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Abstract: We introduce the concept of adiabatic four-wavemixing (AFMW) frequency conversion
in cubic nonlinear media through an analogy to dynamics in quantum two-level systems. Rapid
adiabatic passage in four-wave mixing enables coherent near-100% photon number down-
conversion or up-conversion over a bandwidth much larger than ordinary phase-matching
bandwidths, overcoming the normal efficiency-bandwidth trade-off. We develop numerical
methods to simulate AFWM pulse propagation in silicon photonics and fiber platforms as
examples. First, we show that with a longitudinally varying silicon waveguide structure, a
bandwidth of 70 nm centered at 1820 nm can be generated with 90% photon number conversion.
Second, we predict the broadband generation of nanojoule energy, 4.2-5.2 µm mid-infrared light
in a short, linearly tapered fluoride step-index fiber. We expect the AFWM concept to be broadly
applicable to cubic nonlinear platforms, for applications as diverse as bright ultrafast light pulse
generation, sensing, and conversion between telecommunications bands.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
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1. Introduction

Efficient and robust frequency conversion of broadband optical pulses is essential for fields ranging
from pure science to technology industries, including integrated photonics for telecommunications
and the next generation of computers [1, 2], environmental detection devices [3], optical signal
processing for applications such as encoding and encryption [4], as well as strong field applications
such as X-ray generation and multidimensional spectroscopies for understanding the fundamental
ultrafast dynamics of molecules [5, 6].
In recent years, much effort has been invested in developing schemes to efficiently convert

broader and broader optical spectra. Yet the common paradigm of nonlinear frequency conversion
with constant phase matching includes a restrictive trade-off between the conversion efficiency and
its bandwidth. Our recent demonstrations of the adiabatic frequency conversion concept in three-
wave mixing processes introduced the ability to sidestep the efficiency-bandwidth trade-off in
sum-frequency generation (SFG) and difference-frequency generation (DFG) [7–10], dramatically
increasing the available bandwidth while also ensuring a high conversion efficiency. Application
of this concept in aperiodically poled quasi-phase-matched media allowed the generation of phase-
and amplitude-controlled, octave-spanning, coherent mid-IR light sources [11,12]. Moreover, the
amplitude and phase transferability of adiabatic frequency conversion enables arbitrary amplitude
and phase tunability by pulse shaping prior to conversion. This allowed the arbitrary shaping of
single-cycle pulses and promises great flexibility for ultrafast spectroscopic applications [12].
Broadband optical parametric amplification (OPA) and optical parametric oscillation (OPO) have
also been investigated to show greatly enhanced conversion efficiency in aperiodically poled
quasi-phase-matched media and nonuniform media [13–18]. Though the adiabatic frequency
conversion concept is very promising, the traditional platforms for frequency conversion using
three-wave mixing processes are limited to devices based on specialized materials engineered
and grown specifically for the application, whether for ultrashort pulses or for single-frequency
sources.

In contrast, the ubiquitous presence of cubic optical nonlinearities enables all devices employing
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light propagation the capacity for frequency conversion via four-wave mixing (FWM). Recent
examples include optical parametric gain and frequency conversion in silicon waveguides used
for telecommunications [1, 19–21], supercontinuum generation in optical fibers made from a
wide range of materials and with a diverse set of structures [22–24], dielectric and semiconductor
microresonators used for supercontinuum or frequency comb generation [25–28], and gas filled
capillaries used for spectral broadening or parametric amplification of ultrashort pulses [29, 30].
In each of these technologies, FWM frequency conversion has been employed. Like all nonlinear
frequency conversion methods, applications of FWM to the generation of broadband light sources
are limited by a trade-off between efficiency and bandwidth. Furthermore, the commonly used
technique for frequency conversion, cascaded FWM [31–34], does not allow flexible control of
the spectral phase of the converted light.
Here, we introduce the concept of adiabatic frequency conversion in FWM, which we find

broadly applicable to χ(3) nonlinear platforms. We develop a theoretical framework for rapid
adiabatic passage in FWM, analogous to the dynamics of quantum two-level systems. We show
that a conversion efficiency asymptotically approaching 100% over broad bandwidth can be
achieved if the adiabatic condition is met, overcoming the traditional efficiency-bandwidth
trade-off in common FWM frequency conversion processes. As examples, we apply the theory to
silicon photonics and step-index fibers, two of the χ(3) nonlinear platforms most widely used in
applications, using generalized pulsed beam propagation simulations. We find near-100% photon
conversion efficiency can be achieved by a simple longitudinal tuning of waveguide dimensions,
generating broad bandwidths in either near-IR or mid-IR wavelength ranges. We expect FWM
frequency conversion in many other platforms and at many other wavelengths would benefit from
this process in a similar fashion.
The article is organized as follows. In Section 2, we present the SU(2) symmetry present

in FWM frequency conversion under the strong pump approximation, which illuminates the
similarity of photon conversion in FWM to population exchange in two-level systems. We then
discuss the conditions for achieving rapid adiabatic passage in FWM. Compared to adiabatic
evolution in χ(2) media, several new characteristics are observed. In Section 3, we present
generalized propagation equations for FWM derived from Maxwell’s equations. We develop
numerical methods capturing the full frequency- and time-domain nonlinear pulse propagation
effects for waveguided interactions, including exact broadband dispersion, self- and cross-phase
modulation, and the FWMprocess used for adiabatic frequency conversion.We focus on particular
features of broadband pulse propagation in waveguided media that may be essential for a given
application of adiabatic four wave mixing (AFWM), such as the evaluation of accurate relative
strengths of nonlinear effects over a large frequency range as well as the capture of additional
parasitic degenerate and non-degenerate FWM processes.

In Section 4, we numerically solve the generalized equations in order to explore silicon photonic
devices and optical fiber platforms for realizing AFWM. For silicon photonic devices, we show
generation of a 70-nm bandwidth centered at 1820 nm with a photon conversion efficiency greater
than 90%. Our solution, which does not require a strong pump condition, is the first solution
that allows such wide spectral widths with high conversion efficiency. For step-index fibers,
we present the optimal fiber parameters for phase matching AFWM frequency conversion. By
modeling a tapered commercially available fluoride step-index fiber, we predict that nanojoule
energy, 4.2-5.2 µm broadband mid-IR pulses could be realized by an all-fiber based system,
being among the most energetic mid-IR fiber sources in this spectral range. Because the AFWM
mechanism is fundamental, we believe our findings will open new routes for achieving energetic
and broadband generation over large frequency ranges where other methods suffer from either
low spectral power or narrow bandwidth due to the efficiency-bandwidth trade-off, such as
frequency conversion in on-chip photonic devices for telecom and innovative computers, as well
as fiber-based down-conversion (mid-IR) and up-conversion (UV) sources for high-repetition-rate
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spectroscopy or low-repetition-rate high-intensity applications.

2. Concepts and theory

We begin by introducing the concept of AFWM underlying the new broadband and efficient FWM
frequency conversion paradigm. To establish an intuitive physical picture, we make an analogy
between FWM frequency conversion and coupled two-level systems through demonstration of
SU(2) symmetry present in FWM processes under the strong pump approximation. We then
establish the adiabatic condition for achieving AFWM. In the following sections, we will explore
the more general nonlinear dynamics of broadband pulsed waves in a waveguided geometry.

2.1. Analogy to population transfer in a two-level system possessing SU(2) symmetry

As in three-wave mixing processes [7], under certain conditions photon transfer in a FWM process
can be understood by analogy to population transfer in a two-level quantum atom possessing
SU(2) symmetry. These are the conditions under which a fully adiabatic, one-to-one transfer
of photons between frequencies becomes possible. Consider FWM in a χ(3) nonlinear medium
by the schemes shown in Fig. 1(a), commonly known as four-wave mixing Bragg scattering
(FWM-BS) [35, 36], and Fig. 1(b), with initial photon numbers nA, nB, nSig, and nIdl, for PumpA,
PumpB, Signal, and Idler waves, respectively. When satisfying the conditions nA, nB � nSig, nIdl
under either scheme, an exchange of n photons will leave the four waves with approximate
photon numbers nA, nB, nSig − n, and nIdl + n. An exchange of photons between four waves is
thus approximately reduced to a one-to-one photon number transfer between the signal and idler
waves, resembling population exchange in a two-level system. Experimentally, these conditions
can be met if the intensities of the two pumps are assumed to be much stronger than those of the
signal and idler waves.

Fig. 1. Energy diagrams of two schemes of four-wave mixing, and the analogy between
two-level atoms and FWM. (a) Annihilation of Signal and Pump A photons allows creation
of Idler and Pump B photons. This scheme is known as four-wave mixing Bragg scattering.
(b) Annihilation of a Signal photon allows creation of Pump A, Pump B, and Idler photons.
In both cases, when pump intensities are much larger than those of the signal and idler,
signal and idler photons are exchanged through coupled equations of motion possessing
SU(2) symmetry, analogously to population transfer in coupled two-level quantum systems.
(c),(d) Analogy between Stark-chirped two-level atomic systems with field-free energies E1,
E2 and four-wave mixing. ~ΩP is the coupling pump’s photon energy in two-level atomic
systems. β′i s (i = A,B,Sig,Idl) are wave-vectors of the four waves in FWM. Energy detuning
∆0 corresponds to phase mismatch ∆k, while Stark-induced energy shift ∆S corresponds to
Kerr-induced nonlinear phase modulation ε0χ

(3)γint
2 (ωBPB − ωAPA). The effective energy

detuning ∆eff is analogous to effective phase mismatch ∆keff.

To mathematically demonstrate the concept, we start with simplified nonlinear Schrödinger
equations under strong pump and plane, continuous wave (cw) approximations:

                                                                                                    Vol. 26, No. 20 | 1 Oct 2018 | OPTICS EXPRESS 25586  



i
dAA
dz
= ωAε0 χ

(3)
( µA,A

2
|AA |2 + µA,B |AB |2

)
AA,

i
dAB
dz
= ωBε0 χ

(3)
(
µA,B |AA |2 +

µB,B

2
|AB |2

)
AB,

(1)

i
dASig

dz
= ωSigε0 χ

(3)
[(
µSig,A |AA |2 + µSig,B |AB |2

)
ASig + γint A†AABAIdlei∆kz

]
,

i
dAIdl
dz
= ωIdlε0 χ

(3)
[(
µIdl,A |AA |2 + µIdl,B |AB |2

)
AIdl + γint AAA†BASige−i∆kz

]
.

(2)

The waves are assumed to be linearly polarized and copolarized. The superscript † denotes a
complex conjugate, Ai is the electric field envelope and µi, j (with i, j = A,B, Sig, Idl) and γint are
nonlinear coupling coefficients for the two non-degenerate pumps (A,B), signal (Sig), and idler (Idl)
waves [37]. The field envelopes are defined by Ei = Aiei(ωt−βz), where Ei are electric fields of the
mixing waves normalized to their power Pi such that, Pi = |Ei |2 = |Ai |2, for i = A,B. For the sake
of analytical simplicity, the transverse field distribution has been taken as wavelength-independent
and ignored in this section under the plane wave approximation. ∆k = βA + βSig − βB − βIdl is the
wave-vector mismatch arising from dispersion of the propagation constants of the waveguided
χ(3) nonlinear medium. Under the undepleted pump approximation, the pump magnitudes are
approximately constant, and their envelopes acquire only phase modulations due to self- and
cross-phase modulation (SPM, XPM) during propagation, and thus their powers, Pi , remain
constant. The phases of Pump A and Pump B are modulated by ωAε0 χ

(3) ( µA,A
2 PA + µA,BPB

)
and ωBε0 χ

(3) (µB,APA +
µB,B

2 PB
)
, accordingly. SPM and XPM between signal and idler waves

are ignored due to their small amplitudes compared to the pumps. However, the signal and
idler waves experience XPM from the pump waves, ωSigε0 χ

(3) (µSig,APA + µSig,BPB
)
and

ωIdlε0 χ
(3) (µIdl,APA + µIdl,BPB

)
, as well as a mutual power transfer. By further approximating

the nonlinear coupling coefficient to be wavelength-independent, i.e. µi, j = γint , and intro-

ducing normalized amplitudes CSig =
ASigexp(i 1

2 (−∆k+ε0χ
(3)γint (2ωSig(PA+PB )+ 1

2 (ωAPA−ωBPB )))z)√
ωSigε0χ(3)γint |AA | |AB |

and CIdl =
AIdlexp(i 1

2 (∆k+ε0χ
(3)γint (2ωIdl(PA+PB )− 1

2 (ωAPA−ωBPB )))z)√
ωIdlε0χ(3)γint |AA | |AB |

, the coupled amplitude equa-

tions (CAEs) for the signal and idler waves (2) can be rearranged into the form:

i
dCSig(z)

dz
=
∆keff

2
· CSig(z) +

κ

2
· CIdl(z), (3)

i
dCIdl(z)

dz
=
κ

2
· CSig(z) −

∆keff
2
· CIdl(z), (4)

where the effective wave-vector mismatch is ∆keff = ∆k + ε0χ
(3)γint
2 (ωBPB − ωAPA) and the

coupling strength between the two waves is κ = 2ε0 χ
(3)

√
ωSigωIdlγ

2
intPAPB. This set of CAEs

describing the wave mixing resembles the form of the SU(2) symmetric time-dependent
Schrödinger equations of a coupled two-state atom except that time evolution in the quantum
model has now become z propagation in the χ(3) nonlinear medium. Whereas in an optically
driven two-level atom, an effective energy detuning of the driving laser frequency from resonance,
∆eff, is a sum of the detuning in the coupled two-level system, ∆0 = E2 − E1 − ~ΩP , and a
field-induced Stark shift, ∆s, the quantity analogous to the effective detuning for an exchange
of the signal and idler wave amplitudes is an effective wave-vector mismatch, ∆keff, which
is a sum of the intrinsic wave-vector mismatch (i.e., when phase modulations are ignored),
∆k = βSig + βA − βIdl − βB, and XPM-induced phase modulations ε0χ

(3)γint
2 (ωBPB − ωAPA) that
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become important at high pump intensities. The coupling strength between the signal and idler
states, κ, analogous to the interaction strength in two-level systems, depends on both the signal
and idler’s angular frequencies ωSig, ωIdl, nonlinear coupling coefficient γint and the two pump
intensities PA, PB. The analogous quantities are summarized in Table 1 and are depicted in Figs.
1(c)–1(d).

Table 1. Analogy of FWM to a coupled 2-level atom
Parameter 2-level atom Four-wave mixing

Evolution parameters time z axis
Frequency detuning / Phase mismatch ∆0 ∆k

Stark shift ∆S
ε0χ

(3)γint
2 (ωBPB − ωAPA)

Coupling coefficient ΩR κ = 2ε0 χ(3)
√
ωSigωIdlγ

2
int

PAPB

Generalized "Rabi" frequency Ω

√
κ2 + ∆k2

eff

2.2. Adiabatic passage

Having identified a close analogy, the evolution dynamics of FWM under the undepleted pump
approximation and with a photon exchange as drawn in Figs. 1(a)–1(b) can be expected to
follow the known dynamics of SU(2) symmetric coupled two-level atomic systems. The simplest
analogy is the case of constant ∆keff, in which the difference between signal and idler photon
numbers oscillates at the (spatial) Rabi frequency,Ω =

√
κ2 + ∆k2

eff. As is the case in experimental
atomic physics, Rabi flopping can be used to achieve a complete population inversion (in this
case meaning all signal photons are converted to idler photons, or vice-versa, depending on
which field has a nonzero initial ampitude), but only if the coupling lasts for exactly one-half
of a Rabi oscillation (z = π/Ω) and the detuning (∆keff) is zero. Thus, the final population is
highly sensitive to the experimental parameters and is wavelength dependent. This solution
is characterized by the well known efficiency-bandwidth trade-off: if the experiment is tuned
perfectly for one signal-idler wavelength pair, i.e., ∆keff = 0 and the medium length L = π/Ω,
it will be improperly tuned for other signal-idler wavelength pairs, since ∆keff is wavelength
dependent. Broadband conversion is only achieved in the low conversion efficiency limit, i.e.,
when L � π/Ω.

A second example is rapid adiabatic passage (RAP), which can be used to asymptotically
achieve 100% population transfer from an initial state to a target state through a slowly swept
energy detuning. Since the CAEs of our FWM model shares the same mathematical form as a
two-level atomic system, RAP should also exist in FWM: if the effective wave-vector mismatch
is swept from large positive value to large negative value (or vice-versa) adiabatically, the signal
wave (initial state) shall fully convert to the idler wave (target state) without back-conversion. It
can be shown that for our CAEs (3) and (4), the condition required for adiabatic following in
AFWM is [38]:

| Ûκ∆keff − κ∆ Ûkeff | �
(
κ2 + ∆k2

eff

) 3
2
, (5)

where the derivatives are with respect to propagation distance, z. Additionally, to ensure a
robust adiabatic conversion, |∆keff | � κ is required at both the beginning and end of the photon
exchange, i.e., the coupling between waves at the entrance and exit of the medium should be
insignificant.
Nearly 100% photon conversion efficiency is expected to be achieved between signal and

idler waves through AFWM if the adiabatic condition (5) is fulfilled, as has been demonstrated
in χ(2) nonlinear media using a swept wave-vector mismatch created by aperiodically poled
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gratings [10, 11]. Moreover, a RAP-like frequency transfer can occur for each frequency within a
broadband signal pulse in a single nonlinear medium [8, 9], and greater than octave-spanning
bandwidths have been achieved through adiabatic three-wave mixing [11,12]. The process is also
expected to exhibit a linear transfer function of spectral phase and amplitude if the pump pulses
have a relatively narrow bandwidth compared to the signal and idler pulses, as has also been
demonstrated for RAP in three-wave mixing [12], offering a simple route towards arbitrary pulse
shaping of the generated idler through pre-conversion amplitude and phase shaping of the signal.

We note that the distinguishing features of the driven two-level system analogy for FWM versus
three-wave mixing include: first, that two nondegenerate pump waves are required to achieve
SU(2) symmetric frequency conversion between signal and idler waves rather than one pumpwave,
and second, that the effective wave-vector mismatch ∆keff is not only dependent on propagation
constants βi , but also on Kerr-induced nonlinear phase modulations ε0χ

(3)γint
2 (ωBPB − ωAPA).

These features allow a wide range of possible implementations of RAP that are unique to the
FWM system, including the possibility of a swept effective wave-vector mismatch derived from
longitudinally increasing or decreasing phase modulations imparted by the two non-degenerate
pumps (achieved through group-velocity walk-off, for example), an analogy of Stark-chirped rapid
adiabatic passage [39]. In the case that a waveguided structure is used for the FWM interaction,
RAP can be achieved through a longitudinal sweep of the waveguide dispersion, or by width
modulation of the waveguide core. Two examples of waveguide-enabled AFWM are presented in
Section 4.

3. Generalized propagation model

Here we develop a generalized analytical framework for rigorous numerical treatment of FWM
processes that captures arbitrary time-dependent ultrashort pulses propagating in longitudinally-
variant waveguides of a χ(3) nonlinear medium. The analysis is suitable for arbitrary mode
profiles and arbitrary waveguide geometries or material assuming the waveguide modes have
negligible components in the direction of propagation. In Section 4, we apply the generalized
framework to treat the AFWM frequency conversion scheme. Let us start with the nonlinear
dynamical equations for propagation of an optical pulse in a waveguided system [37,40],

dA(z, ω)
dz

= −iω
∫ ∫

P̄NL (x, y, ω) ·
(
®E0t
†
eiβ(z,ω)z

)
dxdy, (6)

where P̄NL is the nonlinear polarization, the subscript ()t stands for the transverse electric field,
()0t refers to the transverse mode of the electric field profile of the waveguide, β (z, ω) is the
propagation constant inside the waveguide, and A (z, ω) is the field amplitude spectral density for
the transverse electric field, which is related to the electric field in time and space through an inverse

Fourier transform: ®Et (x, y, z, t) =
∞∫
−∞

dω
2π

≡Ēt (x,y,z,ω)︷                                                           ︸︸                                                           ︷
1
2

[
A (z, ω) + A† (z,−ω)

] ®E0t (x, y, z, ω) e−iβ(z,ω)zeiωt .

In the case of centrosymmetric material, where the dependence of the nonlinearity on frequency

is weak, the 3rd-order nonlinear coefficient tensor is χ(3) = χ
(3)
xxxx = χ

(3)
yyyy =

χ
(3)
{yyxx}

3 , where
the {} stands for all permutations [41], and the nonlinear polarization takes the form P̄NL,k =

ε0 χ
(3) ∑

j∈x,y
Ēj (x, y, z, ω)∗ Ēj (x, y, z, ω)∗ Ēk (x, y, z, ω), where ∗ stands for the convolution product.

This yields the equation

dA(z, ω)
dz

= −iωχ(3)eiβ(z,ω)z
∬ ∑

k∈x,y
P̄NL,k ·

(
®E0t,k(x, y, z, ω)†

)
dxdy. (7)
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In this article, we focus our investigation on FWMScheme 1 from Fig. 1(a) with non-degenerate
pump wavelengths. We wish to obtain a set of equations for describing the scheme, as in Eq.(1),(2),
where the field amplitude spectral density now takes the form of an optical pulse. The spectral
density is A (z, ω) = AA (z, ω) + AB (z, ω) + ASig (z, ω) + AIdl (z, ω), where the Ai (z, ω) are the
envelopes for field components centered around carrier frequency ωi . We choose to ignore the
polarization component corresponding to third-harmonic generation, due to the large phase
mismatch of the process in our investigated platforms. We also ignore attenuation because of the
short lengths of the platforms.
We first discuss implementations where non-overlapping spectral components among four

waves can be approximated. By further approximating the transverse modes of the electric field
profiles to those at their central wavelengths, Eq. (7) yields a set of four nonlinear coupled
equations. For example, for the signal wave we obtain,

dASig(z, ω)
dz

= −iωε0 χ
(3)eiβSig(ω)z×[

γint AB (ω) e−iβB(ω)z ∗ AIdl (ω) e−iβIdl(ω)z ∗ A†A (−ω) e
−iβA(ω)z+

µSig,Sig

2
ASig (ω) e−iβSig(ω)z ∗ A†Sig (−ω) e

iβSig(ω)z ∗ ASig (ω) e−iβSig(ω)z+

µSig,IdlAIdl (ω) e−iβIdl(ω)z ∗ A†Idl (−ω) e
iβIdl(ω)z ∗ ASig (ω) e−iβSig(ω)z+

µSig,AAA (ω) e−iβA(ω)z ∗ A†A (−ω) e
iβA(ω)z ∗ ASig (ω) e−iβSig(ω)z+

µSig,BAB (ω) e−iβB(ω)z ∗ A†B (−ω) e
iβB(ω)z ∗ ASig (ω) e−iβSig(ω)z

]
.

(8)

The z-dependence of Ai and βi (i = A,B,Sig,Idl) was dropped from the notation for clar-
ity (e.g., A (ω) = A (z, ω)), and we defined the following overlap integrals of the electric
field transverse profiles: γint = 1

2

∬
dxdy

[ (
®EB · ®EIdl

) (
®EA · ®ESig

)
+

(
®EB · ®EA

) (
®EIdl · ®ESig

)
+(

®EIdl · ®EA

) (
®EB · ®ESig

) ]
and µi, j = 1

2

∬
dxdy

(
| ®Ei |2 | ®Ej |2 + 2| ®Ei · ®Ej |2

)
. These overlap integrals

are evaluated at the center wavelengths of each mixing wave. Due to the convolution product
naturally appearing in these equations, it is more natural to introduce them in the time domain [42].
We define Bi (z, ω) = Ai (z, ω) e−iβi (z,ω)z , and deduce a time-domain version of the four nonlinear
coupled equations. For example, the equation for BSig (z, t) is,

i
dBSig(z, t)

dz
=

+ F−1
[
βSig(z, ω)BSig(z, ω)

]
← Dispersion

+ ε0 χ
(3)F−1

[
ωF

[
γintBB(z, t)BIdl(z, t)BA

†(z, t)
] ]
← FWM

+ ε0 χ
(3)F−1

[
ωF

[ ∑
ν∈A,B,Idl

µSig,ν |Bν(z, t)|2BSig(z, t)
] ]
← XPM

+ ε0 χ
(3)F−1

[
ωF

[ µSig, Sig
2

��BSig(z, t)
��2BSig(z, t)

] ]
← SPM,

(9)

where F is the Fourier transform operator. The first term can be understood as the dispersion
dynamics, second term is the exchange of energy between the four waves, and the third and
fourth terms are the cross- and self-phase modulations, respectively. Cast in this way, the γint
and µi, j overlap factors can be understood as the frequency dependent nonlinear coupling
coefficients, which enables accurate evaluation of nonlinear frequency conversion strength in
FWM. Eq. (9) mimics the traditional form of FWM processes by capturing phase-matched
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3rd-order nonlinearities [37], i.e., those that are automatically phase matched (namely SPM
and XPM), as well as non-degenerate FWM, which will be arranged to be phase matched in
the applications of AFWM investigated below. However, Eq. (9) has improvements over the
traditional form by capturing exact dispersion and self-steepening effect through the use of the
Fourier transform operator rather than Taylor expansions. Under the above approximations, this
is the general form of a FWM process depicted by Fig. 1(a), Scheme 1.

To consider implementations where the four waves do have overlapping spectral components,
such as in the case of supercontinuum generation, or, as in our work, near-octave-spanning
bandwidth generated by AFWM in optical fibers, we follow the same Fourier transform steps
from Eq. (7) to Eq. (9), but maintain a single pulse simulation without splitting the spectral
density or temporal envelope into four fields. To guarantee generality in optical fibers, we
also include Stimulated Raman Scattering (SRS) and spontaneous emission. This results in a
supercontinuum-like (1 + 1)-D generalized nonlinear Schrödinger equation (GNLSE):

i
dB(z, t)

dz
= F−1 (β(z, ω)B(z, ω)) + ε0 χ

(3)·

F−1
(
ω · γint · F

{
(1 − fR) |B(z, t)|2 · B(z, t) + fRB(z, t) ·

∫ ∞

0
hR(t ′)|B(z, t − t ′)|2dt ′

})
,

(10)

where B (z, t) is a single-field envelope with a frequency grid covering all four mixing waves.
B(0, t) = AA(0, t)ei(ωA−ω0)t + AB(0, t)ei(ωB−ω0)t + ASig(0, t)ei(ωSig−ω0)t is the sum of all input field
envelopes, where ω0 is the carrier frequency of the single-field envelope and here is chosen to
be the center frequency of the frequency grid. A one-photon-per-mode noise seed with random
phase is superimposed onto each spectral point in the frequency grid to simulate vacuum noise.
The propagation constant β (z, ω) is numerically solved at each z-step for each frequency grid
point, given the fiber geometry and material properties at the position. Thus, although Eq. (10)
mimics the traditional form of GNLSE in treating supercontinuum generation [37], it has the
advantage over the traditional form in that the chromatic dispersion term (first term on the
right-hand side (RHS)) captures exact dispersion across the simulated frequency grid without
making the Taylor series approximation. Moreover, due to the wide simulated spectral bandwidth,
we use the frequency dependent nonlinear coefficient ω · γint to account for the self-steepening
effect. The dispersion of χ(3) is ignored.
As opposed to the coupled-field model above, the single-field model captures all possible

FWM terms involving two created photons and two annihilated photons through the second term
on the RHS. This includes not only the desired FWM-BS of Scheme 1

(
ωA + ωSig = ωB + ωIdl

)
and SPM/XPM (ωi + ωj = ωi + ωj), but also, when combined with the vacuum noise seed, it
captures unintended parametric FWM interactions, such as other FWM-BS processes, modulation
instability and parametric amplification by degenerate and non-degenerate FWM, which can
produce both new and overlapping Fourier components. Only third harmonic generation and
other 3→ 1 and 1→ 3 photon interactions (Scheme 2) are excluded, which are expected to be
minimal due to large wave-vector mismatch. However, in this model, the overlap factor γint must
be treated as a constant across the frequency grid of the simulation to ensure conservation of
photon number. Thus, while the model can capture all relevant parasitic processes, it cannot
handle any differences in their relative strength that are due to the dispersion of the overlap factor.
The last term on the RHS represents SRS, which is described by the convolution integral between
the Raman response function hR(t) and the total intensity of the field. fR represents the delayed
Raman response’s fractional contribution to nonlinear polarization.

In Section 4.1, Eq. (9) and the corresponding equations for the other three field components are
numerically solved to capture the complex propagation dynamics of AFWM in a structured silicon
photonics waveguide, where broad but non-overlapping pulse bandwidths and a highly modulated,
longitudinally varying waveguide structure are employed. The inclusion of an overlap integral for
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Fig. 2. Adiabatic frequency conversion in silicon photonics. (Left) The scheme allows an
efficient broadband conversion of signal to idler waves (or vice-versa) by adiabatically
changing the wave-vector mismatch through a chirped modulation of the width along the
propagation direction. (Right) Momentum matching diagram (see Fig. 1(d)) illustrating
the use of a variable effective momentum, Kg(z), to longitudinally sweep the wave-vector
mismatch. We have shown a near 100% conversion efficiency of an incoming signal spanning
from 1.65-1.72 µm to an idler spanning from 1.78-1.86 µm.

each type of wave-mixing process allows accurate capture of their relative nonlinear coupling
strengths. In Section 4.2, to capture AFWM in tapered optical fibers where the conversion
bandwidth is nearly octave spanning, we find it is necessary to employ a single-field numerical
framework using Eq. (10) to allow for capture of parasitic and unintended phase-matched FWM
processes. Simulations for both platforms are described in the next section.

4. Potential platforms and simulations

In this section, we employ numerical investigations of broadband pulse propagation to illustrate
how AFWM can be achieved in both silicon photonics structures and optical fibers, which are two
platforms with broad interest to science and technology. For illustration of the AFWM concept,
we choose to investigate broadband down-conversion as the application, and find conditions
for efficient conversion in both platforms. We assume a fundamental mode evolution along the
optical waveguides.
Eq. (5) suggests that AFWM can be achieved by longitudinal variation of either the effective

wave-vector mismatch, ∆keff, or the coupling strength, κ. Here, we explore straightforward control
of the adiabatic condition through the waveguide geometry, which presents a controllable knob
for tuning the propagation constants through waveguide dispersion and for tuning the overlap
factors. Thus, in the following examples, we explore the use of longitudinal variations to the
waveguide geometry to achieve the adiabatic condition of Eq. (5). Two distinct approaches
are investigated. In the case of silicon waveguides, an aperiodic quasi-phase matching (QPM)
approach is employed, utilizing cyclic modulations of the waveguide width to modulate the
nonlinear coupling coefficients. This gives rise to a longitudinally varying effective momentum
that can be used to offset the wave-vector mismatch. In the case of optical fibers, a linear variation
of fiber core diameter is used to achieve a monotonic longitudinal sweep of ∆keff through its
effect on the waveguide dispersion.

4.1. AFWM in silicon photonics devices

Thanks to recent technological advances, control of the wave-vector mismatch parameter for
realizing AFWM in silicon photonics might be achieved by several methods. One approach is to
longitudinally sweep the width of the waveguide from one end to the other, thereby producing
an adiabatic sweep of ∆keff from a large positive value to a large negative one (or vice versa)
through the contribution of the waveguide dispersion to the effective refractive index of the
material. A second approach would be to apply a small periodic change in waveguide width
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with a longitudinal chirp to the period (as illustrated in Fig. 2). This approach adds an effective
momentum, Kg(z) = 2π/Λ(z), to the effective wave-vector mismatch, ∆keff, derived from the
resulting modulation of the nonlinear coupling coefficient. Thus, the period of width modulations,
Λ(z), can serve as a highly tunable knob for controlling wave-vector mismatch. We define a
wave-vector mismatch of the modulated process, ∆kmod(z) = ∆keff(z) + Kg(z). In this expression,
we have explicitly included the longitudinal variation of ∆keff, which is due to the cyclic variation
in waveguide dispersion also arising from the modulation in width. As discussed below, the
waveguided structure is designed to ensure that this variation has a negligible magnitude compared
to the longitudinal sweep of ∆kmod imparted by Kg(z).
Our numerical simulations are of Eq. (9) with no further approximations. However, in

order to gain intuition regarding the physical mechanism prominent in the adiabatic width
modulation scheme, the effective momentum from the QPM process can be derived in the
following way. Assume the FWM has a periodically varying nonlinear coupling coefficient
in the longitudinal direction: γint = γavg

[
1 + s · cos

(
Kg(z) · z

) ]
, s < 1. This represents the

nonlinear coupling coefficient of a silicon waveguide with width modulation period Λ(z).
γavg is the average nonlinear coupling coefficient, while s is half the maximum difference in
coupling strength due to the width modulation. Rewriting the cosine in terms of two exponents,
2·cos

(
Kg(z) · z

)
= exp

(
iKg(z) · z

)
+exp

(
−iKg(z) · z

)
, will result in three terms, the unmodulated

average term, and the two modulated terms contributing momenta ±Kg(z). The second term
only further increases the wave-vector mismatch and thus plays an insignificant role for the
intended FWM process. The first term, however, reduces the wave-vector mismatch for the
intended process and offers a controllable wave-vector mismatch offset. The overall wave-vector
mismatch of the modulated process reduces to ∆kmod(z) = ∆keff(z) + Kg(z),Kg(z) = 2π/Λ(z),
which enables the possibility of tuning the ∆kmod(z) by scanning the effective momentum Kg(z).
This can be achieved by longitudinally chirping the waveguide width modulation period Λ(z).

Our numerical simulations were based on the 4th-order Runge-Kutte method. Conversion
efficiency was evaluated by the photon conversion ratio (PCR) parameter, defined as:

PCR =
idler final spectral density
signal input spectral density

×
ωSig

ωIdl
, (11)

where ωIdl and ωSig are the frequencies of each signal-idler pair. This definition is inherently
normalized such that complete conversion of signal to idler without parasitic effects corresponds
to a PCR of 1. We compare the performance of an adiabatic structure with chirped Λ(z) to
a standard QPM approach of using a constant-valued Λ(z) chosen to phase match the carrier
frequency. We find that the adiabatic structure results in a PCR that is larger than 0.9 for a broad
range of frequencies, while the PCR of the standard QPM approach does not converge due to
non-uniform conversion-back-conversion dynamics during propagation.
In the framework of a silicon waveguide compatible for an on-chip device, the minimum

and maximum widths of the waveguide are set as restrictions. We simulated a Si rectangular
waveguide with a tunable width restricted to the range 1.5-1.55 µm and with a constant height of
380 nm. Under these width restrictions, a monotonic sweep of the width of the waveguide would
not yield the desired crossing of zero phase mismatch, and therefore the periodicity of a cyclic
width variation is used as the knob for tuning the total modulated wave-vector mismatch, ∆kmod,
along the waveguide. To realize efficient energy transfer, ∆kmod is varied longitudinally while
fulfilling the condition presented in Eq. (5) (substituting ∆kmod for ∆keff), by varying 1/Λ(z)
from 2/mm to 20/mm. We choose to demonstrate this method by converting a signal ranging in
wavelength from 1650-1720 nm to an idler of 1780-1860 nm. As another design consideration,
in general one must be careful not to use a range of waveguide widths so large as to phase match
unintended (parasitic) frequency conversion processes (as investigated in [43], for example).
This can be avoided by setting the waveguide’s length and modulation limits to be suitable for
only the intended process. In the presented simulation of the silicon photonic waveguide, the
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Fig. 3. Simulation results for an adiabatically modulated Si waveguide and for the standard
periodic QPM approach. (a) Pseudocolor plot of idler intensity (arb. units) versus wavelength
for the standard case of a periodic widthmodulation (i.e., constant-valued Kg) chosen to phase
match only the central carrier wavelength. Efficiency is highly non-uniform and displays
conversion-back-conversion cycles. (b) Pseudocolor plot of idler intensity (arb. units) versus
wavelength for the adiabatic case, which shows nearly full and highly uniform conversion for
all wavelengths included in the simulation. As expected, the locations where each wavelength
has its rapid conversion jump are separated longitudinally. (c) The sum of effective phase
mismatch and added momenta, ∆kmod(z), a multi-valued function corresponding to the
wide range of signal (and corresponding idler) wavelengths. The overall shift is due to the
longitudinal variation of Kg(z), the effective momentum of the modulated waveguide, while
the smaller oscillations are due to the modulation of the propagation constants due to the
changing waveguide dispersion.

phase-matching conditions are restricted such that the modulated total phase mismatch of the
desired scheme (i.e., ωIdl = ωSig + ωA − ωB) crosses zero but is very large for the undesired
scheme (i.e., ωIdl = ωSig − ωA + ωB).

The FWM process is stimulated by the presence of two stronger narrow-band radiation sources
centered at 2000 and 2200 nm. Our numerical simulations employed 1-ps Gaussian pump pulses
with each having as little as 10-pJ energy, easily achieved from an oscillator. In this extremely
low-energy scenario, the signal pulse energies, which are 60 fs at FWHM when compressed to be
Fourier transform limited, can be as high as 0.5 pJ, with simulation results remaining the same
(i.e., the conversion efficiency is > 90% for all wavelengths, ). Our simulation results remain the
same when pump and signal pulses are scaled together to much higher energies, for example
with both pump pulses stretched to 5 ps with an energy of 10 nJ per pulse and with a signal
pulse stretched to 500 fs with a pulse energy as high as 1 nJ. The simulated results presented
in this section are for 1-ps, 10-pJ Gaussian pump pulses co-propagating with a 60-fs, 0.1-pJ
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Fig. 4. (a) Integrated idler and signal powers during propagation in periodic and aperiodic
(adiabatic) waveguides, illustrating signal-to-idler energy transfer. For the adiabatic evolution
there is convergence of energy transfer from signal (blue) to idler (orange), while the
conventional QPM case (gray, purple) shows unwanted back-conversion with efficiency that
is non-uniform and highly sensitive to the initial conditions. (b) Efficiency vs. propagation
length for various idler wavelengths in the adiabatic waveguide (corresponding to cross-
sections of Fig. 3(a)). Illustrating evolution of an adiabatic nature, convergence is apparent
for each wavelength, with rapid conversion taking place at a different location corresponding
to the zero-crossing of the QPM wave-vector mismatch.

Gaussian Signal pump pulse. The group dispersion of our waveguide was analyzed according to
the method of [44]. The dispersion obtained does not have a zero-dispersion wavelength (ZDW)
between the fields and accurately matches previous reports [45], with group dispersion ranging
from -1500 to -1000 [ps · km−1 · nm−1].

For a waveguide with no modulation of width (results not shown), the wave-vector mismatch
is always large and the conversion efficiency is poor (PCR < 0.04). For the waveguide with width
modulated periodically to achieve QPM of the central idler wavelength (i.e., the conventional
QPM approach), the efficiency is non-uniform and is highly sensitive to initial conditions,
resulting in an output that is selective in wavelength [Fig. 3(a)]. In contrast, for the AFWM
(adiabatic QPM) structure, all wavelengths gradually converge to a final state value close to
full efficiency [Fig. 3(b)]. Induced oscillations in phase mismatch can been seen in the inset
of Fig. 3(c). These oscillations, which are also present for the conventional QPM case, are the
manifestation of the change in effective index due to modulation in that particular step. The width
of the plotted modulated wave-vector mismatch is due to the broad bandwidth of the signal,
since ∆keff is wavelength dependent and takes a slightly different value for each wavelength. In
addition, the QPM wave-vector mismatch is shifted from zero due to the XPM term in ∆keff.
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Figure. 4(a) illustrates the total conversion efficiency along the waveguide for a signal
wavelength range spanning from 1650 to 1720 nm. As can be seen, pulses are converted with
very high efficiency and converge to a final value, whereas the efficiency of the conventional
QPM approach does not converge due to back-conversion. Furthermore, the intensities during
propagation of the broadband signal and idler in the adiabatic frequency conversion scheme
exhibit a robustness and superiority of power transfer when compared to the conventional QPM
periodic scheme. Energy is shifted in an adiabatic manner and converges to a final state. In Fig.
4(b), the idler intensity is plotted for selected wavelengths in order to emphasize the convergence
of the adiabatic solution to a final state for all wavelengths. It is worth noting that this type of
structure can accommodate the conversion of a different idler range by an appropriate change
to the designed width modulation periods, i.e., such that ∆kmod will contain a zero-crossing for
each signal-idler pair while fulfilling Eq. (5).

4.2. AFWM in step-index fibers

In this section, we investigate the feasibility of AFWM frequency conversion in the simplest
and most common fiber platform, step-index optical fibers (SIF). To achieve the longitudinal
variation in ∆keff needed for AFWM, we explore the use of a fiber taper to longitudinally sweep
the waveguide dispersion contribution to the propagation constants. Our goal is to employ a long
enough fiber with an adiabatic taper rate satisfying Eq. (5) to achieve efficient AFWM frequency
conversion for an infrared bandwidth approaching a full octave.
As before, we focus our investigation on FWM Scheme 1 from Fig. 1(a). In the application

modeled below, the second harmonic of PumpA is used as PumpB. A signal with its wavelength
between PumpA and PumpB is used to generate an idler wave with a longer wavelength than the
three input waves. Given the wavelengths of typical modern pulsed lasers, this scheme would be
convenient for near-IR and mid-IR generation. We investigate the cases where ωA corresponds
to 1.03, 1.55, or 2.0 µm. For applications in solid-core fibers involving four well-separated
frequencies, the typical beam intensity (as limited by the laser damage threshold) is usually low
enough to make the contribution to wave-vector mismatch from nonlinear phase modulations,
ε0χ

(3)γint
2 (ωBPB − ωAPA), much smaller than that from the propagation constants βi (i.e., the

intrinsic wave-vector mismatch). Therefore, we approximate ∆keff ≈ βA + βSig − βB − βIdl, and
explore the conditions for which ∆keff = 0.
We consider a fiber with only one ZDW, as is the case for most commonly used SIFs. As is

typically the case for FWM-BS processes, a symmetric placement of the four mixing frequencies
around the ZDW enables phase matching [35,43]. As shown below, while phase matching can be
achieved in other configurations, the broadest bandwidth is achievable in symmetric configuration,
which is a successful approach even in the case of FWM frequencies separated by multiple
octaves. Plots of propagation constant β against optical frequency ω are shown in Fig. 5 for
PumpA wavelengths corresponding to (a) Yb-doped, (b) Er-doped, and (c) Tm-doped fiber lasers,
in either standard silica fiber, ZrF4 fiber (Thorlabs P1-23Z models), and InF3 fiber (Thorlabs
P1-32F models), respectively. We define average propagation constants βM1 =

(
βA + βSig

)
/2

and βM2 = (βB + βIdl) /2. Achieving ∆keff = 0 thus requires βM1 = βM2 . If all four mixing waves
are located on one side of the ZDW [Fig. 5(a)], the condition βM1 = βM2 cannot be achieved, a
consequence of the group-velocity dispersion β′′ = d2β/dω2 > 0 for all frequencies. For typical
single-mode fiber core radii (∼2-8 µm), the ZDW (∼ 1.27 µm) is longer than any wavelength of
the four waves involved, and there is no phase matching for a wide idler range, as shown in Fig.
5(d). A similar conclusion can be drawn if all four waves lie within the β′′ < 0 region. In contrast,
if one wave is on the opposite side of the ZDW with respect to the other three waves [Fig. 5(b)],
phase matching becomes possible, but only within a narrow range of parameters. As seen in Fig.
5(e), narrowband phase-matching conditions are achieved for only a small range of core radii.

Finally, if there are two waves on each side of the ZDW [Fig. 5(c)], the chance that βM1 = βM2
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Fig. 5. The relative positions of the ZDW and optical wavelengths determine the likelihood of
a broad phase-matching bandwidth for AFWM in SIF. Top row: Propagation constants of the
four mixing waves where ωA +ωSig = ωB +ωIdl and 2ωA = ωB, for three cases. The y-axis
lies at the ZDW. Achieving ∆keff = 0 requires βM1 = βM2 , where βM1 = (βA + βSig)/2
and βM2 = (βB + βIdl)/2. Bottom row: wavevector mismatch versus fiber core radius and
idler wavelength for laser parameters corresponding to each case. (a),(d) Case for a standard
silica SIF where all four waves are on one side of the ZDW. No phase matching is possible.
(b),(e) Case where one frequency is on the opposite side of the ZDW from the other three.
Narrowband phase matching under limited conditions is possible. The black curve represents
contour zero (∆keff = 0). (c),(f) Case where there are two waves on each side of the ZDW.
Phase matching is probable in this case, and gives rise to conditions where an octave-spanning
idler wave covering 3.5-7 µm can be phase matched in an AFWM process in a tapered fiber.

becomes much higher. As seen in Fig. 5(f), an octave-spanning range of idler wavelengths can
be phase matched over a core radius range spanning 3.5-7 µm. In an untapered fiber, ∆keff will
equal zero for only one idler frequency, and the conversion bandwidth will be limited to the
standard phase-matching bandwidth. In contrast, a tapered fiber with an adiabatic taper rate
according to Eq. (5) over this range of core radii could be used to achieve AFWM over the
full octave-spanning wavelength range, offering a route to dramatically increase the conversion
bandwidth. We conclude that a ZDW lying between pairs of interacting wavelengths maximizes
the possibility for a broad AFWM conversion bandwidth in a tapered SIF.

To examine AFWM in tapered SIF with ultrashort pulses, we numerically solved the (1 + 1)-D
GNLSE representing Scheme 1

(
ωA + ωSig = ωB + ωIdl

)
, Eq. (10), as discussed in Section 3.

The frequency grid used in the simulation covers a multi-octave bandwidth spanning from 450
nm to 9 µm. Analytical eigenvalue equations for SIF are used to determine the longitudinally
varying propagation constant β (z, ω) [37]. We found SRS to be negligible due to the short length
of the fiber simulated and the low Raman gain for fluoride fibers with picosecond transform-
limited (TL) pump durations [46]. Therefore, SRS terms in Eq. (10) were ignored. The GNLSE
numerical simulation captures both intended and unintended FWM processes, giving guidance
for choosing parameters that deliver optimal AFWM without exciting significant parasitic effects
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upon generation of the desired idler wave.
Motivated by its wide potential AFWM frequency conversion bandwidth, we investigated fiber

parameters corresponding to Figs. 5(c) and 5(f). The transparency range of Thorlabs P1-32F
fibers is listed as 310 nm to 5.5 µm (for attenuation < 3 dB/m). Therefore, we expect a lower than
0.25 dB attenuation (> 95% transmission) in this spectral range if a short (∼cm) fiber is used.
We chose intensity, chirp rate, and fiber length to optimize the generation of mid-IR light by
AFWM while maintaining an insignificant amount of parasitic effects. The simulated fiber has a
core radius taper from 4.5 µm to 3.55 µm over a length of 5 cm, resulting in a phase-matching
range for idler wavelengths covering 4-7 µm, although we only expect high transmission for
wavelengths up to 5.5 µm. According to our calculation, a peak power of >180 kW for each of
the two pumps would fulfill the adiabatic condition, Eq. (5), across this entire bandwidth. We
note, while we employed a linear taper rate in this study, a nonlinear taper could be employed as
well. In either case, a rule for achieving high conversion efficiency is adherence to Eq. (5) for
every frequency in the pulse, where Eq. (5) is satisfied for each frequency independently and is
evaluated locally in the fiber where its wave-vector mismatch crosses zero.

The input pulse characteristics were chosen to be realizable using common fiber laser technology.
The pumps were chosen as a 10-ps full-width at half maximum (FWHM) TL Gaussian pulse
at 2.0-µm wavelength and its second harmonic, a 7.1-ps FWHM TL Gaussian pulse at 1.0 µm,
each having peak power of 110 kW (which is slightly lower than the ideal power and was chosen
to avoid strong parasitic FWM found at higher peak powers). We chose to employ picosecond
pump pulse durations because of three reasons. 1) The group-velocity walk-off between the
pump and signal pulses through the simulated fiber is ∼ 1 ps. 2) Pumps with picosecond TL
durations excite fewer parasitic nonlinear effects compared to femtosecond pulses, due to their
narrower bandwidth. We note that the pump bandwidth is broadened due to SPM/XPM during
the interaction, and care must be taken to keep it appropriately narrow (i.e., to avoid parasitic
effects that can be identified through the simulation) during the interaction. 3) Given the peak
power needed to fulfill the adiabatic condition, the fiber damage threshold prevents the use of
pulse durations� 10 ps. The signal pulse was a chirped 2-ps FWHM Gaussian pulse spanning
1360-1440 nm, with a peak power of 10 kW. The corresponding idler range spans 4250-5140
nm. We simulated the nonlinear propagation of the three waves through the optical fiber, each in
their respective fundamental mode. At each longitudinal fiber position, the nonlinear coupling
coefficient (overlap factor) γint in Eq. (10) was evaluated from the overlap integral calculated
based on the effective areas determined by finite element method at the center frequencies of
the four waves of the intended AFWM. The obtained value was used for a constant γint over
the entire simulated frequency grid at the corresponding longitudinal position, while its value
changes as a function of tapered fiber core diameter as the waves propagate through the full fiber
length.

Figure. 6 shows numerical solution of the (1+1)-D GNLSE for the parameters discussed above.
Figure. 6(a) shows the power spectral density evolution of the 4-5.5 µmmid-IR region as the three
input pulses propagate through the 5-cm-long tapered fiber. The generated idler wave inherits the
Gaussian spectral profile of the signal wave. PCR evolution for selected wavelengths is shown in
Fig. 6(b). Each mid-IR wavelength is produced with evolution dynamics typical of RAP, and
with longitudinally varying conversion position, as expected due to the variation in core size
where the ∆keff = 0 condition is encountered for different wavelengths. The PCR at the fiber exit
is shown in Fig. 6(c) for the full idler bandwidth, spanning 4.2-5.2 µm, and is above 0.7 for the
full range. The generated mid-IR pulse is centered at 4.7 µm and has an output energy of 5.5 nJ,
with chirped ∼2 ps FWHM duration and ∼3 kW peak power. If fully compressed to its ∼43 fs TL
duration, the sub-3-cycle mid-IR pulse can reach a peak power of 94 kW, thus indicating a new
route to high peak power, fiber-based few-cycle pulse sources.
To further investigate the adiabatic character of the conversion and the influence of parasitic
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Fig. 6. Mid-IR generation via AFWM in InF3 SIF with core radius tapered from 4.5 to 3.55
µm over a 5-cm length. (a) Mid-IR beam spectral density evolution along the propagation
axis, given a Gaussian input signal spectrum. AFWM can be observed for 4.2-5.2 µm. (b)
Evolution of PCR for selected wavelengths. (c) PCR at the fiber exit vs. idler wavelength.
Due to parasitic FWM amplification of the input signal, PCR determined by solution of the
GNLSE is higher than that predicted by the cw simulation and includes values greater than
1. (d) Comparison between the spectral phases of the output mid-IR and input signal waves
indicates the coherence of the generated wave. The idler’s phase consists of a conversion
phase due to the wavelength-dependent conversion position (which is largely an effective
third-order dispersion) plus the initial linear chirp (parabolic phase) of the signal pulse.

FWM, Fig. 6(c) includes for comparison both an analytical calculation of the expected conversion
efficiency based on Landau-Zener theory of adiabatic transition probability [47,48], and numerical
integration of the GNLSE for each signal-idler pair under the approximation that they are cw and
that the AFWM interaction of Scheme 1 is the only FWM interaction. The cw simulation thus
excludes pulse propagation, parasitic FWM, and SPM/XPM. It can be observed from Fig. 6(c)
that the PCR expected from Landau-Zener theory matches the cw simulation well. Oscillations
in PCR in the cw simulation result from non-apodized coupling (low-amplitude conversion-
backconversion cycles) between signal and idler waves still existing at the fiber exit, as observed
in Fig. 6(b). The PCR obtained from the full GNLSE simulation also matches the cw result
well, but with slightly higher efficiency attributed to the parasitic process ωA + ωB = ωSig + ω

∗,
where ω∗ is an unintended generated optical frequency. This parasitic process amplifies the input
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signal by the strong pumps as if an optical parametric amplifier, resulting in a slightly amplified
signal wave before its conversion to mid-IR takes place by AFWM. This process produces a
PCR even greater than 1 for some wavelengths, a feature that potentially could be exploited in
an application. However, fast oscillations in PCR appear at the short wavelength edge in Fig.
6(c) as a result of interference between the generated AFWM idler and parasitic cascaded FWM
processes. We note that the relative weight of parasitic effects may be slightly higher than this
model predicts, since the overlap factor for the intended AFWM process is slightly lower than
that for FWM processes involving only visible and near-IR wavelengths.

Finally, the spectral phases of the input signal and output idler waves are presented in Fig. 6(d),
showing coherent idler generation through AFWM. The quadratic phase of the chirped input
signal is transferred to the mid-IR idler. An effective third-order dispersion can be observed,
which is due to the longitudinally varying wavelength-dependent conversion position.

5. Summary and outlook

In this article, we introduced the concept of adiabatic four-wave mixing frequency conversion,
a concept that should enable tunable, broadband, efficient, robust, and energetic frequency
conversion in cubic nonlinear media for a broad range of applications. Theory and formula
describing the analogy of RAP in SU(2)-symmetric FWM schemes were presented, culminating
in the presentation of an adiabatic condition for FWM frequency conversion. Illustrating the wide
applicability of the concept, two very different waveguided optical platforms were explored, using
numerical modeling that captures the effects of broadband pulse propagation with longitudinally
changing waveguide dimensions and a wide range of phase-matched nonlinear processes.

In silicon photonics devices, AFWM frequency conversion could be used for on-chip devices for
applications such as conversion between lossless and dispersionless bands, sensing, computational
manipulations and encryptions. A possible realization for an on-chip waveguide was suggested
and simulated, with standard height for a silicon platform as well as standard sized widths,
allowing a structure that could be incorporated easily as an on-chip device. We demonstrated a
solution that suggests an efficient, robust, and broadband frequency conversion, with a bandwidth
of up to 70 nm centered at 1820 nm, which is the first solution to our knowledge for such
wide spectral widths. We have demonstrated this via simulation for an incoming broadband
signal centered at 1680 nm and an outgoing idler of the same bandwidth centered at 1820 nm,
with a PCR over 0.9. Similar structures could be easily designed to fit any desired signal-idler
wavelength pairs desired on-chip without changing the overall size and geometry of the device.

In a step-index fiber platform, AFWM can be realized by using a tapered fiber. It was shown
that a ZDW positioned in the middle of the four wavelengths is optimal for broadband phase
matching of AFWM frequency conversion. A tapered InF3 fiber was numerically simulated with
a (1+1)-D nonlinear Schrödinger equation model. A broad 4.2-5.2 µm mid-IR bandwidth with
flat PCR close to 1 was demonstrated. The proposed AFWM experimental parameters can be
realized potentially in an all-fiber based system pumped by a Er-doped master oscillator. Pulse
generation at the 2-µm pump wavelength with similar pulse duration and peak power has been
reported, using a multi-stage thulium-doped fiber amplifier chain [49]. Pulses with bandwidth and
center wavelength corresponding to the signal (1360-1440 nm, 2-ps chirped pulses) have been
demonstrated using soliton self-frequency shift and dispersive wave generation using a 1550-nm
Er-doped fiber source and highly nonlinear fiber [50]. The entire pulsed laser system might
consist of an Er-doped fiber master oscillator front end used to pump soliton self-frequency shift
as well as supercontinuum generation in highly nonlinear fiber to generate a 2-µm component
that can be used to seed a multi-stage thulium-doped fiber amplifier. The high-energy 1-µm pump
can be obtained by second harmonic generation of the 2-µm pump, or, alternatively, by using the
supercontinuum to seed a multi-stage Ytterbium-doped fiber amplifier. The source and AFWM
stage could therefore be an all-fiber based system.
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While the simulated SIF platform can be tuned for the phase matching of other frequencies by
an adjustment of the material type and dimensions of the tapered fiber, other fiber platforms may
offer advantages for a specific spectral range and for other power levels. For example, our initial
calculations predict hollow core fibers, including hollow core PCFs and microstructured fibers, to
be potential platforms for AFWM. These fibers can handle orders-of-magnitude higher intensity
than SIF due to their gaseous core, and typically have a much wider transmission window than
solid core fibers [51]. Furthermore, the dispersion of hollow core fibers can be flexibly controlled
by fiber geometry design, and thus may offer a flexible approach to the design of a waveguide
that fits the needs of a particular application. The introduction of gases into holey fibers can
also be used to tune their nonlinearity and dispersion, and pressure gradients might be used as
another means for controlling the longitudinal variation of parameters used to fulfill the adiabatic
condition. Therefore, we expect HCFs to provide an important platform for high power and high
energy frequency conversion through AFWM processes.
We note that the FWM-BS scheme simulated in the examples of Section 4 is widely used

for applications ranging from tunable wavelength conversion in the telecom band to quantum
frequency conversion [35,52–54], and recent work has reported broadband frequency conversion
with a preserved pulse shape [43]. In recent years, FWM-BS has become an actively studied
scheme for low-noise preparation and translation of single-photon states [36, 55–57]. In each
of the above contexts, use of the adiabatic counterpart of the FWM-BS scheme may bring
significant value by broadening the effective conversion band while also providing robust and
high conversion efficiency and a linear phase transfer.
More generally, the ubiquitous presence of cubic nonlinearity potentially opens the AFWM

concept to any waveguided optical platform that can handle the typical field strengths needed for
FWM. While not all media can be expected to offer an opportunity for broadband conversion in a
single device, not all relevant applications would require it. One might envision, for example, a
frequency domain wavelength multiplexing scheme with a device tailored for each channel. In
such an application, the robust and efficient qualities of adiabatic conversion – back-conversion
free and signal intensity independent conversion with near-100% efficiency – could be beneficial.
The expanded bandwidth of AFWM compared to conventional FWM can be expected to have
a strong impact in many areas, such as up-conversion detection for sensing, spectroscopy, and
imaging, or for the efficient generation of a hyperspectral range of wavelengths in an ultrafast laser
system, potentially covering frequencies from UV to far-IR. Moreover, the linearized transfer
function of amplitude and phase of a 1-to-1 photon up-conversion or down-conversion scheme
such as this when pump pulse bandwidths are significantly narrower than those of the signal
and idler – already demonstrated for octave-spanning conversion in adiabatic three-wave mixing
processes [12] – may be used to greatly simplify dispersion management, expand the effective
bandwidth of pulse shapers, or be utilized to preserve information in sensing, communications,
or encryption applications.

Funding

United States-Israel Binational Science Foundation (BSF) (2014360); Israel Science Foundation
(ISF) (1433/15); PAZY foundation (PAZY-YS16-9002); Air Force Office of Scientific Research
(FA9550-13-1-0159).

Acknowledgments

X. D. and J. M. thank Logan Wright, Noah Flemens and Walter Fu for helpful discussions.

                                                                                                    Vol. 26, No. 20 | 1 Oct 2018 | OPTICS EXPRESS 25601  




