9):8–15. doi: 10.7652/xjtuxb201309002 . 

[69] Larsen U, Pierobon L, Haglind F, Gabrielii C. Design and optimisation of organic

Rankine cycles for waste heat recovery in marine applications using the principles

of natural selection. Energy 2013;55:803–12. doi: 10.1016/j.energy.2013.03.021 . 

[70] Wang M , Wang J , Yan Z , Ma S , Dai Y . Multi-objective optimization of low-tem-

perature waste-heat ORC power generation systems. J Chin Soc Power Eng

2013;33(5):387–92 . 

[71] Pierobon L, Larsen U, Van Nguyen T, Haglind F. Optimization of organic rank-

ine cycles for off-shore applications. In: ASME turbo expo 2013: turbine technical

conference and exposition, San Antonio, US; 2013 . 

[72] Xi H, Li MJ, Xu C, He YL. Parametric optimization of regenerative organic Rankine

cycle (ORC) for low grade waste heat recovery using genetic algorithm. Energy

2013;58:473–82. doi: 10.1016/j.energy.2013.06.039 . 

[73] Wang J, Yan Z, Wang M, Ma S, Dai Y. Thermodynamic analysis and optimiza-

tion of an (organic Rankine cycle) ORC using low grade heat source. Energy

2013;49(1):356–65. doi: 10.1016/j.energy.2012.11.009 . 

[74] Long R, Bao YJ, Huang XM, Liu W. Exergy analysis and working fluid selection of

Organic Rankine Cycle for low grade waste heat recovery. Energy 2014;73:475–83.

doi: 10.1016/j.energy.2014.06.040 . 

[75] Cataldo F, Mastrullo R, Mauro AW, Vanoli GP. Fluid selection of Organic Rank-

ine Cycle for low-temperature waste heat recovery based on thermal optimization.

Energy 2014;72:159–67. doi: 10.1016/j.energy.2014.05.019 . 

[76] Kalikatzarakis M, Frangopoulos CA. Multi-criteria selection and thermo-economic

optimization of Organic Rankine Cycle system for a marine application. Int J Ther-

modyn 2015;16(2):133–41. doi: 10.5541/ijot.5000075305 . 

[77] Larsen U, Sigthorsson O, Haglind F. A comparison of advanced heat recovery

power cycles in a combined cycle for large ships. Energy 2014;74(C):260–8.

doi: 10.1016/j.energy.2014.06.096 . 

[78] Xi H, Li MJ, He YL, Yang WW, Li YS. Parametric optimization of zeotropic mixtures

used in low-temperature organic rankine cycle for power generation. In: ASME

turbo expo 2014: turbine technical conference and exposition, Dusseldorf, Ger-

many; 2014 . 

[79] Yang F, Zhang H, Song S, Bei C, Wang H, Wang E. Thermoeconomic multi-objective

optimization of an organic Rankine cycle for exhaust waste heat recovery of a diesel

engine. Energy 2015;93:2208–28. doi: 10.1016/j.energy.2015.10.117 . 

[80] Yang F, Zhang H, Bei C, Song S, Wang E. Parametric optimization and

performance analysis of ORC (organic Rankine cycle) for diesel engine

waste heat recovery with a fin-and-tube evaporator. Energy 2015;91:128–41.

doi: 10.1016/j.energy.2015.08.034 . 

[81] Andreasen JG, Larsen U, Knudsen T, Haglind F. Design and optimization of a

novel organic Rankine cycle with improved boiling process. Energy 2015;91:48–

59. doi: 10.1016/j.energy.2015.06.122 . 

[82] Zhao M, Canova M, Tian H, Shu G. Design space exploration for waste heat recovery

system in automotive application under driving cycle. Energy 2019;176:980–90.

doi: 10.1016/j.energy.2019.04.063 . 

[83] Xi H, Li MJ, He YL, Tao WQ. A graphical criterion for working fluid selection

and thermodynamic system comparison in waste heat recovery. Appl Therm Eng

2015;89:772–82. doi: 10.1016/j.applthermaleng.2015.06.050 . 

[84] Hajabdollahi H. Investigating the effects of load demands on selec-

tion of optimum CCHP-ORC plant. Appl Therm Eng 2015;87:547–58.

doi: 10.1016/j.applthermaleng.2015.05.050 . 

[85] Feng Y, Zhang Y, Li B, Yang J, Shi Y. Comparison between regenera-

tive organic Rankine cycle (RORC) and basic organic Rankine cycle (BORC)

based on thermoeconomic multi-objective optimization considering exergy effi-

ciency and levelized energy cost (LEC). Energ Convers Manage 2015;96:58–71.

doi: 10.1016/j.enconman.2015.02.045 . 

[86] Feng Y, Zhang Y, Li B, Yang J, Shi Y. Sensitivity analysis and thermoeconomic com-

parison of ORCs (organicRankine cycles) for low temperature waste heat recovery.

Energy 2015;82:664–77. doi: 10.1016/j.energy.2015.01.075 . 

[87] Kalikatzarakis M, Frangopoulos CA. Multi-criteria selection and thermo-economic

optimization of an organic rankine cycle system for a marine application. Int J

Thermody 2015;18(2):133–41. doi: 10.5541/ijot.5000075305 . 

[88] Nazari N, Heidarnejad P, Porkhial S. Multi-objective optimization of a com-

bined steam-organic Rankine cycle based on exergy and exergo-economic analy-

sis for waste heat recovery application. Energ Convers Manage 2016;127:366–79.

doi: 10.1016/j.enconman.2016.09.022 . 

[89] Ameri M, Jorjani M. Performance assessment and multi-objective optimization of

an integrated organic Rankine cycle and multi-effect desalination system. Desali-

nation 2016;392:34–45. doi: 10.1016/j.desal.2016.04.009 . 

[90] Bahari SS, Sameti M, Ahmadi MH, Haghgooyan MS. Optimisation of a combined

Stirling cycle–organic Rankine cycle using a genetic algorithm. Int J Ambient En-

ergy 2016;37(4):398–402. doi: 10.1080/01430750.2014.977497 . 

https://doi.org/10.1016/j.enconman.2016.08.053
https://doi.org/10.1016/j.enconman.2018.07.021
https://doi.org/10.1016/j.egypro.2017.09.180
https://doi.org/10.1016/j.energy.2013.10.046
https://doi.org/10.1016/j.enconman.2014.06.091
https://doi.org/10.1016/j.applthermaleng.2016.07.003
https://doi.org/10.1016/j.energy.2014.06.012
https://doi.org/10.1016/j.enconman.2017.08.081
https://doi.org/10.1007/s12206-012-0603-4
https://doi.org/10.1016/j.egypro.2015.07.374
https://doi.org/10.1016/j.enbuild.2016.07.068
https://doi.org/10.1007/s10098-014-0833-5
https://doi.org/10.1016/j.energy.2014.12.009
https://doi.org/10.1016/j.apenergy.2008.09.001
https://doi.org/10.1016/j.enconman.2013.03.028
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0051
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0051
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0051
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0051
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0051
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0051
https://doi.org/10.1016/j.energy.2017.04.090
https://doi.org/10.1016/j.energy.2011.06.036
https://dx.doi.org/10.1016/j.egypro.2017.09.174
https://doi.org/10.1016/j.enconman.2019.03.086
https://doi.org/10.1016/j.compfluid.2010.06.020
https://doi.org/10.1016/j.ijhydene.2015.04.143
https://doi.org/10.1016/j.energy.2015.02.079
https://doi.org/10.1016/j.egypro.2015.07.188
https://10.1115/POWER2016-59,508
https://doi.org/10.1016/j.enconman.2017.09.063
https://doi.org/10.1016/j.applthermaleng.2015.01.034
https://doi.org/10.1016/j.egypro.2015.07.397
https://doi.org/10.7652/xjtuxb201309002
https://doi.org/10.1016/j.energy.2013.03.021
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0063
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0063
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0063
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0063
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0063
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0063
https://doi.org/10.1016/j.energy.2013.06.039
https://doi.org/10.1016/j.energy.2012.11.009
https://doi.org/10.1016/j.energy.2014.06.040
https://doi.org/10.1016/j.energy.2014.05.019
https://doi.org/10.5541/ijot.5000075305
https://doi.org/10.1016/j.energy.2014.06.096
https://doi.org/10.1016/j.energy.2015.10.117
https://doi.org/10.1016/j.energy.2015.08.034
https://doi.org/10.1016/j.energy.2015.06.122
https://doi.org/10.1016/j.energy.2019.04.063
https://doi.org/10.1016/j.applthermaleng.2015.06.050
https://doi.org/10.1016/j.applthermaleng.2015.05.050
https://doi.org/10.1016/j.enconman.2015.02.045
https://doi.org/10.1016/j.energy.2015.01.075
https://doi.org/10.5541/ijot.5000075305
https://doi.org/10.1016/j.enconman.2016.09.022
https://doi.org/10.1016/j.desal.2016.04.009
https://doi.org/10.1080/01430750.2014.977497


D. Zhao, S. Deng and L. Zhao et al. Energy and AI 1 (2020) 100011 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

[  

 

[  

 

 

[  

 

 

[  

 

 

 

[  

 

 

[  

 

 

[  

 

[  

 

[91] Javan S, Mohamadi V, Ahmadi P, Hanafizadeh P. Fluid selection optimization of a

combined cooling, heating and power (CCHP) system for residential applications.

Appl Therm Eng 2016;96:26–38. doi: 10.1016/j.applthermaleng.2015.11.060 . 

[92] Han Z, Yu Y, Ye Y. Selection of working fluids for solar thermal power generation

with organic rankine cycles system based on genetic algorithm. In: 2013 Interna-

tional Conference on Materials for Renewable Energy and Environment, Chengdou,

China; 2013 Aug 19-21 . 

[93] Scardigno D, Fanelli E, Viggiano A, Braccio G, Magi V. A genetic optimization of

a hybrid organic Rankine plant for solar and low-grade energy sources. Energy

2015;91:807–15. doi: 10.1016/j.energy.2015.08.066 . 

[94] Hajabdollahi H, Ganjehkaviri A, Mohd Jaafar MN. Thermo-economic optimization

of RSORC (regenerative solar organic Rankine cycle) considering hourly analysis.

Energy 2015;87:369–80. doi: 10.1016/j.energy.2015.04.113 . 

[95] Noorpoor AR, Heidararabi S, Heidarnejad P. Dynamic modelling, exergy assess-

ment and optimisation of a novel solar-driven trigeneration system. Int J Exergy

2016;20(4):405–44. doi: 10.1504/IJEX.2016.078093 . 

[96] Boyaghchi FA, Chavoshi M, Sabeti V. Optimization of a novel combined

cooling, heating and power cycle driven by geothermal and solar ener-

gies using the water/CuO (copper oxide) nanofluid. Energy 2015;91:685–99.

doi: 10.1016/j.energy.2015.08.082 . 

[97] Fiaschi D, Lifshitz A, Manfrida G, Tempesti D. An innovative ORC power

plant layout for heat and power generation from medium- to low-

temperature geothermal resources. Energ Convers Manage 2014;88:883–93.

doi: 10.1016/j.enconman.2014.08.058 . 

[98] Cao L, Wang J, Zhao P, Dai Y. Thermodynamic comparison among double-

flash, flash-Kalina and flash-ORC geothermal power plants. Int J Thermody

2016;19(1):53–60. doi: 10.5541/ijot.5000156088 . 

[99] Cao L, Wang J, Zhao P, Dai Y. Thermodynamic comparison among double-

flash flash-Kalina and flash-ORC geothermal power plants. Int J Thermody

2015;19(1):53–60. doi: 10.5541/ijot.5000156088 . 

100] Li WK, Yang XL, Huang FF, Dai WZ. Performance optimization for cas-

caded diversion ORC system. J Eng Therm Energy Power 2016;31(10):15–19.

doi: 10.16146/j.cnki.rndlgc.2016.10.003 . 

101] Imran M, Usman M, Park BS, Yang Y. Comparative assessment of Organic Rankine

Cycle integration for low temperature geothermal heat source applications. Energy

2016;102:473–90. doi: 10.1016/j.energy.2016.02.119 . 

102] Pierobon L, Rokni M, Larsen U, Haglind F. Thermodynamic analysis of an inte-

grated gasification solid oxide fuel cell plant combined with an organic Rankine

cycle. Renew Energy 2013;60:226–34. doi: 10.1016/j.renene.2013.05.021 . 

103] Donateo T , Fazio A . A numerical procedure for the preliminary design of a ORC

power plants with positive displacement expanders. WSEAS Trans Environ Dev

2014;10:186–96 . 

104] Wang H, Xu J. Multi-objective optimization for organic rankine cycle

using BP-GA algorithm. Proc Chin Soc Electr Eng 2016;36(12):3168–75.

doi: 10.13334/j.0258-8013.pcsee.151867 . 

105] Khaljani M, Khoshbakhti Saray R, Bahlouli K. Thermodynamic and thermoeco-

nomic optimization of an integrated gas turbine and organic Rankine cycle. Energy

2015;93:2136–45. doi: 10.1016/j.energy.2015.10.002 . 

106] Ebrahimi M, Ahookhosh K. Integrated energy-exergy optimization of a novel micro-

CCHP cycle based on MGT-ORC and steam ejector refrigerator. Appl Therm Eng

2016;102:1206–18. doi: 10.1016/j.applthermaleng.2016.04.015 . 

107] Wang M, Jing R, Zhang H, Meng C, Li N, Zhao Y. An innovative Organic

Rankine Cycle (ORC) based Ocean Thermal Energy Conversion (OTEC) system

with performance simulation and multi-objective optimization. Appl Therm Eng

2018;145:743–54. doi: 10.1016/j.applthermaleng.2018.09.075 . 
108] Bao J, Lin Y, Zhang R, Zhang N, He G. Effects of stage number of condensing process

on the power generation systems for LNG cold energy recovery. Appl Therm Eng

2017;126:566–82. doi: 10.1016/j.applthermaleng.2017.07.144 . 

109] Sun Z., Wang S., Xu F., He W., Multi-parameter optimization and fluid selection

guidance of a two-stage organic Rankine cycle utilizing LNG cold energy and low

grade heat, 2017. 10.1016/j.egypro.2017.12.510. 

110] Arslan O, Yetik O. ANN based optimization of supercritical ORC-Binary geother-

mal power plant: simav case study. Appl Therm Eng 2011;31(17–18):3922–8.

doi: 10.1016/j.applthermaleng.2011.07.041 . 

111] Arslan O, Yetik O. ANN modeling of an orc-binary geothermal power

plant: simav case study. Energy Sources Part A 2014;36(4):418–28.

doi: 10.1080/15,567,036.2010.542437 . 

112] Zhang J, Lin M, Shi F, Meng J, Xu J. Set point optimization of con-

trolled Organic Rankine Cycle systems. Chin Sci Bull 2014;59(33):4397–404.

doi: 10.1007/s11434-014-0590-1 . 

113] Zhang J., Song S., Wang P., Ning M., Yin X., Operating conditions monitoring of

vehicle internal combustion engine waste heat utilization systems based on sup-

port vector machines. 2017 Chinese Automation Congress, Jinan, China; 2017.

doi: 10.1109/CAC.2017.8243880 

114] Dong S, Zhang Y, He Z, Deng N, Yu X, Yao S. Investigation of Support

Vector Machine and Back Propagation Artificial Neural Network for perfor-

mance prediction of the organic Rankine cycle system. Energy 2018;144:851–64.

doi: 10.1016/j.energy.2017.12.094 . 

115] K ı l ı ç B, Arabac ı E. Alternative approach in performance analysis of organic rankine

cycle (ORC). Environmental Progress and Sustainable Energy 2019;38(1):254–9.

doi: 10.1002/ep.12901 . 

116] Palagi L, Pesyridis A, Sciubba E, Tocci L. Machine Learning for the prediction

of the dynamic behavior of a small scale ORC system. Energy 2019;166:72–82.

doi: 10.1016/j.energy.2018.10.059 . 

117] Zhi LH, Hu P, Chen LX, Zhao G. Multiple parametric analysis, optimization and

efficiency prediction of transcritical organic Rankine cycle using trans-1,3,3,3-

tetrafluoropropene (R1234ze(E)) for low grade waste heat recovery. Energy Con-

vers Manag 2019;180:44–59. doi: 10.1016/j.enconman.2018.10.086 . 

118] Khosravi A, Syri S, Zhao X, Assad MEH. An artificial intelligence ap-

proach for thermodynamic modeling of geothermal based-organic Rank-

ine cycle equipped with solar system. Geothermics 2019;80:138–54.

doi: 10.1016/j.geothermics.2019.03.003 . 

119] Herawan S.G., Talib K., Shamsudin S.A., Putra A., Musthafah M.T., Ismail A.F.,

Prediction of steam turbine performance as a waste heat recovery mechanism on

naturally aspirated spark ignition engine using artificial neural network. 3rd In-

ternational Conference on Soft Computing & Machine Intelligence (ISCMI), Dubai,

UAE; 2017. doi: 10.1109/ISCMI.2016.22 . 

120] Yang F, Cho H, Zhang H, Zhang J, Wu Y. Artificial neural network (ANN)

based prediction and optimization of an organic Rankine cycle (ORC) for

diesel engine waste heat recovery. Energy Convers Manag 2018;164:15–26.

doi: 10.1016/j.enconman.2018.02.062 . 

121] Luo X, Wang Y, Liang J, Qi J, Su W, Yang Z, et al. Improved correla-

tions for working fluid properties prediction and their application in perfor-

mance evaluation of sub-critical Organic Rankine Cycle. Energy 2019;174:122–37.

doi: 10.1016/j.energy.2019.02.124 . 

122] Schilling J, Horend C, Bardow A. Integrating superstructure ‐based de-

sign of molecules, processes and flowsheets. AiCHE J 2020:e16903.

doi: 10.1002/aic.16903 . 

123] Tawarmalani M SNV . Convexification and global optimization in continuous and

mixed-integer nonlinear programming: theory, algorithms, software, and applica-

tions. Springer Science & Business Media; 2013 . 

https://doi.org/10.1016/j.applthermaleng.2015.11.060
https://doi.org/10.1016/j.energy.2015.08.066
https://doi.org/10.1016/j.energy.2015.04.113
https://doi.org/10.1504/IJEX.2016.078093
https://doi.org/10.1016/j.energy.2015.08.082
https://doi.org/10.1016/j.enconman.2014.08.058
https://doi.org/10.5541/ijot.5000156088
https://doi.org/10.5541/ijot.5000156088
https://doi.org/10.16146/j.cnki.rndlgc.2016.10.003
https://doi.org/10.1016/j.energy.2016.02.119
https://doi.org/10.1016/j.renene.2013.05.021
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0095
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0095
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0095
https://doi.org/10.13334/j.0258-8013.pcsee.151867
https://doi.org/10.1016/j.energy.2015.10.002
https://doi.org/10.1016/j.applthermaleng.2016.04.015
https://doi.org/10.1016/j.applthermaleng.2018.09.075
https://doi.org/10.1016/j.applthermaleng.2017.07.144
https://doi.org/10.1016/j.applthermaleng.2011.07.041
https://doi.org/10.1080/15,567,036.2010.542437
https://doi.org/10.1007/s11434-014-0590-1
https://1010.1109/CAC.2017.8243880
https://doi.org/10.1016/j.energy.2017.12.094
https://doi.org/10.1002/ep.12901
https://doi.org/10.1016/j.energy.2018.10.059
https://doi.org/10.1016/j.enconman.2018.10.086
https://doi.org/10.1016/j.geothermics.2019.03.003
https://10.1109/ISCMI.2016.22
https://doi.org/10.1016/j.enconman.2018.02.062
https://doi.org/10.1016/j.energy.2019.02.124
https://doi.org/10.1002/aic.16903
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0111
http://refhub.elsevier.com/S2666-5468(20)30011-2/sbref0111

	Overview on artificial intelligence in design of Organic Rankine Cycle
	1 Introduction
	2 Design problems of ORC system
	3 Literature review of intelligent design for ORC system
	3.1 Working fluid selection
	3.2 Cycle configuration selection
	3.3 Operating parameters optimization
	3.4 Component selection and sizing

	4 Discussion and further work
	4.1 Summary of research status
	4.1.1 Decision-making
	4.1.2 Parameters optimization
	4.1.3 Parameters prediction

	4.2 A new trend in ORC systems design

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	References


