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We analyze how artificial intelligence changes a significant part of the energy sector, the oil and gas industry.
We focus on the upstream segment as the most capital-intensive part of oil and gas and the segment of enormous
uncertainties to tackle. Basing on the analysis of Al application possibilities and the review of existing applica-
tions, we outline the most recent trends in developing Al-based tools and identify their effects on accelerating
and de-risking processes in the industry. We investigate Al approaches and algorithms, as well as the role and

availability of data in the segment. Further, we discuss the main non-technical challenges that prevent the in-
tensive application of artificial intelligence in the oil and gas industry, related to data, people, and new forms of
collaboration. We also outline three possible scenarios of how artificial intelligence will develop in the oil and
gas industry and how it may change it in the future (in 5, 10, and 20 years).

1. Introduction

Artificial intelligence (AI), as the most important general-purpose
technology of today [1,2], is rapidly entering industries, creating sig-
nificant potential for innovations [3] and growth [4]. In healthcare,
transportation, retail, media, and finance, Al already triggered substan-
tial changes and transformed the competition rules. Instead of relying
on traditional and human-centered business processes, companies from
these industries create value using Al solutions [5]. Advanced algo-
rithms trained on large and useful datasets, and continuously supplied
with new data drive the value creation process. That is how Gero.ai
fights Covid-19, Amazon sets prices for products it offers, InboxVudu
prioritizes mails, and Yandex moves (autonomous) cars.

However, not only companies from digital-savvy industries are prof-
iting from Al Oil and gas, mining, and construction companies are the
latecomers to digitalization [6,7], but they are also getting more and
more dependent on Al solutions. Although the first applications of Al
in the oil and gas industry were considered in the 1970s [8], the indus-
try has started to look more proactively for Al application opportunities
several years ago [9,10]. It coincides with the exponential growth of Al
capabilities and the industry’s movement towards the Oil and Gas 4.0
concept, whose core goal is to achieve higher value utilizing advanced
digital technologies [11].
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As oil and gas companies are much quicker to adopt new technolo-
gies than to experiment with and change their business models [12],
their AI's primary target (and other digitalization) efforts are to improve
efficiency. In practice, that typically means to accelerate processes and
reduce risks [8,11,13]. This paper aims to discuss in detail and demon-
strate how Al is transforming the oil and gas upstream. We will mainly
focus on the following three questions:

» what de-risking in the oil and gas industry means and how AI is
helping with it;

» which processes can be accelerated by applying Al and how much;

» what has been already done and what are the expected advance-
ments in the following years.

As the oil and gas industry is complex and diverse, we situate and
focus our discussion on the upstream sector. The upstream covers crude
oil and natural gas production. It includes searching for potential un-
derground or underwater crude oil and natural gas fields, drilling ex-
ploratory wells, and subsequently drilling and operating the wells used
to lift the crude oil or raw natural gas to the surface. The upstream is
of particular interest as it is the most capital-intensive and important of
the three segments in the oil and gas business [13]. Companies from the
sector deal with enormous uncertainties handled manually and relied on
expert knowledge, not the actual data. The saying "one rock, two geolo-
gists, three opinions" tells a lot about the high uncertainties and risks oil
and gas companies have to deal with. The uncertainties need handling
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Table 1
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Non-confidential summary of projects performed with the direct involvement of the authors.

Upstream activity

Developed tool

Al approach

Main effect

Acceleration

De-risking

Geological assessment

Tool for automated mapping
of reservoir rock properties
over an oil region

Tool for extracting the
geological information from
well logs

Tool for rock typing based on
images of rock samples
extracted from the wells

None gradient
optimization + inter-
polation

techniques

Gradient boosting

Deep neural networks

Speeded up the
manual mapping
procedure from several
weeks to several
seconds

100+ times speedup

~1.000.000+ times
speedup

Removing human errors
causing wrong

mapping = making a more
accurate definition of right
hydrocarbon targets

Drilling

Tool for detecting the drilled
rock type and potential failure
using real-time drilling
telemetry

Combination of
machine learning
algorithms

Up to 20% time saving
and up to 15% money
savings at well
construction

Maximizing the contact
between the wellbore and the
pay zone

Reservoir engineering

Tool for accelerating the
conventional reservoir
simulations

Deep neural networks

Accelerating by a
factor of
200 to 2000

Making it possible to screen
through much more field
development scenarios for
selecting the most optimal one

Production optimization

Data-driven tool for an
objective forecast of efficiency

Gradient
boosting + expert
based feature selection

100+ times faster
estimation of the well
treatment effect

Up to 20% growth of
marginality of the investments

of well treatment campaigns

to the campaigns

when making multibillion decisions on where and how to invest in the
coming 5-20 years. However, despite the complex and uncertain nature
of management problems in the sector, the single-criterion approaches
have historically dominated decision-making [14]. To use existing field
data to account for uncertainties associated with practitioners’ subjec-
tive perception and decision-making based on experience, the first steps
in using artificial intelligence and machine learning in the upstream are
made, becoming increasingly popular [13].

The paper utilizes learnings from dozens of Al projects performed
with the authors’ involvement over the last three years for leading oil
and gas upstream companies worldwide. The projects covered Al so-
lutions for the whole spectrum of the upstream activities — geological
assessment of the reservoirs, drilling optimization, reservoir engineer-
ing/field development, and production optimization. More details are
in Table 1.

The paper is organized as follows. In Section 2, a big picture of the
need for using Al in the upstream oil and gas industry sector is out-
lined. Based on an in-depth analysis of possibilities for applying Al and
already existing applications, in Section 3, we review the most recent
trends in developing Al-based tools for the sector and identify their ef-
fects, primarily on accelerating and de-risking processes in the industry.
Section 4 briefly reviews AI approaches and algorithms used in solu-
tions, while Section 5 in detail analyzes the role and availability of data
in the sector. Further, in Section 6, we discuss the main challenges the
intensive application of Al faces in the industry, focusing on new re-
quirements related to data, people, and collaboration. Finally, we con-
clude by outlining three possible scenarios of how AI will develop in the
industry and how it may change it in the future (5, 10, and 20 years) in
each of the scenarios.

2. The problem and need for Al

The dominance of "difficult-to-recover" oil and gas reserves over the
last ten years [15] dictates the necessity of new operational approaches
and business models in the exploration and production of hydrocar-
bons, oriented towards ensuring appropriate profitability of oil and gas
production. The latter is true for both well-developed (brownfields) and
newly discovered (greenfields) subsurface hydrocarbon reservoirs.

Even though the vast majority of the brownfields are relatively big
in terms of their geometrical sizes and rather good in terms of trans-

port and storage properties (porosity and permeability), the amount
of oil and gas recoverable with cheap waterflooding is very small. In
principle, all conventional brownfields are producing more water than
oil [16]. To keep production levels, the operating companies have to
spend a sufficient amount of money for one of the following operations:
extra drilling, well treatment (e.g., hydraulic fracturing), or field-scale
enhanced oil recovery procedures (e.g., increasing the mobility of re-
maining oil in the reservoir with an injection of chemical cocktails). In
many cases, money invested in these actions does not pay off, leaving
the brownfields in a slow process of dying.

The situation is not better for new discoveries neither. Nearly all
of the newly discovered hydrocarbon reservoirs are also difficult. They
might be [17]: (1) located in places with harsh environmental condi-
tions (e.g., in Arctic’s shelf); (2) complex in terms of geometry (e.g.,
thin and winding layers of oil-saturated rocks with lots of cracks); (3)
under the very thick layer of seawater and salt minerals (e.g., offshore
Brazil); or (4) poor in terms of permeability (so that the hydrocarbon is
nearly immobile within the reservoir rock). The development of these
greenfields requires expensive technologies and makes the profitability
of further oil production questionable.

The decision-makers handle uncertainties related to long term and
high-value investments in the oil and gas upstream manually and based
on expert knowledge, not the actual data enormous . There are two
major questions they need to answer in this context. First — is this a par-
ticular asset perspective? Shall we spend money on geophysical studies
to assess the potential of the asset? Typically, this question is answered
with the geological modeling and reservoir modeling workflow, which
takes several months to several years, depending on the necessity of ad-
ditional geophysical surveys and the complexity of the in-company pro-
cedures. The second question is — shall I spend money on enhancing the
oil production at my asset? If so, what technologies are worth investing?
This question is dominantly handled by experts and supported, at some
level, by conventional reservoir modeling tools. Strong dependence on
expert opinion and the insufficiency of appropriate input data for the
traditional modeling tools result in biased and uncertain answers.

For both questions, Al systems, trained with the right field data,
can offer significant help by speeding up the asset assessment pro-
cess and making it more objective or expert-independent. The first
steps in this direction and future possibilities are discussed in the next
section.
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3. How Al is changing the upstream

The petroleum (oil and gas) industry divides into upstream, mid-
stream, and downstream (see Fig. 1). The upstream summarizes the sub-
surface (mining) part of the industry, including exploration followed by
the field development and production of the crude oil/gas. Midstream
stands for transportation of oil and gas, and downstream is for refinery
i.e., production of fuels, lubricants, plastics, and other products. Explain-
ing in detail many of the upstream activities, we discuss points where Al
solutions are already applied and their results. We also highlight where
we expect Al to be used and what results can come out of its application.

3.1. Al-aided exploration

Exploration of oil and gas reserves is a set of operations resulting in
a 3D geological model of an oil/gas field or reservoir. The operations in-
clude geophysical and petrophysical studies and processing of the data
acquired during the studies. Geophysical and petrophysical studies typ-
ically consist of 1) reservoir-scale seismic surveying, 2) well logging,
and 3) lab core analysis and (in some very specific cases) digital core
analysis.

Seismic surveying produces a set of sensor recordings called seismic
traces. The traces are time series representing the strength of elastic
waves initiated by a vibrator at the surface and reflected from bound-
aries dividing various subsurface formation layers. These recorded time
series together with spatial coordinates of the corresponding sensors and
the vibrator are put to a special reconstruction algorithm resulting in
noisy 3D images illustrating some of the reflecting boundaries. The re-
construction process is strongly offline due to very significant require-
ments for high-performance computing. Al-focused studies are aiming
to speed up this stage [18].

The 3D images are called seismic cubes. The seismic cubes are stud-
ied by seismic interpreters, which can also be involved in setting the
previous reconstruction phase parameters. The interpreters segment the
3D images by selecting the points, lines, and surfaces within the 3D
cube, which are "definitely" related to the boundaries between the vari-
ous layers in the subsurface formation. We quote "definitely" as there are
no objective criteria for defining these points, lines, and surfaces. The
whole process, starting with reconstruction to the 3D cube segmenta-
tion, is very time consuming and expert dependent. The entire survey
data processing can take more than a year for a precise seismic study,
as geologists decide, based on the segmented 3D cubes, where to drill
the first set of exploration wells to refine the understanding of the sub-
surface specifics.
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X Fig. 1. Division of the oil and gas industry into sectors.
upstream midstream downstream

Production of fuels,
lubricants, plastics

Modern pattern recognition techniques based on deep learning have
started to dive into this seismic-related operation, accelerating the in-
terpretation by a factor of 10-1000 [19]. There is a low probability that
the AI techniques will optimize the physical part (i.e., amount, cost, and
placement layout of sensors) of the first seismic surveying at an asset.
Still, they add value in the optimization of the secondary surveys at the
same asset. The mathematics of recommender systems [20] and inter-
polation capabilities of machine learning algorithms will enable proper
recommendations on making the secondary surveys cheaper with a mi-
nor loss in the value of acquired information.

While seismic images provide a big scale (covering tens of kilome-
ters) low resolution (down to tens of meters) information about reser-
voirs topology and its elastic properties, the well logging is used to
get more precise information about various physical properties of the
subsurface along a wellbore. The resolution of well logging is down to
centimeters. The well logging sensors can measure electrical resistivity,
natural gamma-ray intensity, response to magnetic excitation (nuclear
magnetic resonance study), neutron density, and some others. Results of
the well logging are vectors of properties along the wellbore. Petrophysi-
cists use well logging data for their interpretation routine, including rock
typing along the wellbore, estimation of porosity and permeability along
the wellbore, and estimation of relative fluid saturation (amount of oil
vs. the amount of gas and amount of water) along the wellbore.

The petrophysical interpretation is a rather time-consuming process,
and the result of the interpretation depends strongly on the interpreter
(i.e., expert). The authors faced this when developing an automated in-
terpretation algorithm based on machine learning for oil companies. The
algorithm, trained on historical well logging data, was applied to the
data from new wells. The accuracy of ML interpretation versus manual
interpretation was 92%. The ML interpretation was about 1000 times
faster than the manual. Then we have decided to make another man-
ual interpretation of the same data with the same experts. Interestingly
enough, the second manual interpretation versus the first manual inter-
pretation showed an accuracy of 91%.

In this view, the Al-aided technologies are the obvious way to ac-
celerate and, maybe even more critical, to exclude the subjective part
of the interpretation process [21,22]. Moreover, internal trials we did
for industrial partners demonstrate that a solid portion of the well log-
ging measurements could be easily reconstructed with ML. That would
enable the utilization of machine learning to build the recommendation
systems helping the oil companies spend less on the physical part of well
logging. A similar acceleration is possible with core analysis [23,24].

The results of the petrophysical interpretation are then used to re-
fine seismic interpretation. Geologists and petrophysicists extrapolate
the acquired properties from near-wellbore zones into the seismic cube,
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saturating the 3D segmented cube with porosity, permeability distri-
bution, and values of fluid saturation. This interpolation is probably the
most time consuming and subjective part of the whole geology modeling
workflow. With all the tuning exercises, the process can take from a cou-
ple of months to a couple of years. We expect that, if properly trained on
multiple manually conducted extrapolation exercises, generative archi-
tectures of deep neural networks can accelerate the process by a factor
of 1000+. Although it is hard to expect that in the near future, geol-
ogists and decision-makers will accept the automatically generated 3D
geological model as the absolute truth, the automation with deep learn-
ing is an excellent opportunity for suggesting the expert-independent
and fast variant for further fine-tuning and decision-making. Putting it
simply, we foresee that the final decision-making could be performed
much faster with the Al enablers.

3.2. Al-aided field development

Once the initial geological model is built, it goes to reservoir engi-
neers. The reservoir engineers build a reservoir model from the geolog-
ical model. Typically, they perform upscaling [25], which reduces the
amount of the 3D cells describing the reservoir properties by increasing
the size of the cells from the geological model. After the upscaling, the
reservoir engineers use reservoir modeling software [26] to model the
reservoir flows at various field development schemes. The field devel-
opment scheme contains the plan for well drilling and well operation.

The result of each of the reservoir modeling runs is a forecast of
oil/gas production for forthcoming years (typically 10 to 25 years) for a
particular field development scheme. Performing many runs, the reser-
voir engineers select the optimal field development scheme and field
development plan. The word optimal has different meanings for differ-
ent companies. One group of companies, typically mid to large-scale
companies, look for keeping the long-term production at some appro-
priate level at a fixed investment to field development and production
operations. The second group, typically small to mid-scale companies,
looks for a maximal outcome in producing oil/gas at minimal drilling
costs over a couple of years. The third group may want to ensure that
the asset or the field can be sold at a reasonable price after some time
of field operation. Mathematically speaking, different companies have
different target functions to optimize.

The reservoir engineering exercise is not done only for the green-
fields, but for brownfields as well. The brownfields have production
history, which helps correct the initial models via history matching
[27] and reduce uncertainties in the production forecast. Theoretically,
the history matching is an inverse problem with no unique solution, but
there are practical workflows to handle this in application to reservoir
engineering.

We see three major opportunities for applying Al in reservoir en-
gineering. The first is related to computations done with conventional
reservoir modeling tools. The tools perform numerical solutions of par-
tial differential equations describing the physics of reservoir flows. The
computations are performed on the 3D grid containing, typically, from
1 million to a couple of billions of cells. The computations are rather
lengthy, even with the modern workstations and HPC servers, limiting
the number of possible runs. The latter, in order, limits the optimization
ability for proper field development planning. The acceleration of reser-
voir modeling is one of the obvious directions for AI technologies. Mod-
ern surrogate reservoir models with a new computation engine based
on deep neural networks compress the mathematical problem dimen-
sionality and approximate the time derivatives promise 100-1000 times
the conventional models’ speedup while keeping similar functionality
[28,29].

The second opportunity is in upscaling (i.e., bringing the information
gained from various scales of geophysical studies to a single geological
and then hydrodynamical reservoir models). The upscaling process has
a significant portion of art within. There is no single scientifically ade-
quate framework for upscaling [30-32], and many reservoir engineers
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Drilling rig with surface
telemetry sensors

Fig. 2. Schematics of the well construction. Modern wells often have a hori-
zontal section which needs to follow the geometry of the productive layer thor-
oughly.

Fig. 3. The layout of multilateral wells. The wells drilled from the same point
at the surface can reach several target hydrocarbon reservoirs.

use tricks to perform it in a way that seems correct to themselves. It
introduces a strong bias to the reservoir model. As there is no single
correct and objective procedure for the upscaling, one could think of
increasing objectiveness by summing up the multiple experiences with
a smart tool. This could be done well with a deep learning algorithm
trained on multiple cases of manual upscaling. The outcome here would
not be only the increased objectiveness but also the increased speed of
the upscaling process.

The third opportunity is similar to upscaling but touching the his-
tory matching. The procedure here could be the same: trying to involve
a machine or deep learning to make history matching faster and less
biased.

As we have mentioned in the introduction, most greenfields have
reservoirs that are complex in terms of its geometry and geological fea-
tures. The latter requires building high tech wells with horizontal parts
and multilateral completions (see Figs. 2 and 3).

Well construction at field development is the most cost-intensive op-
eration at field development. For high investment in the drilling and
completion of the well to pay off, it is essential to use all the drilling
sensors’ information. The aim is to ensure the best contact between the
wellbore and the productive part of the formation, and maximal rate of
the whole well construction process at minimal risk of failure and so,
minimal non-productive time.

Modern drilling is a data-rich process. There are three types of
sensors. First are the sensors on the surface that record the mechan-
ical parameters of the drilling process in real-time. Second are the
logging-while-drilling (LWD) sensors, recording physical parameters of
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the formation behind the drilling bit. Third are mechanics-while-drilling
(MWD) sensors recording mechanical data from the bottom hole assem-
bly. All the sensors generate a time series that can be used to man-
age the drilling itself and update the oilfield’s geological or reservoir
model. There are multiple approaches for making the drilling process
faster [33], safer [34], and more precise [35]. We expect a significant
reduction of the non-productive time down to 20-40% on average with
a considerable decrease in failures down to 90% with the development
and implementation of Al-aided drilling support systems working with
real-time drilling telemetry.

3.3. Al-aided production

Producing reservoirs are attractive for Al-aided tools as well as the
green fields. There are obvious machine learning applications for vari-
ous pumps to implement predictive maintenance and select the optimal
operation regimes concerning operational costs vs. production. Many
of the pumps, including electric submersible pumps, pumps for injec-
tion wells, hydraulic fracturing, and other well treatment pumps, are
equipped with a high number of sensors measuring pressures, temper-
atures, vibrations, flow rates, etc. There are many examples when an
entirely data-driven or a hybrid model containing physics-driven and
data-driven math helps optimize the regimes, prevent unexpected fail-
ures, and save on maintenance-on-schedule [36,37].

Apart from these apparent applications for equipment maintenance,
we foresee the well treatment as another area with high cost-saving po-
tential. The well treatment operation is produced to stimulate the in-
flow of hydrocarbon to an old well or increase the starting flow rate
of a newly drilled well. The most popular well treatment procedures
are hydraulic fracturing [38] and chemical treatment [39]. The well
treatment costs are significant and comparable with the cost of well
construction. The investments to the well treatment campaigns are al-
ways at high risk because of two things. The first relates to the fact
that physics-driven models for predicting the well treatment effect pro-
duce very rough estimates due to the lack of precise knowledge of the
near-wellbore formation’s physical properties. The second relates to the
experts’ bias involved in figuring out the final selection of the well treat-
ment procedures for a particular set of wells. The bias is mainly because
of standard procedures of assessment of marginality levels of the proce-
dures in operating companies. Many of the standards assume fixed levels
of marginality, which are targeted by the experts to get the investments
for the well stimulation jobs.

There is an excellent opportunity to reduce the investment risks by
accumulating the data from already produced well treatment jobs. Pio-
neering efforts on predicting the efficiency of hydraulic fracturing jobs
[40] and ML-based analysis of injectivity issues [41] have already been
made. We expect that further development of algorithms based on op-
timization math and programming will enable full-scale recommending
systems. The recommending systems will help select the particular well
treatment design for a particular well and plan the well treatment cam-
paigns.

3.4. Al for safety

Apart from the AI application for cost reduction and de-risking, we
should mention its extraordinary impact on safety measures. Operations
on the oilfields are risky for personnel as there are several risk factors,
including heavy equipment, non-covered rotary equipment, high pres-
sure, high-temperature operations, and aggressive chemicals. There are
many IT systems based on deep learning helping the safety officers spot
safety protocols’ violence. Pattern recognition utilizing deep learning
allows and video streams recorded with cameras to alarm if an em-
ployee is not adequately dressed for the particular set of operations.
Moreover, predictive analytics alarm the operators on the equipment’s
health state, enabling pro-active actions to prevent a catastrophe with
the consequences to health, safety, and environment.
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4. Algorithms in the oil and gas upstream

Classical machine learning and deep learning are dominant ap-
proaches used in Al applications in the upstream sector and the whole oil
and gas industry [8]. They are used in solving classification, clustering,
or regression types of problems. Machine learning and deep learning al-
gorithms are black-boxes — there is no obvious formula that describes
why systems based on them do what they do or how they work. These
algorithms contain very complex multi-dimensional algebraic expres-
sions. Coefficients within these expressions are defined to fit the input
and output data describing the system, object, or process. This fitting
process is called training. Once trained on known data, the algorithms
can generate novel insights based on new inputs.

Additionally, hybrid modeling, where physics-driven models are
used together with machine learning algorithms, is present in industrial
applications. There is a distinction between physics-dominated hybrid
models and data-dominated hybrid models. In physics-dominated hy-
brid models, machine learning is used to tune the equation’s coefficients
to the actual data generated by an object of interest. On the other hand,
in data-dominated hybrid models, the physics-driven model is used for
generating large amounts of training data, based on which (+real-life
data) the ML model learns the physics of the problem and helps in solv-
ing it [42].

Finally, the first applicators involving Al planning — the set of opti-
mization and machine learning methods to plan some actions to achieve
a goal, typically executed by autonomous robots, intelligent agents and
crewless vehicles — are emerging in the oil and gas industry.

In-depth analysis of Al and machine learning algorithms used in the
oil and gas industry can be found in several recent reviews, including
[8,43-45].

5. Data in the oil and gas upstream

Common to all mentioned AI approaches is that without access to
large and good enough training data, Al algorithms are significantly
less useful, sometimes useless. "Good enough" means that data must be
diverse enough to cover all events, activities, and behaviors of interest
[46]. For example, to build a successful predictive maintenance solu-
tion, the dataset must contain enough recorded failures to be useful for
learning from it. On the other hand, what is a "large enough" dataset is
less clear, as the size of the needed dataset depends on the context of the
problem that is being addressed (and the tempo of algorithm develop-
ment). Goodfellow, Bengio, and Courville [47] estimated that to achieve
somehow acceptable performance levels with the most interesting form
of today’s Al (i.e., supervised deep-learning), around 5000 labeled ex-
amples are needed for training. While to match or exceed human-level
performance, at least 10 million labeled samples are required.

The oil and gas industry is very data-rich [48]. Table 2 summarizes
its sources, formats, size, generation rate, and application areas in the
upstream.

Al is bringing a new approach in developing the oil and gas fields,
one in which data is key. Before this transition, the development of the
oil and gas fields and related data usage has passed through three major
stages. The beginning of the oil century (late XIX to early XX century)
was characterized by the logic, which can be formulated as: "There is
a hill, and there is a producing well at the neighbor hill. Let’s drill this
hill as soon as possible". To identify and develop the oil and gas fields,
people were using an entirely empirical approach based on analog cases.
Sensors, measurements and data were not used.

This changed when Schlumberger brothers updated the empiri-
cal decision-making with subsurface physical properties measurements
starting from electrical resistivity from the surface and then from the
wellbores. These measurements introduced sensor data to the decision-
making process of detecting oil and developing an oilfield.

Further development came with adding numerous data sources and
using data to characterize and analyze the fields through different sim-
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Table 2
Upstream data.
Data Source Data format Size Generation rate Used for
Seismic surveys Time series, Up to 100 TB One to several times in 25 Geological modeling
2D images, for a field years
3D images
Well logging Vectors, spreadsheets Uptoa 10 TB Several times Petrophysical and geological
for a field in 25 years modeling
Core analysis Spreadsheets, Up to 500 TB for a field Several times Petrophysical and geological
2D images, (assuming digital rock study in 25 years modeling
3D images with X-ray microtomography)
Fluid analysis Spreadsheets Up to 500 MB Several times Reservoir Engineering
for a field in 25 years
Drilling telemetry Time series Up to 100 MB Up to several numbers per Real-time drilling management
for a well second during drilling
Drilling reports Spreadsheets, Up to 2 MB Once a day for each drilled Offline drilling management
unstructured text for a well well
Logging while drilling  Time series Up to 100 MB Up to a number per second Real-time drilling
for a well during drilling management/
geosteering
Well testing Time series Up to 100 MB Up to several numbers per Reservoir engineering and
for a well minute production management
Production rates Time series Up to 100 MB Up to once per hour Reporting, production
for a well daily management, reservoir
engineering
Well treatment data Spreadsheets, Up to 0.5 TB for a well Several times over a wellbore Reservoir engineering,

unstructured text treatment job

life production management

ulation and modeling exercises. At this third stage, experts use the data
in three ways typically. Seismics, well logging, core and fluid data are
used mainly to construct a reservoir geological model followed by con-
structing a reservoir model used in reservoir engineering for scenario
modeling to plan field development. This modeling is a key input to the
most cost-intensive decision making in oil and gas upstream. Some por-
tions of the data, like drilling telemetry, well treatment job telemetry,
and production rates, are used for the operational management of vari-
ous technical processes happening at the oilfield. And some of the data
(like production rates) is used for reporting. That describes the current
situation with oil and gas field data acquisition and management.

Nowadays, we are in a transition period in-between stage three,
which utilizes a lot of data-intensive practices, like conventional reser-
voir engineering, drilling engineering, and geo-modeling towards the
stage four, where data is the key, and modern AI developments will
help to overcome some of the challenges not tackled previously. It is
essential to highlight that Al is not just technology that enables some
processes to be done faster or cheaper or with higher quality. Al-tools
exclude people from many processes and lead to numerous possibilities
for operational and business model innovations, making it possible to
do things differently at the architectural level.

6. Key challenges and enablers

While some oil and gas companies, like BP, Shell, Saudi Aramco, and
Gazprom Neft are jump-starting their Al initiatives by investing aggres-
sively in startups and R&D, several challenges are preventing them to
massively and rapidly implement Al in the exploration and production
of oil and gas. That is not an oil and gas specific problem, but a com-
monplace in applying Al at this stage of its development [49]. Based
on our evidence, the critical challenges are related to the (new) profile
of people the industry requires, the central importance of data, and the
need for open collaboration. We discuss these three issues below.

6.1. People

The success of artificial intelligence critically depends on human in-
telligence. Al solutions are not generic — they cannot be just bought.
Even when developed by third parties (and given for free, like Google’s
TensorFlow) Al solutions have to be customized to the business context
and data a company has [46]. Thus, to actively use Al in processes and

products, companies must grow in-house teams composed of data and
Al specialists. These teams should be able to support development of Al
infrastructure (algorithms and datasets) and, at least to customize tools
that companies will later utilize in their operations. Yes, that means that
oil and gas companies will become (partially) data-driven companies
and, that Al specialists will become irreplaceable in supporting almost
all innovation efforts in oil and gas companies in the next 10 years. How-
ever, finding and retaining Al talent is a very challenging task. There is
a significant shortage of Al talent on the job market [50,51], and with
more and more companies getting into Al and forming their own Al
groups, prospects are not good for the next decade. This is especially
true for oil and gas companies. Next, to compete with tech giants like
Google, Yandex, IBM, and Amazon, leading universities and cool star-
tups worldwide over the same talent — oil and gas companies have to
fight negative attitudes toward fossil fuel industries. That is not an easy
neither a cheap task.

Although AI’s entrance into the oil and gas industry announces "the
end of petroleum engineering as we know it" [52], petroleum engineers
will not disappear. Just their role and required skillset will change. To
successfully innovate in the Al-era, next to data scientists oil and gas
companies will need petroleum engineers with a strong sense of data
science and the ability to identify and design tasks to be solved by Al
Their role will be to ensure that the right problems are identified for
applying Al that the right data is collected and that solutions fit the
physical and process reality. Over time, this will become a crucial role,
as otherwise the wrong questions may be asked and existing human
mistakes amplified, as it happened in the case of Google’s breast cancer
detection solution based on mammograms [53]. So, it is not that just
data science and Al skills are in demand due to the adoption of AL but a
new way of thinking about problems oil and gas companies face, rooted
in deep understanding of the processes and the core logic of tasks. Thus,
the new role of petroleum engineers will be more and more critical. To
prepare the next generation of petroleum engineers for it, some univer-
sities like Skolkovo Institute of Science and Technology (Russia) and
West Virginia University (US), already started implementing special ed-
ucational programs that are a healthy mix of data science and petroleum
studies.

Next to working more with data and data scientists, petroleum en-
gineers will have to learn how to work with Al assistants — products
similar to Alexa and Siri, but focused on industry applications. In these
new partnerships, the challenge will be to combine best from the two
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sides — Al’s ability to deal with a lot of data, find patterns and rela-
tions, and petroleum engineers’ deep industry domain knowledge [54].
Although Al is expected to be dominantly used by humans to augment
their decision-making abilities rather than replace them [49], this will
be a challenging task as many questions related to trust and fear of los-
ing jobs may arise. There is an unsolved issue also related to people —
the legal view on AI’s recommendations. There could be cases when an
Al tool recommends an action leading to a loss in money, production,
or even severe health or environmental issues. In this case, we have no
clear understanding of responsibility-sharing between the Al algorithm
itself, the Al algorithm user, or the AI algorithm developer. With the
development of Al tools, this question will rise more and more often. So
the parallel establishment of the legal base is expected here. The prac-
tice says that the algorithms and their developers are not responsible,
but the responsibility is still with the decision-makers getting the advice
from the AI and Al users. Thus, to benefit from the opportunity to ex-
tend decision-making capabilities significantly, companies will have to
create not only strategies for Al, but strategies with AI [55] as well.

6.2. Data

Al tools need the good quality data of a suitable volume to be trained
and then to work properly in the operational mode. While using smarter
algorithms may help in getting better results from datasets of limited
size, no manipulation can help with bad data [56]. Thus, access to big
and quality data is a crucial enabler and barrier for Al applications’ suc-
cessful development. Oil and gas fields generate large amounts of raw
data. Still, it is not a guaranty for success as there are known issues with
the quality and accuracy of field data and overall lack of large volumes
of labeled data in the oil and gas industry [48]. Training datasets have to
be carefully collected through the well-planned workflow- and situation-
specific multi-year procedure [57]. One of good examples is Ambyint,
a VC-funded Al-driven startup focused on oil and gas production op-
timization, which has spent over a decade to build its repositories of
high-quality production and optimization data that is used to train and
improve their solutions [58].

To enhance the value of data oil and gas companies possess or can ac-
cess, they will have to redesign and adjust their organizational structures
and processes. Oil and gas companies are not known for their agile, lean,
and bottom-up development approaches but for strict jurisdiction divi-
sion and waterfall processes and procedures — that has to be changed.
Also, data storage should be centralized into one or a small number of
data warehouses to allow people and Al software easy access and usage
[571.

Data challenges (across industries, not only in the oil and gas) drive
technical efforts in improving Al systems and their further practical us-
age in the exploration and production of oil and gas. One of the key
directions here is small data learning [59] that enables training the Al
algorithms with a small number of examples. The small data learning
attracts the serious attention of researchers worldwide, but there is no
substantial progress as of now. The second direction is about the ef-
ficient adaptation of the already trained models for the new datasets
generated by similar but not the same objects, processes, or systems.
Capability to update the pre-trained model on-the-fly will significantly
increase the applicability envelope for the Al-aided tools. Such quick
adaptation studies are also under intensive research [60,61].

6.3. Open collaboration

Artifical intelligence is born in open and collaborative environment
as a consequence of academia being a leading force in Al research for
decades, almost without any business influences. This created culture
of free sharing (e.g. GitHub) and open publishing (e.g. arXiv), which
companies across industries (and across the globe) had to embrace as a
standard to succeed in the era of Al [62,63] once they joined the race.
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While open innovation is becoming standard in the tech sector, oil
and gas companies are not famous for their joint industry projects, espe-
cially between competitors and especially not in strategic domains such
as Al [48]. Even though many companies announce bringing some of
their data to the open-source and claim the necessity of cross-company
and cross-border data sharing, the reality is rather pessimistic now. We
have very few sources of geophysical and production data, and they are
of questionable quality. The UK’s oil and gas National Data Repository
is one of the first large oil and gas open data releases. It contains 130
terabytes of geophysical, infrastructure, field, and well data, covering
more than 12,500 wellbores, 5000 seismic surveys, and 3000 pipelines
[64]. The opportunities for machine learning and artificial intelligence
applications based on available data are highlighted [65].

Next to data access, the need to acquire the latest AI technology and
talent are additional reasons for oil and gas companies to adopt open col-
laboration. The ability to question everything and efficiently experiment
with data allows Al-born startups to attract attention and record invest-
ments. In 2019 Al-related companies in the U.S. raised $18.5 billion, al-
most 2 billion more than in 2018 [66]. The largest oil and gas companies
are active in acquiring Al startups. For example, GE and Statoil jointly
invested in Ambyint [58]. Saudi Aramco invested in Earth Science Ana-
lytics, a startup developing the next generation of petroleum geoscience
Al software [67]. BP invested in Belmont Technology, a startup aim-
ing to boost the company’s Al and digital capabilities in its upstream
offshore business [68]. Shell, Saudi Aramco, and Chevron invested to-
gether in Al startup Maana, which partnered with Microsoft to use its
cloud computing platform Azure [69].

University labs are another important source of novel Al technology
and AI talent [51]. Thus, oil and gas companies should re-think strate-
gies for collaborating and interacting with universities. But, not only
with them. All three challenges related to succeeding in the era of Al
- data access, acquisition of new technologies, and talent attraction —
ask companies across industries (including those from the oil and gas
industry) not only to move from close to open innovation but to move
from partnerships towards ecosystem approach.

The Al-related oil and gas ecosystem comprises many different play-
ers — companies and organizations from different sectors, with differ-
ent Al development stages, different strategies, and priorities. The first
group, mainly consisting of major international oil companies, is focused
on building the first modern data storage infrastructure (e.g. company-
wide data lakes) and then Al solutions, on top of them, e.g. [70]. The
second group, typically represented by the smaller field operating com-
panies, is trying to leverage whatever helps speed up their business and
technological processes as soon as possible, figuring out the issues of rel-
evant data storage and IT infrastructure in parallel, e.g. [71]. The third
group represents the emerging hi-tech sector - startups (e.g. Ambyint),
universities (e.g. Stanford University), and technology-oriented oil ser-
vice companies (e.g. Digital Petroleum) developing new Al-aided tools
for oil companies (those from the first two groups). The fourth group
represents IT companies that mainly supply oil companies with digital
platforms and data storage capabilities. For example, Microsoft’s Azure
platform is selected by Shell as a base infrastructure for enabling rapid
scalability and replication of Al applications across its enterprise [72].
The fifth group represents regulators. Many other interested parties are
engaged in Al development, like banks, telecom operators, and many
others. For example, Gazprom Neft joined forces with some of the Rus-
sian largest tech companies (i.e. Yandex, Mail.ru, MTS and Sberbank),
aiming to spur the development of Al solutions and facilitate the devel-
opment of a dynamic Al market [73].

This new interconnected network of partners, with frequently very
limited experience of previous collaborations, has to learn how to man-
age new interdependences, how to create, appropriate and share value.
Data’s central role and growing convergance will drive the nature of
connections between members of the evolving and enlarging oil and
gas ecosystem, defining how risk should be managed, value distributed
and collaboration orchestrated.
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Table 3

Scenarios of Al penetration in the oil and gas upstream.
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Scenario Key inputs 5Y 10Y 20Y
Positive Data sharing approved Active testing of Al for various Al tools support decision Al tools support decision
Proper data platforms cross-company problems making at nearly each of the making at 90% of operations
are in place Growing trust level to the cost-intensive decision Qil century is extended due to
black box technologies Up to 40 to 50% cost savings Al-aided support of E&P
at E&P margins
Realistic Data sharing is a Active testing of Al for various Al tools are accepted as the Hybrid "Al + physics" tools
problem local problems objective expert take over
Proper data platforms Growing trust levels to the 10 to 15% cost savings at E&P Strategic investments in E&P
are in place black box technologies continued with some support
of Al technologies
Negative No data sharing Poor overall performance of Ai Al tools help in some local Nuclear, solar, and wind start
agreements between tools due to lack of problems a bit dominating
the companies and appropriate training data No significant growth of
countries A negative perception of the margins at E&P processes
Al developments in E&P
Exploration Active field development Production and minor re-development including well treatment, extra drilling, IOR, EOR
with active drilling
0 »
time
Production
Cash flow
Exploration Active field Production and minor re-development including well treatment, extra drilling, IOR, EOR
development
with active drilling _ _
0 >
time

Fig. 4. The lifecycle of an oilfield in the pre-Al era (top) and Al era (bottom). IOR stands for improved oil (gas) recovery; EOR is for enhanced oil (gas) recovery

techniques.

7. Discussion

Succeeding in the digital competition is not about technology only
[12]. Al initiatives will not fail because of bad algorithms, but rather
because of lack of vision, late or even no changes in the organization’s
operational and business model, due to lack of high-resolution data and
poor collaboration. Thus, strategy plays a key role and is a driving force
of digital transformation [7], and top management commitment is es-
sential to assure the success of Al and other transformative efforts [74].

This may be one of the core problems for the oil and gas industry fa-
mous for its risk-averse culture and poor innovation management prac-
tices [48]. The flavor of failing that industry experienced two times in the
last five years, especially the last one (April 2020) in which oil prices
went negative, maybe the right trigger to start transforming their busi-
ness models [75]. Otherwise, there is a very high risk that initially good
results in using Al for a single purpose will be misleadingly understood
as the final goal [7]. This could lead companies to invest more only into

technology, which will result just in marginal, not transformative im-
provements [12]. However, this is not a specific problem of the oil and
gas industry — only 8% of firms engage in core practices that support the
widespread adoption of Al At the same time, the majority of initiatives
are ad hoc pilots focused on a discrete business process [76].

Assuming the absence of the major technological breakthroughs
within the energy area and social storms affecting current energy de-
mand trends in the coming years, we can visualize three possible sce-
narios of Al spreading in the oil and gas upstream. Here we assume that
Covid-19 crisis will not permanently change the main postulates of the
industry. The scenarios are classified as positive, realistic, and negative
in terms of usage of the potential of Al developments (Table 3).

The positive scenario is based on a globally spread understanding
that cross-company and cross-border data sharing is crucial. Assuming
strong and committed leadership in the key companies and that good
data platforms are in place, one may expect very rapid growth of Al ca-
pabilities for the upstream applications followed by Al tools for decision
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making at various levels. Here we can bravely foresee huge potential
in the growth of marginality of the oil and gas upstream business due
to very significant savings on costs and monetized losses due to non-
optimal decisions reaching 50% of the current levels. There is also a big
portion of the environmental effect present here [77]. If Al penetrates
the industry this way, many opportunities minimize the negative foot-
print of the upstream’s hardware technologies. For example, one can use
a proper Al model to minimize hazardous components at well treatment
jobs or re-utilize the produced water in a way that keeps the recovery
factor on an appropriate level.

The realistic (neutral) scenario is when the IT platforms are in place,
but the progress on data sharing agreements is limited. Limited means
that there are some additional sharing opportunities concerning what
we have now (like sharing between groups of the companies within a
country). Some Al tools will be accepted as useful advisors, and the
focus within AI developments will be shifted towards grey box hybrid
models, where the physics-driven part will compensate for the absence
of access to a fair amount of the actual field data. We foresee this as
the most realistic case, with an overall impact on the upstream margins
being two-three times lower than in the positive scenario.

The negative scenario is all about the blockage of data sharing. Our
forecast here is as simple as the end of the oil century in 20-30 years
due to continuously dropping the whole upstream domain’s margins.

In the positive or realistic scenario, the overall effect on an oilfield
lifcycle should change as schematically shown in Fig. 4. The lifecycle
of an oilfield in the pre-Al era (top) and Al era (bottom). IOR stands
for improved oil (gas) recovery; EOR is for enhanced oil (gas) recovery
techniques Fig. 4. The lifecycle of an oilfield in the pre-Al era (top) and
Al era (bottom). In general terms, Al should make exploration and ac-
tive field development faster and cheaper while keeping the production
margins higher on a longer-term.

8. Conclusion

We discussed the development of practical tools based on artificial
intelligence for oil and gas upstream. It is clear that even though arti-
ficial intelligence is an emerging trend in oil and gas, there are appli-
cations that have already brought countable value. We have provided
several examples of how artificial intelligence helps speed up and de-risk
many business processes associated with the exploration of hydrocarbon
resources, the development of oil and gas fields, and raw hydrocarbons
production. There is an on-going experiment on the scalability of ar-
tificial intelligence across the whole industry. Here we have discussed
not only the technical drivers of such scalability but the non-technical
factors as well. We evaluated the influence of education, organizational
attitude, and data availability on the speed and direction of artificial in-
telligence penetration to oil and gas upstream. Basing on this analysis,
we derive three possible scenarios on how artificial intelligence could
spread within the oil and gas in the coming five to twenty years.
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