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We analyze how artificial intelligence changes a significant part of the energy sector, the oil and gas industry. 

We focus on the upstream segment as the most capital-intensive part of oil and gas and the segment of enormous 

uncertainties to tackle. Basing on the analysis of AI application possibilities and the review of existing applica- 

tions, we outline the most recent trends in developing AI-based tools and identify their effects on accelerating 

and de-risking processes in the industry. We investigate AI approaches and algorithms, as well as the role and 

availability of data in the segment. Further, we discuss the main non-technical challenges that prevent the in- 

tensive application of artificial intelligence in the oil and gas industry, related to data, people, and new forms of 

collaboration. We also outline three possible scenarios of how artificial intelligence will develop in the oil and 

gas industry and how it may change it in the future (in 5, 10, and 20 years). 
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. Introduction 

Artificial intelligence (AI), as the most important general-purpose

echnology of today [ 1 , 2 ], is rapidly entering industries, creating sig-

ificant potential for innovations [3] and growth [4] . In healthcare,

ransportation, retail, media, and finance, AI already triggered substan-

ial changes and transformed the competition rules. Instead of relying

n traditional and human-centered business processes, companies from

hese industries create value using AI solutions [5] . Advanced algo-

ithms trained on large and useful datasets, and continuously supplied

ith new data drive the value creation process. That is how Gero.ai

ghts Covid-19, Amazon sets prices for products it offers, InboxVudu

rioritizes mails, and Yandex moves (autonomous) cars. 

However, not only companies from digital-savvy industries are prof-

ting from AI. Oil and gas, mining, and construction companies are the

atecomers to digitalization [ 6 , 7 ], but they are also getting more and

ore dependent on AI solutions. Although the first applications of AI

n the oil and gas industry were considered in the 1970s [8] , the indus-

ry has started to look more proactively for AI application opportunities

everal years ago [ 9 , 10 ]. It coincides with the exponential growth of AI

apabilities and the industry’s movement towards the Oil and Gas 4.0

oncept, whose core goal is to achieve higher value utilizing advanced

igital technologies [11] . 
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As oil and gas companies are much quicker to adopt new technolo-

ies than to experiment with and change their business models [12] ,

heir AI’s primary target (and other digitalization) efforts are to improve

fficiency. In practice, that typically means to accelerate processes and

educe risks [ 8 , 11 , 13 ]. This paper aims to discuss in detail and demon-

trate how AI is transforming the oil and gas upstream. We will mainly

ocus on the following three questions: 

• what de-risking in the oil and gas industry means and how AI is

helping with it; 

• which processes can be accelerated by applying AI and how much; 

• what has been already done and what are the expected advance-

ments in the following years. 

As the oil and gas industry is complex and diverse, we situate and

ocus our discussion on the upstream sector. The upstream covers crude

il and natural gas production. It includes searching for potential un-

erground or underwater crude oil and natural gas fields, drilling ex-

loratory wells, and subsequently drilling and operating the wells used

o lift the crude oil or raw natural gas to the surface. The upstream is

f particular interest as it is the most capital-intensive and important of

he three segments in the oil and gas business [13] . Companies from the

ector deal with enormous uncertainties handled manually and relied on

xpert knowledge, not the actual data. The saying "one rock, two geolo-

ists, three opinions" tells a lot about the high uncertainties and risks oil

nd gas companies have to deal with. The uncertainties need handling
article under the CC BY-NC-ND license 
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Table 1 

Non-confidential summary of projects performed with the direct involvement of the authors. 

Upstream activity Developed tool AI approach 

Main effect 

Acceleration De-risking 

Geological assessment 

Tool for automated mapping 

of reservoir rock properties 

over an oil region 

None gradient 

optimization + inter- 

polation 

techniques 

Speeded up the 

manual mapping 

procedure from several 

weeks to several 

seconds 

Removing human errors 

causing wrong 

mapping = making a more 

accurate definition of right 

hydrocarbon targets 

Tool for extracting the 

geological information from 

well logs 

Gradient boosting 100 + times speedup 

Tool for rock typing based on 

images of rock samples 

extracted from the wells 

Deep neural networks ~1.000.000 + times 

speedup 

Drilling Tool for detecting the drilled 

rock type and potential failure 

using real-time drilling 

telemetry 

Combination of 

machine learning 

algorithms 

Up to 20% time saving 

and up to 15% money 

savings at well 

construction 

Maximizing the contact 

between the wellbore and the 

pay zone 

Reservoir engineering Tool for accelerating the 

conventional reservoir 

simulations 

Deep neural networks Accelerating by a 

factor of 

200 to 2000 

Making it possible to screen 

through much more field 

development scenarios for 

selecting the most optimal one 

Production optimization Data-driven tool for an 

objective forecast of efficiency 

of well treatment campaigns 

Gradient 

boosting + expert 

based feature selection 

100 + times faster 

estimation of the well 

treatment effect 

Up to 20% growth of 

marginality of the investments 

to the campaigns 
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hen making multibillion decisions on where and how to invest in the

oming 5–20 years. However, despite the complex and uncertain nature

f management problems in the sector, the single-criterion approaches

ave historically dominated decision-making [14] . To use existing field

ata to account for uncertainties associated with practitioners’ subjec-

ive perception and decision-making based on experience, the first steps

n using artificial intelligence and machine learning in the upstream are

ade, becoming increasingly popular [13] . 

The paper utilizes learnings from dozens of AI projects performed

ith the authors’ involvement over the last three years for leading oil

nd gas upstream companies worldwide. The projects covered AI so-

utions for the whole spectrum of the upstream activities – geological

ssessment of the reservoirs, drilling optimization, reservoir engineer-

ng/field development, and production optimization. More details are

n Table 1 . 

The paper is organized as follows. In Section 2 , a big picture of the

eed for using AI in the upstream oil and gas industry sector is out-

ined. Based on an in-depth analysis of possibilities for applying AI and

lready existing applications, in Section 3 , we review the most recent

rends in developing AI-based tools for the sector and identify their ef-

ects, primarily on accelerating and de-risking processes in the industry.

ection 4 briefly reviews AI approaches and algorithms used in solu-

ions, while Section 5 in detail analyzes the role and availability of data

n the sector. Further, in Section 6 , we discuss the main challenges the

ntensive application of AI faces in the industry, focusing on new re-

uirements related to data, people, and collaboration. Finally, we con-

lude by outlining three possible scenarios of how AI will develop in the

ndustry and how it may change it in the future (5, 10, and 20 years) in

ach of the scenarios. 

. The problem and need for AI 

The dominance of "difficult-to-recover" oil and gas reserves over the

ast ten years [15] dictates the necessity of new operational approaches

nd business models in the exploration and production of hydrocar-

ons, oriented towards ensuring appropriate profitability of oil and gas

roduction. The latter is true for both well-developed ( brownfields) and

ewly discovered ( greenfields ) subsurface hydrocarbon reservoirs. 

Even though the vast majority of the brownfields are relatively big

n terms of their geometrical sizes and rather good in terms of trans-
2 
ort and storage properties (porosity and permeability), the amount

f oil and gas recoverable with cheap waterflooding is very small. In

rinciple, all conventional brownfields are producing more water than

il [16] . To keep production levels, the operating companies have to

pend a sufficient amount of money for one of the following operations:

xtra drilling, well treatment (e.g., hydraulic fracturing), or field-scale

nhanced oil recovery procedures (e.g., increasing the mobility of re-

aining oil in the reservoir with an injection of chemical cocktails). In

any cases, money invested in these actions does not pay off, leaving

he brownfields in a slow process of dying. 

The situation is not better for new discoveries neither. Nearly all

f the newly discovered hydrocarbon reservoirs are also difficult. They

ight be [17] : (1) located in places with harsh environmental condi-

ions (e.g., in Arctic’s shelf); (2) complex in terms of geometry (e.g.,

hin and winding layers of oil-saturated rocks with lots of cracks); (3)

nder the very thick layer of seawater and salt minerals (e.g., offshore

razil); or (4) poor in terms of permeability (so that the hydrocarbon is

early immobile within the reservoir rock). The development of these

reenfields requires expensive technologies and makes the profitability

f further oil production questionable. 

The decision-makers handle uncertainties related to long term and

igh-value investments in the oil and gas upstream manually and based

n expert knowledge, not the actual data enormous . There are two

ajor questions they need to answer in this context. First – is this a par-

icular asset perspective? Shall we spend money on geophysical studies

o assess the potential of the asset? Typically, this question is answered

ith the geological modeling and reservoir modeling workflow, which

akes several months to several years, depending on the necessity of ad-

itional geophysical surveys and the complexity of the in-company pro-

edures. The second question is – shall I spend money on enhancing the

il production at my asset? If so, what technologies are worth investing?

his question is dominantly handled by experts and supported, at some

evel, by conventional reservoir modeling tools. Strong dependence on

xpert opinion and the insufficiency of appropriate input data for the

raditional modeling tools result in biased and uncertain answers. 

For both questions, AI systems, trained with the right field data,

an offer significant help by speeding up the asset assessment pro-

ess and making it more objective or expert-independent. The first

teps in this direction and future possibilities are discussed in the next

ection. 
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Fig. 1. Division of the oil and gas industry into sectors. 
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. How AI is changing the upstream 

The petroleum (oil and gas) industry divides into upstream, mid-

tream, and downstream (see Fig. 1 ). The upstream summarizes the sub-

urface (mining) part of the industry, including exploration followed by

he field development and production of the crude oil/gas. Midstream

tands for transportation of oil and gas, and downstream is for refinery

.e., production of fuels, lubricants, plastics, and other products. Explain-

ng in detail many of the upstream activities, we discuss points where AI

olutions are already applied and their results. We also highlight where

e expect AI to be used and what results can come out of its application.

.1. AI-aided exploration 

Exploration of oil and gas reserves is a set of operations resulting in

 3D geological model of an oil/gas field or reservoir. The operations in-

lude geophysical and petrophysical studies and processing of the data

cquired during the studies. Geophysical and petrophysical studies typ-

cally consist of 1) reservoir-scale seismic surveying, 2) well logging,

nd 3) lab core analysis and (in some very specific cases) digital core

nalysis. 

Seismic surveying produces a set of sensor recordings called seismic

races. The traces are time series representing the strength of elastic

aves initiated by a vibrator at the surface and reflected from bound-

ries dividing various subsurface formation layers. These recorded time

eries together with spatial coordinates of the corresponding sensors and

he vibrator are put to a special reconstruction algorithm resulting in

oisy 3D images illustrating some of the reflecting boundaries. The re-

onstruction process is strongly offline due to very significant require-

ents for high-performance computing. AI-focused studies are aiming

o speed up this stage [18] . 

The 3D images are called seismic cubes. The seismic cubes are stud-

ed by seismic interpreters, which can also be involved in setting the

revious reconstruction phase parameters. The interpreters segment the

D images by selecting the points, lines, and surfaces within the 3D

ube, which are "definitely" related to the boundaries between the vari-

us layers in the subsurface formation. We quote " definitely" as there are

o objective criteria for defining these points, lines, and surfaces. The

hole process, starting with reconstruction to the 3D cube segmenta-

ion, is very time consuming and expert dependent. The entire survey

ata processing can take more than a year for a precise seismic study,

s geologists decide, based on the segmented 3D cubes, where to drill

he first set of exploration wells to refine the understanding of the sub-

urface specifics. 
3 
Modern pattern recognition techniques based on deep learning have

tarted to dive into this seismic-related operation, accelerating the in-

erpretation by a factor of 10–1000 [19] . There is a low probability that

he AI techniques will optimize the physical part (i.e., amount, cost, and

lacement layout of sensors) of the first seismic surveying at an asset.

till, they add value in the optimization of the secondary surveys at the

ame asset. The mathematics of recommender systems [20] and inter-

olation capabilities of machine learning algorithms will enable proper

ecommendations on making the secondary surveys cheaper with a mi-

or loss in the value of acquired information. 

While seismic images provide a big scale (covering tens of kilome-

ers) low resolution (down to tens of meters) information about reser-

oirs topology and its elastic properties, the well logging is used to

et more precise information about various physical properties of the

ubsurface along a wellbore. The resolution of well logging is down to

entimeters. The well logging sensors can measure electrical resistivity,

atural gamma-ray intensity, response to magnetic excitation (nuclear

agnetic resonance study), neutron density, and some others. Results of

he well logging are vectors of properties along the wellbore. Petrophysi-

ists use well logging data for their interpretation routine, including rock

yping along the wellbore, estimation of porosity and permeability along

he wellbore, and estimation of relative fluid saturation (amount of oil

s. the amount of gas and amount of water) along the wellbore. 

The petrophysical interpretation is a rather time-consuming process,

nd the result of the interpretation depends strongly on the interpreter

i.e., expert). The authors faced this when developing an automated in-

erpretation algorithm based on machine learning for oil companies. The

lgorithm, trained on historical well logging data, was applied to the

ata from new wells. The accuracy of ML interpretation versus manual

nterpretation was 92%. The ML interpretation was about 1000 times

aster than the manual. Then we have decided to make another man-

al interpretation of the same data with the same experts. Interestingly

nough, the second manual interpretation versus the first manual inter-

retation showed an accuracy of 91%. 

In this view, the AI-aided technologies are the obvious way to ac-

elerate and, maybe even more critical, to exclude the subjective part

f the interpretation process [ 21 , 22 ]. Moreover, internal trials we did

or industrial partners demonstrate that a solid portion of the well log-

ing measurements could be easily reconstructed with ML. That would

nable the utilization of machine learning to build the recommendation

ystems helping the oil companies spend less on the physical part of well

ogging. A similar acceleration is possible with core analysis [ 23 , 24 ]. 

The results of the petrophysical interpretation are then used to re-

ne seismic interpretation. Geologists and petrophysicists extrapolate

he acquired properties from near-wellbore zones into the seismic cube,
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Fig. 2. Schematics of the well construction. Modern wells often have a hori- 

zontal section which needs to follow the geometry of the productive layer thor- 

oughly. 

Fig. 3. The layout of multilateral wells. The wells drilled from the same point 

at the surface can reach several target hydrocarbon reservoirs. 
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aturating the 3D segmented cube with porosity, permeability distri-

ution, and values of fluid saturation. This interpolation is probably the

ost time consuming and subjective part of the whole geology modeling

orkflow. With all the tuning exercises, the process can take from a cou-

le of months to a couple of years. We expect that, if properly trained on

ultiple manually conducted extrapolation exercises, generative archi-

ectures of deep neural networks can accelerate the process by a factor

f 1000 + . Although it is hard to expect that in the near future, geol-

gists and decision-makers will accept the automatically generated 3D

eological model as the absolute truth, the automation with deep learn-

ng is an excellent opportunity for suggesting the expert-independent

nd fast variant for further fine-tuning and decision-making. Putting it

imply, we foresee that the final decision-making could be performed

uch faster with the AI enablers. 

.2. AI-aided field development 

Once the initial geological model is built, it goes to reservoir engi-

eers. The reservoir engineers build a reservoir model from the geolog-

cal model. Typically, they perform upscaling [25] , which reduces the

mount of the 3D cells describing the reservoir properties by increasing

he size of the cells from the geological model. After the upscaling, the

eservoir engineers use reservoir modeling software [26] to model the

eservoir flows at various field development schemes. The field devel-

pment scheme contains the plan for well drilling and well operation. 

The result of each of the reservoir modeling runs is a forecast of

il/gas production for forthcoming years (typically 10 to 25 years) for a

articular field development scheme. Performing many runs, the reser-

oir engineers select the optimal field development scheme and field

evelopment plan. The word optimal has different meanings for differ-

nt companies. One group of companies, typically mid to large-scale

ompanies, look for keeping the long-term production at some appro-

riate level at a fixed investment to field development and production

perations. The second group, typically small to mid-scale companies,

ooks for a maximal outcome in producing oil/gas at minimal drilling

osts over a couple of years. The third group may want to ensure that

he asset or the field can be sold at a reasonable price after some time

f field operation. Mathematically speaking, different companies have

ifferent target functions to optimize. 

The reservoir engineering exercise is not done only for the green-

elds, but for brownfields as well. The brownfields have production

istory, which helps correct the initial models via history matching

27] and reduce uncertainties in the production forecast. Theoretically,

he history matching is an inverse problem with no unique solution, but

here are practical workflows to handle this in application to reservoir

ngineering. 

We see three major opportunities for applying AI in reservoir en-

ineering. The first is related to computations done with conventional

eservoir modeling tools. The tools perform numerical solutions of par-

ial differential equations describing the physics of reservoir flows. The

omputations are performed on the 3D grid containing, typically, from

 million to a couple of billions of cells. The computations are rather

engthy, even with the modern workstations and HPC servers, limiting

he number of possible runs. The latter, in order, limits the optimization

bility for proper field development planning. The acceleration of reser-

oir modeling is one of the obvious directions for AI technologies. Mod-

rn surrogate reservoir models with a new computation engine based

n deep neural networks compress the mathematical problem dimen-

ionality and approximate the time derivatives promise 100–1000 times

he conventional models’ speedup while keeping similar functionality

 28 , 29 ]. 

The second opportunity is in upscaling (i.e., bringing the information

ained from various scales of geophysical studies to a single geological

nd then hydrodynamical reservoir models). The upscaling process has

 significant portion of art within. There is no single scientifically ade-

uate framework for upscaling [30–32] , and many reservoir engineers
4 
se tricks to perform it in a way that seems correct to themselves. It

ntroduces a strong bias to the reservoir model. As there is no single

orrect and objective procedure for the upscaling, one could think of

ncreasing objectiveness by summing up the multiple experiences with

 smart tool. This could be done well with a deep learning algorithm

rained on multiple cases of manual upscaling. The outcome here would

ot be only the increased objectiveness but also the increased speed of

he upscaling process. 

The third opportunity is similar to upscaling but touching the his-

ory matching. The procedure here could be the same: trying to involve

 machine or deep learning to make history matching faster and less

iased. 

As we have mentioned in the introduction, most greenfields have

eservoirs that are complex in terms of its geometry and geological fea-

ures. The latter requires building high tech wells with horizontal parts

nd multilateral completions (see Figs. 2 and 3 ). 

Well construction at field development is the most cost-intensive op-

ration at field development. For high investment in the drilling and

ompletion of the well to pay off, it is essential to use all the drilling

ensors’ information. The aim is to ensure the best contact between the

ellbore and the productive part of the formation, and maximal rate of

he whole well construction process at minimal risk of failure and so,

inimal non-productive time. 

Modern drilling is a data-rich process. There are three types of

ensors. First are the sensors on the surface that record the mechan-

cal parameters of the drilling process in real-time. Second are the

ogging-while-drilling (LWD) sensors, recording physical parameters of
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he formation behind the drilling bit. Third are mechanics-while-drilling

MWD) sensors recording mechanical data from the bottom hole assem-

ly. All the sensors generate a time series that can be used to man-

ge the drilling itself and update the oilfield’s geological or reservoir

odel. There are multiple approaches for making the drilling process

aster [33] , safer [34] , and more precise [35] . We expect a significant

eduction of the non-productive time down to 20–40% on average with

 considerable decrease in failures down to 90% with the development

nd implementation of AI-aided drilling support systems working with

eal-time drilling telemetry. 

.3. AI-aided production 

Producing reservoirs are attractive for AI-aided tools as well as the

reen fields. There are obvious machine learning applications for vari-

us pumps to implement predictive maintenance and select the optimal

peration regimes concerning operational costs vs. production. Many

f the pumps, including electric submersible pumps, pumps for injec-

ion wells, hydraulic fracturing, and other well treatment pumps, are

quipped with a high number of sensors measuring pressures, temper-

tures, vibrations, flow rates, etc. There are many examples when an

ntirely data-driven or a hybrid model containing physics-driven and

ata-driven math helps optimize the regimes, prevent unexpected fail-

res, and save on maintenance-on-schedule [ 36 , 37 ]. 

Apart from these apparent applications for equipment maintenance,

e foresee the well treatment as another area with high cost-saving po-

ential. The well treatment operation is produced to stimulate the in-

ow of hydrocarbon to an old well or increase the starting flow rate

f a newly drilled well. The most popular well treatment procedures

re hydraulic fracturing [38] and chemical treatment [39] . The well

reatment costs are significant and comparable with the cost of well

onstruction. The investments to the well treatment campaigns are al-

ays at high risk because of two things. The first relates to the fact

hat physics-driven models for predicting the well treatment effect pro-

uce very rough estimates due to the lack of precise knowledge of the

ear-wellbore formation’s physical properties. The second relates to the

xperts’ bias involved in figuring out the final selection of the well treat-

ent procedures for a particular set of wells. The bias is mainly because

f standard procedures of assessment of marginality levels of the proce-

ures in operating companies. Many of the standards assume fixed levels

f marginality, which are targeted by the experts to get the investments

or the well stimulation jobs. 

There is an excellent opportunity to reduce the investment risks by

ccumulating the data from already produced well treatment jobs. Pio-

eering efforts on predicting the efficiency of hydraulic fracturing jobs

40] and ML-based analysis of injectivity issues [41] have already been

ade. We expect that further development of algorithms based on op-

imization math and programming will enable full-scale recommending

ystems. The recommending systems will help select the particular well

reatment design for a particular well and plan the well treatment cam-

aigns. 

.4. AI for safety 

Apart from the AI application for cost reduction and de-risking, we

hould mention its extraordinary impact on safety measures. Operations

n the oilfields are risky for personnel as there are several risk factors,

ncluding heavy equipment, non-covered rotary equipment, high pres-

ure, high-temperature operations, and aggressive chemicals. There are

any IT systems based on deep learning helping the safety officers spot

afety protocols’ violence. Pattern recognition utilizing deep learning

llows and video streams recorded with cameras to alarm if an em-

loyee is not adequately dressed for the particular set of operations.

oreover, predictive analytics alarm the operators on the equipment’s

ealth state, enabling pro-active actions to prevent a catastrophe with

he consequences to health, safety, and environment. 
5 
. Algorithms in the oil and gas upstream 

Classical machine learning and deep learning are dominant ap-

roaches used in AI applications in the upstream sector and the whole oil

nd gas industry [8] . They are used in solving classification, clustering,

r regression types of problems. Machine learning and deep learning al-

orithms are black-boxes – there is no obvious formula that describes

hy systems based on them do what they do or how they work. These

lgorithms contain very complex multi-dimensional algebraic expres-

ions. Coefficients within these expressions are defined to fit the input

nd output data describing the system, object, or process. This fitting

rocess is called training. Once trained on known data, the algorithms

an generate novel insights based on new inputs. 

Additionally, hybrid modeling, where physics-driven models are

sed together with machine learning algorithms, is present in industrial

pplications. There is a distinction between physics-dominated hybrid

odels and data-dominated hybrid models. In physics-dominated hy-

rid models, machine learning is used to tune the equation’s coefficients

o the actual data generated by an object of interest. On the other hand,

n data-dominated hybrid models, the physics-driven model is used for

enerating large amounts of training data, based on which ( + real-life

ata) the ML model learns the physics of the problem and helps in solv-

ng it [42] . 

Finally, the first applicators involving AI planning – the set of opti-

ization and machine learning methods to plan some actions to achieve

 goal, typically executed by autonomous robots, intelligent agents and

rewless vehicles – are emerging in the oil and gas industry. 

In-depth analysis of AI and machine learning algorithms used in the

il and gas industry can be found in several recent reviews, including

 8 , 43–45 ]. 

. Data in the oil and gas upstream 

Common to all mentioned AI approaches is that without access to

arge and good enough training data, AI algorithms are significantly

ess useful, sometimes useless. "Good enough" means that data must be

iverse enough to cover all events, activities, and behaviors of interest

46] . For example, to build a successful predictive maintenance solu-

ion, the dataset must contain enough recorded failures to be useful for

earning from it. On the other hand, what is a "large enough" dataset is

ess clear, as the size of the needed dataset depends on the context of the

roblem that is being addressed (and the tempo of algorithm develop-

ent). Goodfellow, Bengio, and Courville [47] estimated that to achieve

omehow acceptable performance levels with the most interesting form

f today’s AI (i.e., supervised deep-learning), around 5000 labeled ex-

mples are needed for training. While to match or exceed human-level

erformance, at least 10 million labeled samples are required. 

The oil and gas industry is very data-rich [48] . Table 2 summarizes

ts sources, formats, size, generation rate, and application areas in the

pstream. 

AI is bringing a new approach in developing the oil and gas fields,

ne in which data is key. Before this transition, the development of the

il and gas fields and related data usage has passed through three major

tages. The beginning of the oil century (late XIX to early XX century)

as characterized by the logic, which can be formulated as: "There is

 hill, and there is a producing well at the neighbor hill. Let’s drill this

ill as soon as possible". To identify and develop the oil and gas fields,

eople were using an entirely empirical approach based on analog cases.

ensors, measurements and data were not used. 

This changed when Schlumberger brothers updated the empiri-

al decision-making with subsurface physical properties measurements

tarting from electrical resistivity from the surface and then from the

ellbores. These measurements introduced sensor data to the decision-

aking process of detecting oil and developing an oilfield. 

Further development came with adding numerous data sources and

sing data to characterize and analyze the fields through different sim-
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Table 2 

Upstream data. 

Data Source Data format Size Generation rate Used for 

Seismic surveys Time series, 

2D images, 

3D images 

Up to 100 TB 

for a field 

One to several times in 25 

years 

Geological modeling 

Well logging Vectors, spreadsheets Up to a 10 TB 

for a field 

Several times 

in 25 years 

Petrophysical and geological 

modeling 

Core analysis Spreadsheets, 

2D images, 

3D images 

Up to 500 TB for a field 

(assuming digital rock study 

with X-ray microtomography) 

Several times 

in 25 years 

Petrophysical and geological 

modeling 

Fluid analysis Spreadsheets Up to 500 MB 

for a field 

Several times 

in 25 years 

Reservoir Engineering 

Drilling telemetry Time series Up to 100 MB 

for a well 

Up to several numbers per 

second during drilling 

Real-time drilling management 

Drilling reports Spreadsheets, 

unstructured text 

Up to 2 MB 

for a well 

Once a day for each drilled 

well 

Offline drilling management 

Logging while drilling Time series Up to 100 MB 

for a well 

Up to a number per second 

during drilling 

Real-time drilling 

management/ 

geosteering 

Well testing Time series Up to 100 MB 

for a well 

Up to several numbers per 

minute 

Reservoir engineering and 

production management 

Production rates Time series Up to 100 MB 

for a well daily 

Up to once per hour Reporting, production 

management, reservoir 

engineering 

Well treatment data Spreadsheets, 

unstructured text 

Up to 0.5 TB for a well 

treatment job 

Several times over a wellbore 

life 

Reservoir engineering, 

production management 
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lation and modeling exercises. At this third stage, experts use the data

n three ways typically. Seismics, well logging, core and fluid data are

sed mainly to construct a reservoir geological model followed by con-

tructing a reservoir model used in reservoir engineering for scenario

odeling to plan field development. This modeling is a key input to the

ost cost-intensive decision making in oil and gas upstream. Some por-

ions of the data, like drilling telemetry, well treatment job telemetry,

nd production rates, are used for the operational management of vari-

us technical processes happening at the oilfield. And some of the data

like production rates) is used for reporting. That describes the current

ituation with oil and gas field data acquisition and management. 

Nowadays, we are in a transition period in-between stage three,

hich utilizes a lot of data-intensive practices, like conventional reser-

oir engineering, drilling engineering, and geo-modeling towards the

tage four, where data is the key, and modern AI developments will

elp to overcome some of the challenges not tackled previously. It is

ssential to highlight that AI is not just technology that enables some

rocesses to be done faster or cheaper or with higher quality. AI-tools

xclude people from many processes and lead to numerous possibilities

or operational and business model innovations, making it possible to

o things differently at the architectural level. 

. Key challenges and enablers 

While some oil and gas companies, like BP, Shell, Saudi Aramco, and

azprom Neft are jump-starting their AI initiatives by investing aggres-

ively in startups and R&D, several challenges are preventing them to

assively and rapidly implement AI in the exploration and production

f oil and gas. That is not an oil and gas specific problem, but a com-

onplace in applying AI at this stage of its development [49] . Based

n our evidence, the critical challenges are related to the (new) profile

f people the industry requires, the central importance of data, and the

eed for open collaboration. We discuss these three issues below. 

.1. People 

The success of artificial intelligence critically depends on human in-

elligence. AI solutions are not generic – they cannot be just bought.

ven when developed by third parties (and given for free, like Google’s

ensorFlow) AI solutions have to be customized to the business context

nd data a company has [46] . Thus, to actively use AI in processes and
6 
roducts, companies must grow in-house teams composed of data and

I specialists. These teams should be able to support development of AI

nfrastructure (algorithms and datasets) and, at least to customize tools

hat companies will later utilize in their operations. Yes, that means that

il and gas companies will become (partially) data-driven companies

nd, that AI specialists will become irreplaceable in supporting almost

ll innovation efforts in oil and gas companies in the next 10 years. How-

ver, finding and retaining AI talent is a very challenging task. There is

 significant shortage of AI talent on the job market [ 50 , 51 ], and with

ore and more companies getting into AI and forming their own AI

roups, prospects are not good for the next decade. This is especially

rue for oil and gas companies. Next, to compete with tech giants like

oogle, Yandex, IBM, and Amazon, leading universities and cool star-

ups worldwide over the same talent – oil and gas companies have to

ght negative attitudes toward fossil fuel industries. That is not an easy

either a cheap task. 

Although AI’s entrance into the oil and gas industry announces " the

nd of petroleum engineering as we know it " [52] , petroleum engineers

ill not disappear. Just their role and required skillset will change. To

uccessfully innovate in the AI-era, next to data scientists oil and gas

ompanies will need petroleum engineers with a strong sense of data

cience and the ability to identify and design tasks to be solved by AI.

heir role will be to ensure that the right problems are identified for

pplying AI, that the right data is collected and that solutions fit the

hysical and process reality. Over time, this will become a crucial role,

s otherwise the wrong questions may be asked and existing human

istakes amplified, as it happened in the case of Google’s breast cancer

etection solution based on mammograms [53] . So, it is not that just

ata science and AI skills are in demand due to the adoption of AI, but a

ew way of thinking about problems oil and gas companies face, rooted

n deep understanding of the processes and the core logic of tasks. Thus,

he new role of petroleum engineers will be more and more critical. To

repare the next generation of petroleum engineers for it, some univer-

ities like Skolkovo Institute of Science and Technology (Russia) and

est Virginia University (US), already started implementing special ed-

cational programs that are a healthy mix of data science and petroleum

tudies. 

Next to working more with data and data scientists, petroleum en-

ineers will have to learn how to work with AI assistants – products

imilar to Alexa and Siri, but focused on industry applications. In these

ew partnerships, the challenge will be to combine best from the two
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ides – AI’s ability to deal with a lot of data, find patterns and rela-

ions, and petroleum engineers’ deep industry domain knowledge [54] .

lthough AI is expected to be dominantly used by humans to augment

heir decision-making abilities rather than replace them [49] , this will

e a challenging task as many questions related to trust and fear of los-

ng jobs may arise. There is an unsolved issue also related to people –

he legal view on AI’s recommendations. There could be cases when an

I tool recommends an action leading to a loss in money, production,

r even severe health or environmental issues. In this case, we have no

lear understanding of responsibility-sharing between the AI algorithm

tself, the AI algorithm user, or the AI algorithm developer. With the

evelopment of AI tools, this question will rise more and more often. So

he parallel establishment of the legal base is expected here. The prac-

ice says that the algorithms and their developers are not responsible,

ut the responsibility is still with the decision-makers getting the advice

rom the AI and AI users. Thus, to benefit from the opportunity to ex-

end decision-making capabilities significantly, companies will have to

reate not only strategies for AI , but strategies with AI [55] as well. 

.2. Data 

AI tools need the good quality data of a suitable volume to be trained

nd then to work properly in the operational mode. While using smarter

lgorithms may help in getting better results from datasets of limited

ize, no manipulation can help with bad data [56] . Thus, access to big

nd quality data is a crucial enabler and barrier for AI applications’ suc-

essful development. Oil and gas fields generate large amounts of raw

ata. Still, it is not a guaranty for success as there are known issues with

he quality and accuracy of field data and overall lack of large volumes

f labeled data in the oil and gas industry [48] . Training datasets have to

e carefully collected through the well-planned workflow- and situation-

pecific multi-year procedure [57] . One of good examples is Ambyint,

 VC-funded AI-driven startup focused on oil and gas production op-

imization, which has spent over a decade to build its repositories of

igh-quality production and optimization data that is used to train and

mprove their solutions [58] . 

To enhance the value of data oil and gas companies possess or can ac-

ess, they will have to redesign and adjust their organizational structures

nd processes. Oil and gas companies are not known for their agile, lean,

nd bottom-up development approaches but for strict jurisdiction divi-

ion and waterfall processes and procedures – that has to be changed.

lso, data storage should be centralized into one or a small number of

ata warehouses to allow people and AI software easy access and usage

57] . 

Data challenges (across industries, not only in the oil and gas) drive

echnical efforts in improving AI systems and their further practical us-

ge in the exploration and production of oil and gas. One of the key

irections here is small data learning [59] that enables training the AI

lgorithms with a small number of examples. The small data learning

ttracts the serious attention of researchers worldwide, but there is no

ubstantial progress as of now. The second direction is about the ef-

cient adaptation of the already trained models for the new datasets

enerated by similar but not the same objects, processes, or systems.

apability to update the pre-trained model on-the-fly will significantly

ncrease the applicability envelope for the AI-aided tools. Such quick

daptation studies are also under intensive research [ 60 , 61 ]. 

.3. Open collaboration 

Artifical intelligence is born in open and collaborative environment

s a consequence of academia being a leading force in AI research for

ecades, almost without any business influences. This created culture

f free sharing (e.g. GitHub) and open publishing (e.g. arXiv), which

ompanies across industries (and across the globe) had to embrace as a

tandard to succeed in the era of AI [ 62 , 63 ] once they joined the race. 
7 
While open innovation is becoming standard in the tech sector, oil

nd gas companies are not famous for their joint industry projects, espe-

ially between competitors and especially not in strategic domains such

s AI [48] . Even though many companies announce bringing some of

heir data to the open-source and claim the necessity of cross-company

nd cross-border data sharing, the reality is rather pessimistic now. We

ave very few sources of geophysical and production data, and they are

f questionable quality. The UK’s oil and gas National Data Repository

s one of the first large oil and gas open data releases. It contains 130

erabytes of geophysical, infrastructure, field, and well data, covering

ore than 12,500 wellbores, 5000 seismic surveys, and 3000 pipelines

64] . The opportunities for machine learning and artificial intelligence

pplications based on available data are highlighted [65] . 

Next to data access, the need to acquire the latest AI technology and

alent are additional reasons for oil and gas companies to adopt open col-

aboration. The ability to question everything and efficiently experiment

ith data allows AI-born startups to attract attention and record invest-

ents. In 2019 AI-related companies in the U.S. raised $18.5 billion, al-

ost 2 billion more than in 2018 [66] . The largest oil and gas companies

re active in acquiring AI startups. For example, GE and Statoil jointly

nvested in Ambyint [58] . Saudi Aramco invested in Earth Science Ana-

ytics, a startup developing the next generation of petroleum geoscience

I software [67] . BP invested in Belmont Technology, a startup aim-

ng to boost the company’s AI and digital capabilities in its upstream

ffshore business [68] . Shell, Saudi Aramco, and Chevron invested to-

ether in AI startup Maana, which partnered with Microsoft to use its

loud computing platform Azure [69] . 

University labs are another important source of novel AI technology

nd AI talent [51] . Thus, oil and gas companies should re-think strate-

ies for collaborating and interacting with universities. But, not only

ith them. All three challenges related to succeeding in the era of AI

data access, acquisition of new technologies, and talent attraction –

sk companies across industries (including those from the oil and gas

ndustry) not only to move from close to open innovation but to move

rom partnerships towards ecosystem approach. 

The AI-related oil and gas ecosystem comprises many different play-

rs – companies and organizations from different sectors, with differ-

nt AI development stages, different strategies, and priorities. The first

roup, mainly consisting of major international oil companies, is focused

n building the first modern data storage infrastructure (e.g. company-

ide data lakes) and then AI solutions, on top of them, e.g. [70] . The

econd group, typically represented by the smaller field operating com-

anies, is trying to leverage whatever helps speed up their business and

echnological processes as soon as possible, figuring out the issues of rel-

vant data storage and IT infrastructure in parallel, e.g. [71] . The third

roup represents the emerging hi-tech sector – startups (e.g. Ambyint),

niversities (e.g. Stanford University), and technology-oriented oil ser-

ice companies (e.g. Digital Petroleum) developing new AI-aided tools

or oil companies (those from the first two groups). The fourth group

epresents IT companies that mainly supply oil companies with digital

latforms and data storage capabilities. For example, Microsoft’s Azure

latform is selected by Shell as a base infrastructure for enabling rapid

calability and replication of AI applications across its enterprise [72] .

he fifth group represents regulators. Many other interested parties are

ngaged in AI development, like banks, telecom operators, and many

thers. For example, Gazprom Neft joined forces with some of the Rus-

ian largest tech companies (i.e. Yandex, Mail.ru, MTS and Sberbank),

iming to spur the development of AI solutions and facilitate the devel-

pment of a dynamic AI market [73] . 

This new interconnected network of partners, with frequently very

imited experience of previous collaborations, has to learn how to man-

ge new interdependences, how to create, appropriate and share value.

ata’s central role and growing convergance will drive the nature of

onnections between members of the evolving and enlarging oil and

as ecosystem, defining how risk should be managed, value distributed

nd collaboration orchestrated. 
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Table 3 

Scenarios of AI penetration in the oil and gas upstream. 

Scenario Key inputs 5Y 10Y 20Y 

Positive Data sharing approved 

Proper data platforms 

are in place 

Active testing of AI for various 

cross-company problems 

Growing trust level to the 

black box technologies 

AI tools support decision 

making at nearly each of the 

cost-intensive decision 

Up to 40 to 50% cost savings 

at E&P 

AI tools support decision 

making at 90% of operations 

Oil century is extended due to 

AI-aided support of E&P 

margins 

Realistic Data sharing is a 

problem 

Proper data platforms 

are in place 

Active testing of AI for various 

local problems 

Growing trust levels to the 

black box technologies 

AI tools are accepted as the 

objective expert 

10 to 15% cost savings at E&P 

Hybrid "AI + physics" tools 

take over 

Strategic investments in E&P 

continued with some support 

of AI technologies 

Negative No data sharing 

agreements between 

the companies and 

countries 

Poor overall performance of Ai 

tools due to lack of 

appropriate training data 

A negative perception of the 

AI developments in E&P 

AI tools help in some local 

problems a bit 

No significant growth of 

margins at E&P processes 

Nuclear, solar, and wind start 

dominating 

Fig. 4. The lifecycle of an oilfield in the pre-AI era (top) and AI era (bottom). IOR stands for improved oil (gas) recovery; EOR is for enhanced oil (gas) recovery 

techniques. 
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. Discussion 

Succeeding in the digital competition is not about technology only

12] . AI initiatives will not fail because of bad algorithms, but rather

ecause of lack of vision, late or even no changes in the organization’s

perational and business model, due to lack of high-resolution data and

oor collaboration. Thus, strategy plays a key role and is a driving force

f digital transformation [7] , and top management commitment is es-

ential to assure the success of AI and other transformative efforts [74] .

This may be one of the core problems for the oil and gas industry fa-

ous for its risk-averse culture and poor innovation management prac-

ices [48] . The flavor of failing that industry experienced two times in the

ast five years, especially the last one (April 2020) in which oil prices

ent negative, maybe the right trigger to start transforming their busi-

ess models [75] . Otherwise, there is a very high risk that initially good

esults in using AI for a single purpose will be misleadingly understood

s the final goal [7] . This could lead companies to invest more only into
8 
echnology, which will result just in marginal, not transformative im-

rovements [12] . However, this is not a specific problem of the oil and

as industry – only 8% of firms engage in core practices that support the

idespread adoption of AI. At the same time, the majority of initiatives

re ad hoc pilots focused on a discrete business process [76] . 

Assuming the absence of the major technological breakthroughs

ithin the energy area and social storms affecting current energy de-

and trends in the coming years, we can visualize three possible sce-

arios of AI spreading in the oil and gas upstream. Here we assume that

ovid-19 crisis will not permanently change the main postulates of the

ndustry. The scenarios are classified as positive, realistic, and negative

n terms of usage of the potential of AI developments ( Table 3 ). 

The positive scenario is based on a globally spread understanding

hat cross-company and cross-border data sharing is crucial. Assuming

trong and committed leadership in the key companies and that good

ata platforms are in place, one may expect very rapid growth of AI ca-

abilities for the upstream applications followed by AI tools for decision
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aking at various levels. Here we can bravely foresee huge potential

n the growth of marginality of the oil and gas upstream business due

o very significant savings on costs and monetized losses due to non-

ptimal decisions reaching 50% of the current levels. There is also a big

ortion of the environmental effect present here [77] . If AI penetrates

he industry this way, many opportunities minimize the negative foot-

rint of the upstream’s hardware technologies. For example, one can use

 proper AI model to minimize hazardous components at well treatment

obs or re-utilize the produced water in a way that keeps the recovery

actor on an appropriate level. 

The realistic (neutral) scenario is when the IT platforms are in place,

ut the progress on data sharing agreements is limited. Limited means

hat there are some additional sharing opportunities concerning what

e have now (like sharing between groups of the companies within a

ountry). Some AI tools will be accepted as useful advisors, and the

ocus within AI developments will be shifted towards grey box hybrid

odels, where the physics-driven part will compensate for the absence

f access to a fair amount of the actual field data. We foresee this as

he most realistic case, with an overall impact on the upstream margins

eing two-three times lower than in the positive scenario. 

The negative scenario is all about the blockage of data sharing. Our

orecast here is as simple as the end of the oil century in 20-30 years

ue to continuously dropping the whole upstream domain’s margins. 

In the positive or realistic scenario, the overall effect on an oilfield

ifcycle should change as schematically shown in Fig. 4 . The lifecycle

f an oilfield in the pre-AI era (top) and AI era (bottom). IOR stands

or improved oil (gas) recovery; EOR is for enhanced oil (gas) recovery

echniques Fig. 4 . The lifecycle of an oilfield in the pre-AI era (top) and

I era (bottom). In general terms, AI should make exploration and ac-

ive field development faster and cheaper while keeping the production

argins higher on a longer-term. 

. Conclusion 

We discussed the development of practical tools based on artificial

ntelligence for oil and gas upstream. It is clear that even though arti-

cial intelligence is an emerging trend in oil and gas, there are appli-

ations that have already brought countable value. We have provided

everal examples of how artificial intelligence helps speed up and de-risk

any business processes associated with the exploration of hydrocarbon

esources, the development of oil and gas fields, and raw hydrocarbons

roduction. There is an on-going experiment on the scalability of ar-

ificial intelligence across the whole industry. Here we have discussed

ot only the technical drivers of such scalability but the non-technical

actors as well. We evaluated the influence of education, organizational

ttitude, and data availability on the speed and direction of artificial in-

elligence penetration to oil and gas upstream. Basing on this analysis,

e derive three possible scenarios on how artificial intelligence could

pread within the oil and gas in the coming five to twenty years. 
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