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forensics. Our exploratory analysis revealed forensically relevant data in memory including transaction
history, extended public keys, passphrases, and unique device identifiers. Data extracted with FORE-
SHADOW can be used to associate a hardware wallet with a computer and allow an observer to dean-
onymize all past and future transactions due to hierarchical deterministic wallet address derivation.
Additionally, our novel visualization framework enabled us to measure both the persistence and integrity
of artifacts produced by the Ledger and Trezor hardware wallet clients. The framework can be gener-
alized for use in future memory forensics work.
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1. Introduction

Nefarious actors are attracted to cryptocurrency because of its
privacy focused properties. Anyone may view the full ledger of
transactions due to the blockchain being public. However, linking a
series of transactions to a given computer or individual can prove
difficult with just this information. Cryptocurrency is regularly used
to anonymize these transactions. Over one billion dollars worth of
illegal cryptocurrency exchanges took place in 2018 (Chainalysis,
2019). These transactions could involve the purchase of narcotics,
firearms, or other services provided on the darknet. In addition to
black market trading, cryptocurrency is regularly used as the
preferred payment method in ransomware attacks.

Anyone with access to the private keys of a cryptocurrency
wallet may sign transactions and send funds from the wallet.
Because of this, the security of the private keys is of great concern to
those who have amassed a large amount of crytpocurrency wealth.
A solution thought to be one of the most secure forms of private key
storage is the hardware wallet, which although is more secure, will
still have processes that run in memory.
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Volatile memory is becoming increasingly important in not only
forensics, but every aspect of cybersecurity. Modern malware at-
tempts to limit its footprint on the filesystem as much as possible
due to the advances made in real-time antivirus monitoring. This
makes the collection and analysis of memory critical during inci-
dent response. Likewise, the abundance of forensically relevant
data in memory can provide investigators with information that
would not be recoverable with traditional techniques. The wide-
spread adoption of encryption has also severely limited the power
of filesystem forensics alone. Therefore, it is critical for the forensic
community to understand what significant forensic artifacts can be
recovered from memory for any given application, as well as how
long these artifacts persist after the relevant activity has ceased.

In the case of cryptocurrency hardware wallet clients, it is not
necessary to save a large amount of data to the filesystem because
much of it can be generated during run-time or retrieved by
querying a blockchain Application Program Interface (API).

Typically, these clients allow a user to set a passphrase to
encrypt some of this cached data and deny access to the device
from unauthorized users. In addition, some of these clients run in
web-browsers permitting the use of private browsing mode,
further limiting the forensic footprint on the filesystem. Conversely,
a remote attacker with the ability to read memory may use this
information to identify individuals with large amounts of crypto-
currency as targets for blackmail, ransomware, or kidnapping
(Popper, 2019; Schlesinger and Day, 2018). This makes the
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persistence of forensically relevant data in volatile memory
invaluable to answering three questions related to cryptocurrency
activity: (1) Can the activity of a hardware wallet be detected? (2)
Can the transactions be reconstructed and linked back to a given
hardware wallet? and (3) Can these transactions be associated with
a given computer?

Our work focused on two hardware wallets and their respective
software clients, Ledger Nano X and Trezor One. These two models
dominate the hardware wallet market with over 1.4 million and
800 thousand units sold respectively (BitcoinNews, 2018; Ledger,
2019). The software architecture of these devices also makes
them ideal candidates for analysis due to the widespread adoption
of their development frameworks. In this work, we observe
memory during run-time to identify and extract data structures
containing forensically relevant information and conduct differ-
ential memory analysis to determine how persistent these struc-
tures are over time. Our work makes the following contributions:

1. To the best of our knowledge, this is the primary account for
memory analysis of cryptocurrency hardware wallet clients.

2. We publicly share identified artifacts with the Artifact Genome
Project (AGP) (Grajeda et al., 2018).

3. We present an open source tool FORESHADOW in the form of a
plugin for the Volatility Framework. FORESHADOW may be used
in the analysis of memory dumps from Windows systems for
both the Ledger Live and Trezor Wallet hardware wallet clients.!

4. We present a novel open source visualization framework and
algorithm for exploring the memory persistence and integrity of
artifacts.

In Section 2, we review related work and introduce hardware
wallets and the forensic data associated with their use. Our appa-
ratus and used applications are detailed in Section 3. Section 4
serves as an overview of the methodology used to create FORE-
SHADOW and our memory visualization framework. Section 5
presents our findings. Section 6 and 7 discuss our results and
possible paths forward, respectively. Finally, we make closing re-
marks in Section 8.

2. Background information and related work
2.1. Background information

Cryptocurrencies such as Bitcoin and Ethereum have seen sig-
nificant adoption over the last ten years. Recent privacy-focused
improvements to cryptocurrency include hardware wallets and
Hierarchical Deterministic (HD) wallets.

2.1.1. Cryptocurrency and privacy

Both Bitcoin and Ethereum operate on a decentralized block-
chain ledger system which builds upon itself with a series of digital
signatures. The self-referencing nature of the blockchain provides
non-repudiation without the need for a trusted central authority. In
order to send cryptocurrency from one user to another, the recip-
ient shares their public wallet address with the sender. The sender
then cryptographically signs the transaction using their private key
and sends the transaction request to miners. After the transaction is
approved and verified by miners solving a computational problem,
it is added to the public ledger in the next block. The recipient can
be assured of the validity of the transaction as the transaction
persists after new blocks are added.

While the ledger of transactions may be public, there is no trivial

! Source code available at https://github.com/UNHcFREG/FORESHADOW.

way to associate any of these transactions with an individual. The
wallet addresses that identify senders and receivers appear as
pseudo-random bytes. A recurring theme in the literature of both
cryptocurrency enthusiasts and developers is that of privacy (Conti
et al,, 2018; Zyskind et al., 2015). Privacy in the context of crypto-
currency implies that a third party can neither identify the sender
or receiver of any given transaction, nor can they link multiple
transactions to a single point of origin.

2.1.2. Hardware wallets

A hardware wallet is a dedicated private key storage device.
Typically, these devices go through great efforts to cryptographi-
cally isolate the private keys from any part of the device that is
externally accessible. This is represented by the secure element in
Fig. 1. A software client is used to interact with the device via a
paired phone or computer over Bluetooth or Universal Serial Bus
(USB). To make a transaction, the transaction is prepared using the
software client and sent to the device to be signed. The device then
performs a series of authentication steps. Finally, the signed
transaction is returned to the software client without the private
keys leaving the dedicated device. Two widely used hardware
wallet clients are the Ledger Live and Trezor Wallet.

Ledger Live is a software client used to interact with the Ledger
Nano X and Ledger Nano S hardware wallets. The application runs
in an Electron instance local to the user's machine. Electron is a
software development framework that allows developers to
encapsulate JavaScript inside of an independent Chromium
instance for portability.

Trezor Wallet is a web application used to control the Trezor One
and Trezor Model T hardware wallets. The web application com-
municates with the USB device through a locally installed program
called the Trezor Bridge. Trezor Wallet supports both Firefox and
Chrome.

2.1.3. Hierarchical deterministic wallets

The Bitcoin development community uses Bitcoin Improvement
Proposals (BIP), to introduce new features and functionality for the
currency that miners and node operators adopt over time. Occa-
sionally, a BIP will provide enough value that it will be adopted by
other cryptocurrencies. Three such BIPs are BIP32, BIP39, and BIP44
(Palatinus and Rusnak, 2014; Palatinus et al., 2013; Wauille, 2012).
These proposals outline a framework and methodology for hierar-
chically deriving public and private key pairs from a single master
key pair and seed that can be used for a variety of cryptocurrencies.
Hardware wallet manufacturers such as Ledger and Trezor have
adopted this implementation, and a rudimentary understanding of
this derivation scheme is critical to identifying and understanding
the significance of the forensic artifacts that can be extracted from
memory.

Wallet clients that implement these three BIPs are referred to as
HD wallets. HD wallets enable users to generate a unique address
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Fig. 1. Hardware wallet security model.
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for every transaction while ensuring that if the user retains their
master key pair, they can derive all necessary child keys.

For the purposes of this work, it is only necessary to understand
that multiple iterations of this algorithm produce a tree of keys,
shown in Fig. 2. It is also important to note that the privacy of this
implementation relies upon an observer not being able to move
leftward on the key-tree. If an observer is able to move left one level
and obtain an extended parent public key, they will be able to
deterministically derive all addresses belonging to that parent key.
This observer will now be able to de-anonymize both past and
future transactions made by the owner of this public key. In this
work, our goal is to move leftward on this tree to link several
transactions under the same parent key back to a single device by
extracting forensic artifacts from memory.

2.2. Past digital forensics of cryptocurrency clients

Previous digital forensic research on cryptocurrency clients by
Van Der Horst et al. (2017) focused on Bitcoin Core and Electrum.
This work conducted filesystem triage and searched volatile
memory for the presence of string literals with known values.
However, no attempt was made to generalize these searches and
extract data from a system where these values are not known at the
time of acquisition. Continuing this work, Zollner et al. (2019)
created a tool to automate retrieval of Bitcoin Core and Electrum
specific files. Haigh et al. (2019) identified filesystem artifacts left
behind by a wide variety of Android cryptocurrency clients and
evaluated the security of the applications against tampering and
reverse engineering. Gurkok (2015) created a plugin for the Vola-
tility Framework that performed regular expression searches for
Bitcoin keys and wallet addresses on memory dumps of the Mul-
tibit Bitcoin client on Mac OS X systems.

Most notably, Ali et al. (2018) analyzed the forensic memory ar-
tifacts created by Bitcoin and Monero software clients and extracted
Bitcoin and CryptoNote network protocol messages from volatile
memory. Their findings and tool are the primary account of memory
forensic investigation of cryptocurrency network protocols. A limi-
tation to their approach is that artifacts are only present on clients
that operate as a full blockchain node connected directly to the
network. Many other software clients, including Trezor Wallet and

Master Seed Master Node BIP 44

Ledger Live, do not operate as a full node and do not have the
network artifacts generated by the blockchain protocol itself.

2.3. Memory forensics

The first formal tool for memory forensics was developed and
presented in 2004 (Ford, 2004). Further memory forensics tools came
as aresult of the Digital Forensics Research Workshop (DFRWS) 2005
Forensics Challenge (DFRWS, 2005). More powerful open source tools
such as Volatility, a modular post-mortem memory forensics frame-
work, quickly followed in 2007 (Volatility Foundation, 2018). Memory
forensics has since rapidly grown as an area of interest in both inci-
dent response and academia due to the quality of tools and research
developed by the forensic community.

Most research has focused on memory forensics of the Windows
operating system (Schatz, 2007; Schuster, 2006; Zhang et al., 2009).
Windows techniques proven to be particularly influential include
those that target the allocation pool and registry (Dolan-Gavitt,
2008; Schuster, 2008; Sylve et al., 2016).

While Windows has seen the most attention in the field, some
advances have been made in memory forensics for Linux based
systems as well (Block and Dewald, 2017; Case et al., 2010; Stttgen
and Cohen, 2014). However, memory forensics for mobile devices
has received limited attention, due to the challenges posed by
acquisition (Sun et al., 2014; Sylve et al., 2012; Thing et al., 2010;
Yang et al., 2017).

Other work has focused on application specific memory foren-
sics (Case and Richard, 2016; Casey et al., 2019; Ghafarian and
Wood, 2019). As forensic techniques advanced, so did adversarial
countermeasures. Palutke and Freiling (2018); Lee et al. (2016);
Zheng et al. (2017) presented sophisticated anti-forensics tech-
niques that combat robust acquisition methods.

Lastly, memory visualization and differential analysis have
shown promise in advancing the state of the art and the domain
(Baum, 2014; Case and Richard, 2017; Garfinkel et al., 2012; Inoue
et al,, 2011).

Despite these advances, our work is the primary account of
combining memory forensics, hardware crypto wallets and a novel
visualization framework that employs differential analysis for
exploring the memory persistence and integrity of artifacts.
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Fig. 2. BIP 32 address derivation scheme.
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Table 1
Workstation details.

System Details

Application Details

Device Details Application Name Version
Processor Intel Core i7-8750H Cheat Engine 7.0
Operating System Windows 7 Professional SP1 7601 VMWare Workstation Pro 15.5.1
System Type 64-bit OS, x64 processor Mozilla Firefox 71.0
Virtual Memory (VRAM) 2.00 GB Google Chrome 79.0.3945.88
Ledger Nano X Firwmare 1.2.4—1 Ledger Live v1.18.2
Trezor One Firmware 1.8.3 Trezor Wallet 1.8.3
Trezor Bridge 2.0.27
Volatility 2.6

3. Apparatus

All memory analysis took place on a Windows 7 Service Pack 1
64-bit Virtual Machine (VM). Volatility plugin development and
testing was conducted using the Win7SP1x64 profile. However,
attempts were made to ensure that the plugin was written in such a
way that the code would remain profile independent for Windows
systems. A detailed account of all software and versions used in this
work is presented in Table 1.

4. Methodology

A general overview of the employed methodology can be broken
into the following phases:

Scenario creation: The devices were connected to the system
and stimulated with normal user behavior.

Identification of data structures: Process memory was
observed during runtime to identify candidates for extraction.

Plugin development: FORESHADOW was created to extract
observed structures and parse forensically relevant data.

Visualizing physical memory: Statistics about artifacts in the
physical memory space were compiled and a tool was created to
visualize how these artifacts change over time.

4.1. Scenario creation

The Ledger Live desktop client was downloaded and installed
from the official Ledger website without changing the default USB
drivers installed by Windows. Although Trezor Wallet is a web
application, it still requires users to install the Trezor Bridge soft-
ware to allow the web browser to abstract away interaction with
the USB drivers. As such, Trezor Bridge was downloaded and
installed from the official Trezor website, also without changing the
default Windows 7 USB drivers. All analysis of Trezor Wallet
occurred in private browsing mode.

Although Cheat Engine was used to identify and detect foren-
sically relevant data structures and verify results during testing, all
memory dumps were created after a fresh reboot to ensure that any
artifacts left behind by the Cheat Engine activity did not taint the
acquired dumps. The dumps themselves were collected while
performing normal user activity such as logging into the client,
sending and receiving funds, and viewing past transactions and
account details while the respective client was the only open
application other than standard system processes.

4.2. Identification of data structures

In order to explore how forensically relevant data is stored in
memory, Cheat Engine was used to observe Ledger Live and Trezor
Wallet processes during run-time. Cheat Engine is a real-time
memory analysis and debugging tool used by video game hackers.
After every action inside the wallet software, a series of string and byte

array searches were made using keywords and literals related to the
activity. Once a data structure containing relevant information was
identified, it was observed over time to determine its suitability as a
candidate for extraction. Due to both applications being written in
JavaScript, many of these structures were in JSON format. It was
immediately clear that both the frequency of occurrence and persis-
tence of the structures varied wildly, especially in Ledger Live.
Therefore, a tool for extracting Ledger Live transaction histories must
employ a variety of searching strategies because the existence of a
given structure cannot be guaranteed. However, in both Firefox and
Chrome, Trezor Wallet's memory proved to be more stable.

A second category of structures unique to Ledger Live was also
found to contain a large quantity of evidentiary data. After
reviewing the Ledger Live source code, it became clear that they
were Electron Inter Process Communication (IPC) messages
(LedgerHQ, 2019). Electron applications typically run in several
processes and use the built-in Electron ipcMain and ipcRenderer
JavaScript libraries for messaging.

The third category of data structure is the API request. Because
the wallets are not running a full blockchain node, the clients are
constantly querying blockchain APIs to monitor price changes and
new transactions involving the accounts on the device. These API
requests are analogous to network protocol messages in a full node.

1: y < yara.compile(rules)

2: s < newlist

3: for task € processList do
4 if task = LedgerLive.exe

> Serialized structures

or task = Chrome.exe
or task = Firefox.exe then

5: for vad € getProcessVad do

6: m < y.match(vad) > Address of match
7 if m = JSON _match then

8: e « end.match(vad) + of fset

9: data <+ json.serialize(vad[m : €])
10: s.insert(repair(data))

11: end if

12: if m = IPC_match then

13: data < vad[m : m + read_size]
14: data + data.asciiOnly.split()

15: s.insert(data)

16: end if

17: if m = URL_match then

18: data <+ vad|m :].readUrlParams()
19: s.insert(data)

20: end if

21: if m = X PUB_match then

22: s.insert(vad[m : xpubSize])

23: end if

24: end for

25: end if

26: end for

Algorithm 1. FORESHADOW: Extracting Relevant Structures.
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4.3. Plugin development

After the structures were identified with Cheat Engine, the VM
was restarted and the same scenario creation process described in
Section 4.1 was conducted. Memory dumps were taken by pausing
the VM and copying the vmem file. After acquisition, a simple
Volatility plugin was made to wrap Yet Another Recursive Acronym
(YARA) scans to allow for rapid debugging and testing of different
signatures. Once the YARA rules were stable and able to consis-
tently identify the relevant structures, it was then possible to begin
extracting forensically relevant data. The accuracy of all data
extracted using FORESHADOW was cross-referenced with the
current state of the blockchain, as reported by Blockchain Explorer
(2020).

Since Volatility plugins are developed in a Python environment,
extracting the structures means serializing the raw bytes read from
the memory dump into meaningful Python objects. In the case of
the JSON structures, this was straightforward. An arbitrarily large
number of bytes were read and a second YARA scan was conducted
to find where the JSON structure terminated. During testing, it
seemed as if 10240 bytes was the optimal read size for extracting
the entire structure. In cases of very large transaction histories, this
value can be overridden with an optional command line argument.
Then, the complete JSON structure was read into a string and
serialized with the Python JSON library (Algorithm 1, Line 9). After
testing, it became clear that certain edge cases in Ledger Live pro-
cess memory resulted in a smaller JSON structure being written on
top of one being used for extraction. However, this smaller struc-
ture was constant in both content and size so it was possible to
detect when this happened and repair it by replacing the smaller
structure with the delimiters it overwrote.

Extracting Electron IPC messages from Ledger Live proved to be
significantly less straightforward because payloads of these mes-
sages were JavaScript objects. The JavaScript objects contained data
in a structure similar to JSON, but lacked delimiters. A series of
transformations was required to meaningfully parse the data.
Starting with a single large string with ASCII data separated by null-
bytes and non-printable characters, the transformations serialized
the data into a list of strings in Python (Algorithm 1, Line 14).
Dictionary-like behavior could then be emulated by searching for
the desired key in the list and returning the next sequential
element in the list as the corresponding value. This method was
found to successfully reconstruct the structures regularly. However,
the downside to such an approach is that unlike the raw JSON
structures, there is no way to know if the data structure has been
damaged by overwrites or frees. Instead, sanity checks have be put
in place to ensure the desired keys exist and that the data being
read is in the expected format. The lack of meaningful delimiters
between keys and fields also complicates the repair process. In the
event that the plugin detects a damaged IPC structure, it discards it
and continues, with a command line option to print discarded
structures so that they may be manually reviewed by the user of the
tool.

Serializing API requests was trivial as the forensically relevant
data was passed as URL parameters (Algorithm 1,18). Because there
were also a large number of occurrences of such Uniform Resource
Locators (URL) in memory, the information was consistently
recoverable without the need to reconstruct damaged or over-
written structures.

Finally, a large number of extended public keys were observed
distributed across process memory. In an attempt to collect all
extended public keys, even those that are not in the previously
defined structures, a final YARA regular expression scan was used to
extract extraneous keys.

4.4. Tool use

FORESHADOW is a Volatility plugin for extracting forensically
relevant data from the aforementioned structures. The same plugin
is used for dumps containing both LedgerLive and Trezor Wallet
activity. When ran without command line arguments, FORE-
SHADOW will parse the provided memory dump to produce a
report similar to the one shown in Fig. 3.

It may be the case that a data structure is recognized by YARA
scans but unable to be serialized by FORESHADOW. In this case, we
allow the user to specify a command line option to dump these
damaged structures to a target directory for manual review.

4.5. Visualization framework

In order to determine how consistent this methodology would
be for extracting transaction data from memory, it was necessary to
observe the frequency of occurrence of these structures as the user
performs different actions, as well as how long they persist before
and after the process is killed. To accomplish this, we constructed a
general framework for visualizing and analyzing small contiguous
data structures in physical memory.

An overview of the process is shown in Fig. 4. The first of which
generates memory dumps by pausing and unpausing the VM and
copying the virtual memory file on a fixed time interval of 60 s.
Each memory dump is then passed through a custom Volatility
plugin that scans the physical memory space to create a Comma
Separated Value (CSV) file with each row containing the structure
type, location, size, and the base64 encoded data of each found
structure. Once a CSV has been created for every memory dump,
the files are passed to the second component of the visualization.
Here, the CSVs were utilized to generate the illustrations shown in
Figs. 5—7.

The visualization component served to accomplish three tasks.
First, to illustrate the quantity of artifacts in memory which
FORESHADOW was able to detect at each point in time. Second, to
present the level of corruption present in the memory artifacts that
were detected, or what percentage of the artifact was not yet
overwritten by other structures. Third, to spatially visualize indi-
vidual artifacts in memory and show their change over time.

To determine the number of artifacts present in each memory
dump, each resultant CSV file was loaded into a pandas DataFrame,
grouped based on the labeled artifact types, and queried to deter-
mine unique occurrences. This produced counts of each artifact
type for each memory dump, which were plotted using the Mat-
plotlib and seaborn Python libraries, as shown in Fig. 5.

The second component of the visualization required calculating
the degree to which each memory artifact had been overwritten.
Each artifact was compared to its counterpart in the preceding
memory dump to create a vector which represented its integrity.
This process is documented in Algorithm 2, and an example is
shown in Table 2.

The first appearance of an artifact served as a baseline for its
integrity. In Table 2, this would be occurrence 1. Note that both the
change vectors and integrity vectors for this occurrence are all ones.

The next time the artifact appeared, a bytewise and operation
was performed on the current and previous occurrences. This
determined which bytes had changed between memory dumps.
The result of this operation was a change vector, represented as an
array of bits, one for each byte of the artifact's data. A one repre-
sented an unchanged bit and a zero represented a changed bit. For
example, in occurrences 2 and 3 inTable 2, “dat#” and “d # t #”
were compared (a strikethrough represents overwritten data). This
resulted in a change vector of [1, 0, 1, 1,], due to the difference in
the second character. This is shown in line 13 of Algorithm 2.
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volatility --plugins=/usr/share/volatility/contrib/plugins -f testimage.vmem --profile=Win7SP1x64 foreshadow

Volatility Foundation Volatility Framework 2.6
Scanning Ledger Live.ex pid: 144

Scanning Ledger Live.ex pid: 2852

Scanning Ledger Live.ex pid: 2424

modelld: nanoX
language: en
systemlanguage: en
region: US
appVersion: 1.18.2

path: \\2\hid#vid_2c97&pid_0004&mi_00#98&ab9b3a8&0&0000#{4d1e55b2-f16f-11cf-88cb-001111000030}

osType: Windows_NT
osVersion: 6.1.7601

Found 3 public keys
..... Public key:

libcore:l:bitcoin:xxpubeDIBUQWdAgF8c2afhlgY8T1679maU8nRxMQHKeo TxgkWfdWGnfpDnFzLR
dWc5NghHKk2VjvLTYts4Wb9PBPI9M6t8LMkrdMn8rfD5L5n6iocK5S

,,,,, Public key:

libcore:l:bitcoin:xpubeCUQprylt11DN1QID4HWCzZjpgMdQzwR7MzvVebkvwMFAj93RiIAonDaFkYVE
UNJIppmG9dLqGQFWWzpVg9u4RdAZMrovCBcrAb3KLUVGKLQ73k

..... Public key:

libcorel:iethereum:xpub6BemYiVNpP19ZzZoFuD8wsVuMyZD7tBPYuJFAcNZbKyJ49aHSGAHMSs
D47ZzKyXF6SC91qaVxM4KxXYHVmMDd5nyzadCpVW3a42r7tR1YqC4f

Account:

libcore:l:bitcoin:xpub6DIBUQWdAgF8c2afhlgY8T1679malU8nRxMQHKeoTxgkWfdWGnfpDnFzLR
dWc5NghHK2VjVLTYts4Wb9PBPIM6t8LMkrdMn8rfD5L5n6iocK5

currencyld: bitcoin
satoshis: 1000
operations:

hash: 2584924cf9f29f558966086da52d803d33e3b058cf7bfad57b678c2b93855fff

..... date: 2019-12-02T18:47:14.000Z
..... satoshis: 1000

..... senders: bclgem70k77694v6grx8fe4ama9jubxe8x0ylcnz7e
..... recipients: 345eNsfVgzvsK9HXd9ZHckyeWWZnYNHd4s bclg3wxlekg7vnn30e7ns8qr897Idhssky42sOvmlie

Fig. 3. FORESHADOW example output.
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Fig. 4. Data collection and visualization process.

Because this operation only took into account changes from the
immediately preceding memory dump, it was necessary to store a
vector which represented the integrity of the artifact based on its
original occurrence. A bitwise and operation was performed on the
change vector of the current occurrence and the integrity vector of

the previous occurrence. The result of this operation was another
bit array again containing one bit for each byte of the artifact's data,
however with a one representing a byte which has not changed
since the original occurrence, and a zero representing a byte which
has changed. This is also shown on line 14 of Algorithm 2. For
example, in occurrences 2 and 3 in Table 2, the integrity vector of
occurrence 2 is [1, 1, 1, 0], and the change vector of occurrence 3 is
[1, 0, 1, 1]. Alogical and of those two vectors produced the integrity
vector of occurrence 3, [1, 0, 1,0]. NumPy's vectorization methods
were used to increase the efficiency of these operations. While it is
a limitation that this algorithm does not take into account the case
where a byte may have been overwritten with its original value,
this does not affect the extractability of the data.

With the integrity of each artifact calculated, a line plot was
generated to visualize the average corruption of each artifact. In
Fig. 6, a y-axis value of 1.0 represents an unchanged artifact, while
0.5 represents an artifact where half of its bytes have been
overwritten.

The visualization framework also served to spatially display
artifacts at their location in memory. Fig. 7 shows these visualiza-
tions for two memory dumps captured while the Ledger applica-
tion was running. This component serves as a direct view into the
presence and integrity of the artifacts, contrasting the statistical
representations in the prior two components. Areas of memory are
labeled to illustrate examples of artifacts which have been partially
corrupted or entirely overwritten.
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. function CalcMemDumplIntegrity(curr Data, prevData)

for currArtifact € currData do

> Fach artifact occurrence in memory dump

currArtifact.integrity < CalcArtifactIntegrity(currArtifact, prevData)

end for

. function CalcArtifactIntegrity(curr Artifact, prevData)

1
2
3
4
5. end function
6
7
8

if containsArtifact(currArtifact, prevData) then

9: prevArtifact <— matchArti fact(curr Arti fact, prevData) > Has occurred before
10: else

11: prevArtifact < currArtifact > First occurrence
12: end if

13: changeVector < bytewise And(curr Arti fact.data, prevArti fact.data)

14: integrityVector < bi > And(changeV ector, prevArtifact.integrity)

15: return integrityVector

16: end function

Algorithm 2. IntegrityCalculator: Calculating Corruption of Memory Artifacts.

5. Findings

Table 3 shows the identified data structures and their de-
scriptions. This subsection serves as an overview of the forensic
artifacts contained in each of the previously mentioned data
structures, as well as the results of the differential analysis and
visualization.

5.1. Ledger Live

Ledger Live's process memory consistently contained a large
quantity of preference settings and device information such as the
model ID, language, region, the application version, USB ID of the
device, operating system, and operating system version. This
configuration data was regularly able to be extracted with FORE-
SHADOW. The extended public keys currently synced with the
device were also regularly found, along with the full transaction
history, balance, derivation path, and fresh addresses of every
extended public key. Due to the volatility of these structures and
how regularly they overwrote each other, it was rarely possible to
extract this information for all public keys at once. However, the
extended public key is all that is required for a forensic investigator
to derive the other information. Some of the data persisted in
memory even after the client automatically locked itself with a
passphrase. The passphrase was not found in memory.

Analyzing the artifacts present across multiple memory dumps
yielded an upward trend, with the number of artifacts increasing
over time. Actions carried out in the Ledger client during the
experiment, such as the initial synchronization of Bitcoin and
Ethereum, caused spikes, as shown in Fig. 5. Upon locking the
application, most artifacts were quickly overwritten in memory. Six
minutes after locking the application, only fourteen instances of an
extended public key and one instance of a command-event artifact
were present, compared to peaks in excess of 1700 and 40
respectively. Within 6 min of terminating the Ledger process, all of
the remaining artifacts had been overwritten and were undetect-
able by the Volatility plugin.

Table 2
Artifact Integrity Calculation Example. Note: A strikethrough represents overwritten
data.

Occurrence Data Change Integrity

1 data 1,1,1,1) 1,1,1,1]
2 dat# 1,1,1,0 1,1,1,0]
3 dat# 1,0, 1, 1) 1,0, 1,0
4 datd 1,1,0,1] [1,0,0,0]

The quantitative representation of the artifacts also demon-
strates that numerous copies of each artifact are being stored in
memory at any particular point in time. For example, the JSON
command artifact containing transaction information is present as
many as 20 times in memory at once, as shown in Fig. 5. These large
quantities contrast what was seen while viewing process memory
in Cheat Engine, where only a few instances of any artifact was
present when manually searched for. This may be due to freed ar-
tifacts still being present and cached in physical memory (Inoue
et al., 2011).

Additionally, the spatial memory diagram shown in Fig. 7 helps
illustrate these spikes in artifact quantity. Fig. 7 shows the com-
parison between the artifacts in memory at time 0:07:17 versus
those present at time 0:08:20, when the Ethereum was synchro-
nized. The larger yellow blocks represent command-event, ipc-
message, and JSON artifacts, which increased in number at that
time. Moreover, this visualization shows which specific areas of
memory were overwritten between two times. For example, the
annotated area in the lower-left corner of the diagrams in Fig. 7
shows an area of memory which was partially overwritten be-
tween two dumps.

5.2. Trezor Wallet

In both Chrome and Firefox, a reliably accessible JSON structure
was found to contain forensically relevant information such as the
unique device ID, encrypted passphrase, version numbers for both
the device firmware and boot loader, boot loader hash, whether or
not the device is backed up, model ID, and all extended public keys
currently synced with the device. During testing, this data was

Table 3
Data structures.

Data Contents

LedgerLive
command-event
JSON command
ipc-message
JSON context Device metadata
API Request Wallet addresses
Xpub Public keys

Trezor Wallet (Firefox)
JSON Result

Trezor Wallet (Chrome)
API Request

Transaction history and public keys
Transaction history and public keys
Public keys

Transaction history

Wallet addresses

Passphrase Extractable password

Trezor Wallet (Both)
JSON id Device metadata and public keys
xpub Public keys
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consistently extracted with FORESHADOW. A second data structure
unique to Firefox also contained the full transaction history in JSON.

Trezor Wallet allows users to set an optional password to add an
additional layer of authentication. This password was not found in
memory when using Firefox. Unlike Firefox, the cleartext passphrase
persisted in predictable locations in Chrome memory even with
active use of the application. The passphrase was found to remain
uncorrupted in the same location after the client automatically
locked itself. As shown in Fig. 6, the average integrity of the pass-
phrase artifacts stayed at 100% at all times except at timestamp
0:13:31 where the integrity dipped to 99%, meaning that most in-
stances of the key would be intact and usable if extracted.

5.3. Trezor Bridge

Not only is the Trezor Bridge responsible for abstracting USB
driver interaction from the web browser, but it also logs all USB
related events. While Trezor Wallet is running, the Trezor Bridge
constantly monitors the list of USB devices currently connected to
the system and iterates over them one by one to determine if they
are a Trezor device. The logs are located in the user's Application
Data folder and contain timestamps of when USB devices were
connected to the system, even if they are not Trezor devices. This
log file is open while the Trezor Bridge is running so it can be
extracted from a memory dump of a running system using the
dumpfiles Volatility command.

6. Discussion

Returning to the three questions posed in Section 1: Yes, a
forensic investigator can use artifacts obtained from volatile
memory to identify cryptocurrency hardware wallet use, extract
the transaction history, and associate a specific hardware wallet
device with a host computer. The techniques presented in this
study allow for the deanonymization of transactions and public
keys by serializing data structures identified by YARA scans.
Although transaction histories can be recovered, their availability in
memory cannot always be guaranteed across all platforms. That
being said, regular expression based YARA scans were consistently
able to find all extended public keys synced with the client, giving a
forensic investigator all required information to view all past and
future transactions on the blockchain.

Pertaining to Ledger, the persistence of memory artifacts was
extremely poor. When the application was locked at the 0:30:57
timestamp in Fig. 5, the majority of memory artifacts were over-
written nearly immediately, and the artifacts which remained in
memory were significantly corrupted. Terminating the process at
timestamp 37:11 caused the remaining memory artifacts to be
overwritten to the point that FORESHADOW could not detect them.
This is a potential limiting factor of this tool's effectiveness against
the Ledger wallet, as its artifacts would likely not remain in
memory at the time when a device was acquired.

The Trezor wallet client produced certain artifacts in memory
which persisted for long after its browser tab was killed. As shown
at timestamp 0:33:16 in Fig. 6, the extended public keys remained
in memory without being corrupted after the termination of the
process. Therefore, this data could be feasibly retrieved if a machine
was recovered within a reasonable time frame after the Trezor
application was closed. The persistence of the Trezor artifacts over
the Ledger artifacts is likely due to the former being stored in a
memory segment devoted to storage, and the latter being in an area
which is frequently used for IPC. The passphrase artifacts were
overwritten immediately after the application was terminated.

7. Future work

The data structure extraction methodology presented in this work
has several shortcomings. The first of which being that in order to
apply it to other applications, it is necessary to go through the same
signature discovery process outlined in Section 4.2. The second being
that data availability cannot be guaranteed across applications. Future
work may focus on creating a runtime environment specific frame-
work for generic data structure extraction. For example, Chrome and
Firefox use the V8 and SpiderMonkey JavaScript engines, respectively.
Atool that directly interacts with the memory management system of
the engine may have generalizable results.

Likewise, since Electron is Chromium at its core, it also leverages
the V8 engine. However, the additional layer of abstraction pro-
vided by the Electron framework presents an opportunity to extract
data unique to Electron applications. For example, robust extraction
techniques for the IPC messages identified in this work may be a
powerful forensic tool for other popular Electron applications such
as Skype, Slack, and Mailspring. Because Electron uses these IPC
messages to communicate with a renderer process, such a method
may be able to reconstruct the state of the GUI at the time of the
dump similar to Ligh (2012) or Saltaformaggio et al. (2015).

While the visualization framework was produced specifically for
analysis of the wallet clients studied in this work, it could be used to
analyze any application for which artifacts are extracted using our
data collection method. To study the effectiveness of both the sta-
tistics and the memory space visualization, the framework could be
tested across scenarios for multiple different applications. For
example, this framework could be tested against both browser-
based applications and standalone applications in order to
analyze how each application type's artifacts persist in memory,
and how the locations of their artifacts differ.

Both FORESHADOW and the visualization framework should be
tested against multiple operating systems to prove its effectiveness
when the host is not running the tested version of Windows 7.
Additionally, this would serve to extract information about poten-
tial differences in artifact persistence based on how the operating
systems allocate memory.

8. Conclusion

Cryptocurrency will likely remain the payment method of
choice for illicit online payment in the foreseeable future and
hardware wallets are seeing significant adoption. As such, practi-
tioners must be equipped to collect forensic evidence from the
clients used to interact with these devices. FORESHADOW enables
the extraction of such evidence from Windows systems.

Additionally, application specific memory forensics relies
heavily upon scanning and signature based searches. Our visuali-
zation framework serves to determine the availability and integrity
of the target artifacts, enabling expedited development of future
tools using similar techniques.
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