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Abstract

Current models for flu-like epidemics insufficiently explai 1 mu.*i-cycle seasonality. Meteorological
factors alone, including the associated behavior, d 1.t wredict seasonality, given substantial climate
differences between countries that are subjer < to " {u-like epidemics or COVID-19. Pollen is
documented to be allergenic, it plays a ro.> in immuno-activation and defense against respiratory
viruses, and seems to create a bio-aeroso’ th at lowers the reproduction number of flu-like viruses.
Therefore, we hypothesize that polier. may explain the seasonality of flu-like epidemics, including
COVID-19, in combination with m. *eorological variables.

We have tested the Pollen-.-lu S :asonality Theory for 2016-2020 flu-like seasons, including COVID-
19, in the Netherlands, with .ts 17.4 million inhabitants. We combined changes in flu-like incidence
per 100K/Dutch residents (code: ILI) with pollen concentrations and meteorological data. Finally, a
predictive model was tested using pollen and meteorological threshold values, inversely correlated to

flu-like incidence.

We found a highly significant inverse correlation of r(224)=-0.41 (p < 0.001) between pollen and
changes in flu-like incidence, corrected for the incubation period. The correlation was stronger after
taking into account the incubation time. We found that our predictive model has the highest inverse

correlation with changes in flu-like incidence of r(222) = -0.48 (p < 0.001) when average thresholds



of 610 total pollen grains/m?, 120 allergenic pollen grains/m?, and a solar radiation of 510 J/cm? are
passed. The passing of at least the pollen thresholds, preludes the beginning and end of flu-like
seasons. Solar radiation is a co-inhibitor of flu-like incidence, while temperature makes no difference.

However, higher relative humidity increases with flu-like incidence.

We conclude that pollen is a predictor of the inverse seasonality of flu-like epidemics, including

COVID-19, and that solar radiation is a co-inhibitor, in the Netherlands.
1. Introduction

Current models for flu-like epidemics insufficiently explain multi-cycic seasonality. Meteorological
factors alone do not fully explain the seasonality of flu-like epicemics (Tamerius et al., 2011) or
COVID-19 (Yao et al, 2020). Pollen is documented to be a'!~rguic (Klemens et al, 2007;
Rosenwasser, 2011; Howarth, 2000), and it plays a role in im, ~uno-activation (Brandelius et al, 2020).
Furthermore, allergic diseases are absent as a comerL 1 ¢ndition of COVID-19 (Zhang et al., 2020;
Dong et al., 2020). Explaining this, Licari et (. (: 020, found that allergic children have a significantly
higher eosinophil count than COVID-19 atients, whereby eosinophils are known to clear viral load,
and contribute to the recovery from vire ! i . tions, supposedly including COVID-19 (Lindsley et al,
2020). A further explanation is prov.ted uy Jackson et al. (2020), who proved that allergic
sensitization and allergen natural «¥pusure are inversely related to membrane-bound angiotensin-
converting enzyme 2 (ACE-2) wxpression, whereby it is known that severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-. ) uses the ACE-2 receptor to gain cell entry, leading to COVID-19 (Wan
et al., 2020). Finally, histamine and IgE serum levels are elevated in allergic rhinitis and asthma
patients — an allergenic disease that is also underreported as comorbid condition for COVID-19 —
which downplay other anti-viral responses (plasmacytoid dendritic cells and interferon-c«) but might
thus prevent the cytokine storm and hyper-inflammation that typically mark severe respiratory
diseases, including COVID-19 (Carli et al., 2020). Similarly, it is reported that pollen might suppress
interferon-A1 and -A3 and pro-inflammatory chemokine responses in non-allergic subjects and it is
found to be correlated to rhinovirus-positive cases (Gilles et al, 2020), but not to other flu-like virus-

positive cases (Nivel.nl, 2020). It is hypothesized that exposure to and immunization for such ordinary



cold viruses, especially corona cold viruses, could provide some protection against COVID-19, in the
same way that the uptake of the common influenza vaccine seems to be inversely correlated to

COVID-19 deaths (Marin-Hernandez et al., 2020).

Recently, we identified pollen bio-aerosol as a discrete seasonal factor in inhibiting flu-like epidemics
during the period 2016 to 2019 in the Netherlands (Hoogeveen, 2020). In this epidemiological study,
we found strong inverse correlations between allergenic pollen concentrations and hay fever on the
one hand, and flu-like incidence on the other. The study was based on the persistent observation that
the pollen and flu season predictably alternate each other in moderate .'imate zones, and the absence
of sufficient meteorological explanations (Tamerius et al., 2011). W~ fu' ther observed that the passing
of pollen threshold values of around 100 allergenic pollen gra'ns, ™, reliably mark the onset and
decline of moderate flu-like epidemic lifecycles, and thus migr.* be used as predictor. Such a
concentration of allergenic pollen makes sense, as in ~:> aoverview of real-life studies, clinical pollen
threshold values are observed between 1 and 400 ¢ -ains/m®, whereby the first symptoms are typically
observed in the range of 1 — 50 grains/m® (De *V:ger et al, 2013), depending on the country, period

and vegetation, and, probably, the susceptin.'ity of the subjects to allergens.

The seasonality of respiratory viral i ifec*ions has been recognized for thousands of years in temperate
regions (Moriyama et al., 2020). Secn in more in detail, virologists observed that cold, and flu-like
epidemics (e.g., influenza ar.! ~0, una-caused) “go away in May” in the Northern Hemisphere, while
emerging in the Southern \ ‘amisphere with its opposite seasonality, only to re-emerge in the Northern
Hemisphere during its next autumn and winter, but in a slightly mutated form. Furthermore, all new
flu-like pandemics since 1889 typically emerged in the Northern Hemisphere at the tail-end of
respective flu-seasons (Fox et al., 2017). Clearly, the current COVID-19 pandemic is no exception.
The emergence of COVID-19 and other pandemics at the tail-end of the flu season makes sense. It
takes time for a spontaneous new crossover virus with a sufficiently high reproduction number (Ro) —
for SARS-CoV-2 it is estimated to be initially around 3 (Liu et al., 2020) — to develop from patient 0

to become a fully-fledged pandemic during the flu season in the Northern Hemisphere. The Northern

Hemisphere, with its larger and denser populations, is more likely to be the initial breeding ground for



a new flu-like pandemic than the Southern Hemisphere. Furthermore, Fox et al. showed that most flu-
like pandemics are multi-wave, whereby the initial wave at the tail-end of flu season is typically short-
lived. This gives rise to the idea that COVID-19 is also subject to such multi-wave seasonality (Kissler
et al., 2020), because the distribution of community outbreaks is consistent with the behavior of
seasonal respiratory viruses (Sajadi et al., 2020), and has a short wave at the tail end of the 2019/2020

flu-like season in the Northern Hemisphere in the temperate climate zone.

Numerous studies try to explain flu-like seasonality with meteorological factors such as sunlight,
including UV radiation (Schuit et al., 2020), temperature and humidit: ‘Chong et al., 2020; Shaman et
al, 2011). However, Postnikov (2016) concluded that ambient temp.ratt' e is not a good predictor for
influenza seasonality in the Netherlands, and inconsistent corr:le:ior.s also exist for the relationships
between COVID-19 and temperature (Toseupu et al, 2020 Xie & Zhu, 2020; Ma et al 2020; Qi et al,
2020). Furthermore, findings about the relationships h~tween humidity and influenza (Soebiyanto et
al., 2014), and humidity and COVID-19 (Ahmadi - t al, 2020; Ma et al, 2020; Qi et al, 2020) are
equally inconsistent. Although UV light is de.-ir.iental for the flu-like virus aerosol under laboratory
conditions, associated with immuno-activau>n (Abhimanyu & Coussens, 2017; Tan & Ruegiger,
2020) and circadian rhythms regulatir~ [u7, immunity (Nosal et al., 2020), the onset of the flu season,
from mid-August in the Netherlar-1s, ccincides with an annual peak in hot, sunny days and is still in
the middle of the summer season. £.ccording to Yao et al. (2020), for a decrease of COVID-19
infections neither high '_*\/ .=l :s nor high temperatures are good predictors. The contradictory
findings related to COVIC .9, understandably based on the analysis of a limited part of the year and
disease cycle, might be partly due to sub-seasonal bias and unstandardized data-collection methods.
By sub-seasonal bias we mean that if only a part of a season or cycle is analyzed, overly specialized

conclusions can be drawn that cannot be generalized to the whole season or cycle.

Nevertheless, these meteorological variables are known factors in flowering and pollen maturation and
dispersion. Meteorological variables, such as increased solar radiation and temperature — among others
the absence of frost — not only trigger flowering and pollen maturation, they also affect the pollen bio-

aerosol formation: dry and warm conditions stimulate pollen to become airborne. Rain, in contrast,



makes pollen less airborne, and cools the bio-aerosol down. Very high humidity levels (RH 98%) are
even detrimental to pollen (Guarnieri, 2006). An RH 98% effect on pollen could thus provide an
alternative explanation as to why flu-like incidence in tropical countries is higher during the rainy

season, and reduced during the rest of the year.

We hypothesize that pollen bio-aerosol has an inverse effect on flu-like incidence, including COVID-
19 (see Figure 1), whereby pollen is known to be triggered and influenced by meteorological
variables, which can then jointly explain the seasonality of flu-like incidence. This indirect
explanation of the pollen effect is based on the fact that pollen bio-aer .~ol and UV light exposure lead
to immuno-activation, and sometimes allergic symptoms, which see™ tc protect against flu-like
viruses, or at least severe outcomes from them. The indirect p.lic~ e.fect is explained by the spread of
pollen bio-aerosol under sunny and dry conditions. Furthet, it . unknown how viral bio-aerosol and
pollen bio-aerosol interact with each other in the air, 4 whether anti-viral phytochemicals in pollen

could then play a role in an alternative explanatio::

To further understand the impact of pollen as a1, ~nvironmental factor influencing the life cycle of flu-
like epidemics, the objective of this stucy = to determine the correlations of pollen and meteorological
variables with (changes in) flu-like i icic~nce and develop and test a discrete predictive model that
combines pollen and meteorologica: co-inhibitors. Our main hypothesis, therefore, is that pollen is the
missing link, jointly explair’:- 2 v.iin certain meteorological variables, flu-like seasonality, and that a
compound threshold basec factor — combining detected flu-inhibitors — is a good unified predictor of
such seasonality. Regarding COVID-19, we have limited ourselves to observing whether or not
COVID-19 at the tail-end of the 2019/2020 flu-like season is able to break with the flu-like seasonality

pattern.
2. Methods

To study the relationship between pollen and flu-like incidence in the Netherlands, we used the public
datasets of Elkerliek Hospital (Elkerliek.nl) about the weekly allergenic, low-level allergenic and total

pollen concentrations in the Netherlands in grains/m?, whereby for 42 types of pollen particles the



numbers are counted and averaged per day per 1m? of air. The common Burkard spore trap was used,
through which a controlled amount of air was ingested. The applied classification and analysis method
conforms to the EAACI (European Academy of Allergology and Clinical Immunology) and the EAN
(European Allergy Network) standards. Allergenic pollen includes nine types of particles that are
classified as moderate (Corylus, Alnus, Rumex, Plantago and Cedrus Libani), strong (Betula and
Artemisia), or very strong allergenic (Poaceae and Ambrosia). Additionally, we included low-level
allergenic pollen concentrations in addition to the allergenic ones because we assume that they may
also have effects. Low-level allergenic pollen includes the other 33 p «rticles that are classified as non-
allergenic to low-level allergenic (Cupressaceae, Ulmus, Populus, "-rax™nus, Salix, Carpinus,
Hippophae, Fagus, Quercus, Aesculus, Juglans, Acer, Platanus Pins, llex, Sambucus, Tilia,
Ligustrum, Juncaceae, Cyperaceae, Ericaceae, Rosaceae, "..*ar.zeae, Ranunculaceae, Apiaceae,
Brassicaceae, Urtica, Chenopodiaceae, Fabaceae, Humu'Js, “ilipendula, and Indet). Total pollen
concentration is the sum of the average allergenic ~n. «ov.-level allergenic pollen concentrations.
Advantages of using the total pollen metric e e that there are hardly any 0 values (only 3 out of 266),
and we did not need to limit ourselves to , st parts of the seasonal cycle, which might introduce sub-
seasonal bias into our research. We alsc a,suined that long-distance pollen transport is accounted for,

as foreign pollen will also be counte. hy a pollen measuring station that works all year round.

Furthermore, we used the data ron the Dutch State Institute for Public Health (RIVM.nl) gathered by
Nivel (Nivel.nl) about* .~ex" f'u-like incidence (WHO code “ILI” - Influenza Like IlInesses) reports
at primary medical care le.f, per 100,000 citizens in the Netherlands. Primary medical care is the
day-to-day, first-line healthcare given by local healthcare practitioners to their registered clients as
typical for the Netherlands, with its current population of 17.4 million. The reports relate to a positive
RIVM laboratory test for ILI after a medical practitioner diagnosed ILI after a consultation, whether
that leads to hospitalization or not. The ILI metric is according to a standardized WHO method, given
that ILI data is gathered and compared globally. ILI is defined by the WHO as a combination of a
measured fever of > 38°C, and a cough, with an onset within the last 10 days. The flu-like incidence

metric is a weekly average based on a representative group of 40 primary care units, and calculated



using the number of influenza-like reports per primary care unit divided by the number of patients
registered at that unit. This is then averaged for all primary care units and then extrapolated to the
complete population. The datasets run from week 1 of 2016 up to week 18 of 2020 (n = 226 data
points) to include the recent COVID-19 pandemic at the tail-end of the 2019/2020 flu-like season. To
underpin the relative importance of COVID-19: SARS-CoV-2 has been detected in the Netherlands
since week 9, 2020. According to the figures of Nivel.nl (2020, see Figure 2), from week 13 onward
SARS-CoV-2 is the outcome of the (vast) majority of positive tests for patients at primary care level
with flu-like complaints, and by week 18 100% of positive tests indic afe SARS-CoV-2 (other tested

viruses are five Influenza A and B subtypes, RSV, Rhinovirus and "-nte.ovirus).

Furthermore, we also included meteorological datasets from tt.e >~ al Dutch Meteorological Institute
(KNML.nl), including average relative humidity/day, aver=ge t.mperature/day and global solar
radiation in J/cm? per day as an indicator of UV radiat~n. These datasets were obtained from the
KNMT’s centrally located De Bilt weather station. Next, we calculated the weekly averages for the
same periods that featured in the other datase.> e Bilt is traditionally chosen as it provides an
approximation of modal meteorological pai.meters in the Netherlands, which is a small country.
Furthermore, all major population certare ir the Netherlands, which account for around 70% of the
total Dutch population, are withir. a rau:us of only 60 kilometers from De Bilt. We therefore assumed
in this study that the measurern.~nts irom De Bilt are sufficiently representative for the meteorological

conditions typically ex”,>rie. ez by the Dutch population.

To test allergenic versus low-level allergenic pollen assumptions, against hay fever and pre-COVID-
19 flu-like incidence, we made use of the hay fever index. The hay fever index is defined as the
turnover for over-the-counter hay fever medication, as reported by all Dutch pharmacies to the Dutch
Central Bureau of Statistics (CBS.nl) and based on respective ATC codes (especially RO1A/RO1AC).
This concerns so-called self-medication products which are available without prescription at a
pharmacy, and thus might exclude certain types of medication for which prescription is needed. We
used a dataset from week 1 of 2016 up to week 10 of 2019 (n=166 data points), because no further

data was made available. For the interpretation of our findings, we assumed for the Netherlands a



prevalence of allergic rhinitis that is more or less similar to that in Western Europe, being around 23%,
and frequently undiagnosed (Bauchau & Durham, 2004). Furthermore, it can be noted that the

prevalence of allergic diseases in general in the Netherlands is around 52% (Van de Ven et al, 2006).

Datasets were complete, except that three weekly pollen concentration measurements were missing
(1.3%). This was due to a malfunctioning monitoring station during week 26 of 2016, week 21 of 2017
and week 22 of 2019. These missing measurements appeared to be completely random. We imputed
missing values to avoid bias and maintain power. We used a four-week surrounding average to
estimate the three missing data points and thus avoid breaking lines ir ‘isuals. We checked that the
missing data has no material impact on the results by comparing the e a' erages with the data of
previous years for similar periods, and by observing whether ran.~v¢ from statistical tests had any

effect on outcomes and conclusions.

Regarding the incidence of flu-like symptoms, we cz ¢ .«2*ed the weekly change compared to the
previous week (AILI=ILI;— ILI.;). This was tr “ta..” an indication of the flu-like epidemic life cycle
progression, whereby a decline is interpreted as 20<1 and an increase as Ro>1 (Ro is the reproduction
number of flu-like viruses). Furthermore, .\~ caer, in one time-series metric, for changes in flu-like
incidence as well as for an incubatio 1 p.-iod of up to two weeks, we calculated a three-week moving

average (3WMA) of changes in flu- ‘ike incidence, of which two weeks are forward looking:

WAL lswma= (AILL + ALl + AlLLL,)/3)

Thus, AlLI;wua has on avzrage a one week lag. A general advantage of a moving average is that it
reduces statistical noise. It should be noted that whenever we use the term incubation time, we also
mean to include reporting delay (estimated to be around 4.5 days). We have not assumed delay effects
for meteorological variables or pollen concentrations, so we have not calculated moving averages for

other time series.

Compared with our previous study (Hoogeveen, 2020), there is an overlap in datasets of less than
10%. The datasets are extended by the extension in time, the addition of meteorological datasets and

non-allergenic pollen, and the introduction of newly calculated variables, such as total pollen



concentration, AlLIswwma, the compound predictor and the log10 transformations on pollen, ILI and the

hay fever index.

We formulated the following statistical null hypotheses for falsification.

H1,: there are no inverse correlations for total pollen concentrations with flu-like incidence (corrected

for incubation period).

H2,: there are no inverse correlations between pollen and changes in flu-like incidence (AILI or

corrected for incubation time: AlLl3yma).

H3,: there is no predictive significance of a discrete model’s compc ind salue, based on thresholds for

pollen and meteorological co-inhibitors, related to changes in *Iu ik incidence (AlLlzwwma).

To understand the role of meteorological variables, to cheu.- wt.ether —in our datasets —
meteorological variables show their well-established et acts on pollen as assumed, and to select co-

inhibitors:

H4,: meteorological variables — solar rac’ation, teinperature and relative humidity — have no effect on

pollen and/or flu-like incidence change AL !awma).

Low-level allergenic pollen is sorv.etn..~s known to have a slight allergenic effect. To understand how
to interpret adding none-to-lo.*-lev i allergenic pollen to the total pollen metric, we wanted to verify
their effects on the hay fave~ inrex:

H5,: low-level allergenic r-.len has no effect on hay fever and (changes in) flu-like incidence.

Note that with the exception of H5, all hypotheses are related to potential causality: the temporal
sequentiality (temporality) of the respective independent variables, and flu-like incidence corrected for
incubation period. Whenever we refer to temporality, we mean to indicate that the datasets behave as
if there is causality, on the understanding that statistics alone cannot prove causality in uncontrolled

settings.
Statistical analyses

Variables are presented with their means (M) and standard deviations (SD).



We calculated correlation coefficients to test the hypotheses and to assess the strength and direction of
relationships. As a sensitivity analysis, we also calculated the bootstrapped correlation coefficients.
We used the full datasets, to avoid sub-seasonal bias, and by extending the number of years the
distortions by incidental and uncontrolled events are supposed to be minimized. However, as a second
sensitivity analysis, we removed from the datasets the autumn weeks between 42 and 50, which
typically show low pollen concentrations of up to 20 grains/m®, which are applied to analyze the main
outcome (H2,). Further, as a third sensitivity analysis we calculate correlations per individual time lag

included in AlLIl3yma in relation to H2,.

Next, linear regression (F-test) on identified inhibitors and interacti.ns v/as used descriptively to
determine whether the relationship can (statistically) be descrided a< linear, and to determine the
equation using estimates and intercept values, and produc< pro. ability, significance level, F-value, and
the Multiple R squared correlation to understand the r=~dictive power of the respective inhibitor.
Standard deviations and errors, and degrees of freclom (DF) were used as input for calculating the
95% probability interval. We have reported n. t+e text the outcome of statistical tests in APA style,
adapted to journal requirements. For relatio,.~hips that appear non-linear — logarithmic or exponential
— we have used the log10 function to *an.frrm the data if that makes the relationship appear linear,
before re-applying linear regressi~n. W have also used the log10 transformed datasets for the

calculation of correlation coef. ~iers, to correct for skewness.

Finally, we created a simp.:~. uiscrete model resulting in one compound value, using selected flu-like
inhibitors. This was to determine the optimal average threshold values for these inhibitors, which have
the highest joint correlation with changes in flu-like incidence (IL13wma). We applied linear regression
(F-test) to understand the predictive power of the compound value, and to determine the linear
equation when significant. By constructing one compound, independent variable, we covered for
collinearity or interaction effects between joined co-inhibitors. In our analysis, we based the
compound value on three selected thresholds. For example, when one threshold value is passed, this
leads to a compound value = 1, and when all three threshold values are passed, this leads to a

compound value = 3. Therefore, the compound values are in the range of [0, 3].



The compound value equation can be expressed as shown below, where iv = the respective
independent variable that acts as inhibitor of flu-like incidence, and k relates to the respective
calculated threshold value. For each respective threshold passed (iv > k), +1 is added to the compound

value (CV):
CV= Y7 (v > ko) > 1 A (ivg < ky) =0

For the three selected co-inhibitors, this takes in Excel the form of CV = IF(IV>K4;1;0) +
IF(IV,>K3;1;0) + IF(1IV>K3;1;0), whereby we have used a threshold value for solar radiation (k;), and
both pollen threshold values for allergenic (kq,) and total pollen (k,* 1u. Ky, K, and Kz respectively, as

is shown in section 3.

It is outside of the scope of this research to verify the unde. 1y q datasets of Elkerliek Ziekenhuis,
RIVM/Nivel, CBS, and KNMI by examining the validity and reiiability of their data collection
methods. These institutes have well-established an.i ir.2: nationally standardized protocols for data

collection and verification.
All regression analyses have been carrie” auv “'sing the statistical package R version 3.5.
3. Results

The means and standard devietions per variable are given in Table 1. For the correlation coefficients

below, we have used the I 10 1 -ansformed data for respective variables, to correct for skewness.

When further inspecting the datasets regarding pollen concentrations and flu-like incidence reported
by primary medical care in the Netherlands, it was clear that there are continuous pollen bursts (Figure
3), whereby only a few of these pollen bursts are classified as more allergenic (Figure 6). These pollen
bursts, allergenic or low-level allergenic, typically coincide with and precede a decline in flu-like

incidence.

The correlation for total pollen and flu-like incidence is highly significant when taking into account
incubation time: r(222) = -0.40, p < 0.001. We can thus reject the null-hypotheses H1, in favor of the

alternative hypothesis that, when taking into account incubation time, there is a negative correlation



between total pollen and flu-like incidence, including the first cycle of the COVID-19 pandemic.
Furthermore, we can reject H5, in favor of our assumption that it makes sense to also include low-level
allergenic pollen concentrations in our study. Low-level allergenic pollen is inversely correlated to flu-
like incidence (r(221) = -0.37, p < .00001), especially when corrected for the 2 weeks incubation time

(r(219) = -0.53, p <.00001).

The fact that the correlations become stronger when taking into account incubation time, implies
temporality. Furthermore, we can also observe from Figure 3 that flu-like incidence starts to decline
after the first pollen bursts. Moreover, flu-like incidence starts to incrt >se sharply after pollen
concentrations become very low or close to zero. This is a qualitati\ = inuication of temporality.
Furthermore, we can notice that the first COVID-19 cycle betav. 4 ~ccording to pollen-flu seasonality,

at least does not break with it.

When testing the impact on AILI, the weekly changes i' medical flu-like incidence, the extended
dataset till 2020, including COVID-19, shows . 2tru.a and highly significant inverse correlation with
total pollen (r(226) = -0.26, p = 0.000063). The: >fore, we can falsify the null-hypothesis (H2,) that
there is no inverse correlation between t*.« *veckly pollen concentrations and weekly changes in flu-
like incidence (AILI), including the serioq covering the first cycle of the COVID-19 pandemic. This
inverse correlation therefore previucs further support for the alternative hypothesis that the presence of
an elevated level of pollen b2z a, Znhibiting effect on flu-like incidence, and starts to immediately
influence the direction anu ~ourse of the epidemic life cycle. Also, during the COVID-19 dominated
period of the last 9 weeks, it appears that flu-like incidence behaves according to the expected pollen-
flu seasonality. This strengthens the idea that COVID-19 might itself be seasonal, like all other flu-like
pandemics since the end of the 19" century. Also when studying other data from RIVM.nl about
COVID-19 hospitalizations, we cannot conclude that COVID-19 breaks through the seasonal barrier.
For example, new COVID-19 hospitalizations decreased from a peak of 611 on March 27 to just 33 on

May 3, the last day of week 18.

Using the three-week moving average (AlLIswma) OF changes in flu-like incidence, the correlation

coefficients become stronger and are again highly significant for total pollen concentration (r(223) = -



0.41, p <0.00001). The bootstrapped correlation coefficient calculation gives a comparable outcome
(r(223) =-0.38, p < 0.0001). As a second sensitivity analysis, we used the reduced dataset (minus the
weeks of low pollen activity) and again found similar correlations (r(191) = -0.44, p < 0.0001;
bootstrapped r(188) = -0.44, p < 0.0001, Cl 95% -0.46 to -0.25)). Finally, as a third sensitivity
analysis, we analyze each time lag included in the AlLIswua calculation separately. Per individual time
lag there are as well highly significant inverse correlations: as given before r(226) = -0.26, p =
0.000063 in case of no time lag (AILLI); r(225) = -0.22, p = 0.000713 in case of a time lag of one week
(AlLlyy); r(225) = -0.23, p = 0.000552 in case of a time lag of two w 2eks (AlLl.,); and the
bootstrapped correlations for these are similar. We can thus also rej :ct . e null-hypothesis (H2,) that
there is no inverse relationship between pollen and changes in f u-lik 2 incidence including incubation
time (AlLIzwma O AlLl.q or AlLl,). These correlations (7. 2lso Figure 4) are a further indication of
temporality and does not contradict the idea that COVID-".9 15 subject to pollen induced flu-
seasonality. The fact that the correlation with AILI , - ic stronger than those for each of the included
time lags might be an indication of the noise .edu :tion effect of this moving average, and makes thus

the compound effect of the three coverea ‘ime lags more visible.

Linear regression analysis shows that nol.~r has a highly significant inhibitory effect on flu-like
incidence change (AlLIlawwa) Of F11, 222) = 37.1, p < 0.001 (see Table 2, line 1), as a further basis for
using total pollen concentratio.” as i\ predictor. A Log10 transformation of pollen to compensate for
visual non-linearity lea’.~ to ~ si.nilar outcome: F(1, 219) = 43.87, p < 0.001 (see Table 2, line 4). At

least visually, it is a good 7>. (see Figure 4).

In line with the correlation between pollen and flu-like incidence, the correlation between total pollen
concentration and hay fever is stronger (r(162)=0.76, p < 0.00001) than it is for allergenic and low-
level allergenic pollen individually. This confirms that we can best use total pollen concentration as a
predictor. Univariate regression analyses show that total pollen has a highly significant positive effect
on hay fever incidence, which in turn has a highly significant inhibitory effect on flu-like incidence

(see Table 3).



Low-level allergenic pollen also has a highly significant effect on hay fever: r(160)=0.77, p <
0.00001. We can thus reject the null-hypothesis H5, in favor of the alternative hypothesis that low-
level allergenic pollen also has a positive effect on hay fever. This might imply that pollen classified
as none-to-low-level allergenic might still be responsible for certain allergic effects, and not just the
more allergenic pollen. Therefore, trying to use low-level allergenic pollen to discriminate effects
outside the allergenic path regarding the immune system might be challenging. There are no
significant interaction effects between low-level allergenic pollen concentration and allergenic pollen

concentration in relation to hay fever.

The nature of the relationship between hay fever and flu-like incide. e raight be statistically described
as linear. However, it could be better described as logarithmic {F.~»e 5). In the context of this study,
we have interpreted it as a further indication that it could 2'so L2 described as a threshold-based

switching pattern, conforming with the threshold-base? approach that we have taken in our compound

The expected effects of relative humidity (r(275, = -2 86, p < 0.0001), temperature (r(223) = 0.41, p <
0.0001) and solar radiation (r(223) = 0.67, p < L."001) on total pollen were found. So sunny, warmer
and dry weather does indeed go hand-in i.ona .vith an increase in pollen count. We can therefore reject
the null-hypothesis that the selected ne.>arological variables (H4,) have no effect on pollen, whereby

relative humidity reduces the amou. * of aerosol pollen.

Counter to findings in othe stu.'ies, relative humidity is positively associated with changes in flu-like
incidence (AlLIzwwma) in the Netherlands (r(224) = 0.34, p < 0.00001). The Dutch flu season is cold
and humid, and on rainy days the effect of pollen and solar radiation are reduced. Although
temperature strongly correlates with flu-like incidence (r(226) = -0.82, p < 0.0001), it has a negligible
effect on AILI, weekly changes in flu-like incidence (r(224) = -0.02 n.s.), also when corrected for
incubation time. Therefore, it seems unlikely that temperature has a direct effect on aerosol flu-like
viruses and the life cycle of a flu-like epidemic. In line with this, temperature is also not a good
marker for the onset or the end of the flu season. In the Netherlands the end of the flu season (Ro<1)
can coincide with an average temperature that is close to 0°C and the start of the flu season (Ro>1) can

coincide with temperatures as high as 17°C.



Of the meteorological variables, only solar radiation has a highly significant inverse correlation with

changes in flu-like incidence (AlLlswma): (r(224) = -0.25, p = 0.000156).

Thus, of the meteorological variables, when it comes to solar radiation and relative humidity the null-
hypothesis (H4,) can also be rejected, as they seem to effect the flu-like epidemic lifecycle. Of these
two, only solar radiation is a flu-like inhibitor in line with its positive effect on pollen concentration,

its association with immune-activation and the effect that UV has on viruses.

A univariate linear regression also shows the highly significant negative correlation for solar radiation
on flu-like incidence change (AlLIzwma) (F(1, 222) = 14.43, p < 0.001 (sc» Table 2, line 2). As the
correlation is weak (Multiple R-squared = 0.06), we have interpr..2a sutar radiation as a co-inhibitor
in relation to pollen; as a stand-alone independent variable its “ffect is too weak to explain flu-like

seasonality.

Taking into account all these findings, we developea - di.crete, compound model in which we
included the changes in flu-like incidence (A'cls ,ma), a threshold value for solar radiation (k;), and
both pollen threshold values for allergeni > (ky,) and total pollen (k,). We found that the compound
model has the highest inverse correlatic 1 /r(222) = -0.48, p < 0.001) for the following threshold
values: k;: 510 J/cm?, k,: 120 allerg.nic pollen grains/m?, and k,: 610 total pollen grains/m®. The
bootstrapped correlation coefficie.t calculation gives a comparable outcome (r(222) = -0.47, p <
0.0001). In line with the pr :vio. s outcomes, the inclusion of relative humidity, low-level allergenic
pollen or temperature did nc improve the correlation strength of this model. Furthermore, given that
they showed no significant interaction effects with pollen, it was not necessary to take such

interactions into consideration in the model.

In each of the observed years, the now (re)defined pollen thresholds are passed in week 10 (= 5
weeks), depending on meteorological conditions controlling the pollen calendar and coinciding with

reaching flu-like peaks, and again in week 33 (+ 2 weeks), marking the start of the new flu-like season.

There is a highly significant inverse relationship between our compound threshold-based predictor

value with flu-like incidence change (AlLlawma) Of F(1, 222) = 65.59, p < 0.001 and a Multiple R-



squared correlation of 0.2281 (see Table 2, line 3). This confirms the usefulness of a discrete, pollen
and solar radiation threshold-based model as a predictor of switches in flu-like seasonality, whereby
the effect of pollen is stronger than that of solar radiation. As a consequence, we can reject the null-
hypothesis (H3,) that this compound pollen/solar radiation value has no predictive significance for flu-

like seasonality.

4, Discussion

First of all we will discuss the possible implications of the results for our theoretic model and

alternative explanations. Next, we will discuss our methods.
Theoretic model

We found highly significant inverse relationships between poi ~n and solar radiation and (changes in)
flu-like incidence: a higher pollen concentration or an inc,ease in solar radiation in the Netherlands is
related to a decline in flu-like incidence. This inve'se cuirelation with pollen becomes stronger when
the 2019/2020 period is included, which has . e"1 increasingly dominated by COVID-19 during the
last 9 weeks. Given that more time will be 1.~eded to draw conclusions about whether the spread of
COVID-19 is seasonal or not, from tha dita in this study it can only be observed that COVID-19 is not
breaking with the flu-like seasoneiity .>ttern. Alternatively, social distancing may have contributed to
flattening both the flu-like epil'eamii. and COVID-19 pandemic curves at the tail-end of the 2019/2020
flu-like season. The Duv:~h yave.nment imposed hygiene measures from March 9, 2020 onward and a
mild form of a lockdown, *".at included social distancing, from March 11. Such behavioral policies
will need to be included in the theoretic model, in addition to pollen and meteorological variables, to
understand the relative importance of social distancing versus seasonality. We could, for example,
more explicitly include behavioral variables (Gozzi et al, 2020) in the compound model, by rating
lockdown regimes on a Likert-type scale [1, 5], from no lockdown (1) to a complete lockdown (5).
Although seasonal behavior might be implicitly covered by the meteorological variables, it could still
make sense to model them more explicitly as there might be cultural patterns in play — such as

holidays or seasonal celebrations — that need to be taken into account.



The highly significant inverse correlation between hay fever and flu-like incidence confirms that

allergic rhinitis makes it more difficult for flu-like viruses to propagate.

Solar radiation, the only meteorological variable that has a co-inhibitive effect on changes in flu-like
incidence, has a stimulating effect on aerosol pollen formation and is responsible for melatonin-
induced immuno-activation. Relative humidity reduces pollen aerosol formation, and correlates
positively with flu-like incidence. We did not specifically look at precipitation, but it might make

sense to explicitly consider this independent variable, given that it reduces pollen dissemination.

In our study we showed that temperature, aside from the fact that it influ.ces pollen, has no
predictive value for changes in flu-like incidence. Therefore, its *., a15c correlation with flu-like
incidence might be interpreted in a number of ways: a) as spu.‘ous: the common causal factor is solar
radiation, or b) as a stressor that has immediate effects on v = functioning of the immune system of
already infected persons. When discussing the influe 1c’. of meteorological variables, we assume that
the associated behavioral aspects are covered. 7. ?se ~re sometimes summarized as seasonal behavior,

but this independent variable might have a cultu.~l dimension that needs to be better understood.

We showed that a compound value, bas 3¢ o.. chreshold values for pollen and solar radiation, results in
a stronger correlation with the flu-li..~ lifecycle than the individual inhibitors. This model could form
an empirical basis for understana,.>aiu-like seasonality, its Ro and reliably predicting the start and
end of each flu-like cycle. /sive. that behavior, in the form of hygiene and social distancing, is also
widely seen as an inhibitor, t might be worthwhile to also include this factor in our compound value.
This will probably lead to an even stronger predictor for the evolution of the reproduction number Ro

of flu-like epidemics, although this might be beyond explaining the seasonality effect itself.

For as long as the level of herd immunity (Fine et al., 2011) for COVID-19 is still below required
thresholds for ending pandemics (Plans-Rubio, 2012), it might make sense to also include indications

of herd immunity levels in the theoretic model.



Finally, despite air pollution not been seen as an inhibitor of flu-like incidence (Coccia, 2020), it still
might interact with pollen. A more complete theoretic model, controlling for the (interactions with) air

pollution, could give more insight in how to interpret the findings of this or similar studies.

Methodological considerations

In general, statistical research cannot prove causal relationships in uncontrolled environments, even if
datasets seem to behave as if there is causality. Such statistics, however, can provide indications and
identify reliable predictors, help filter out bad ideas, and be the inspiration for testable hypotheses that
can be verified in laboratory and other fully controlled experiments. “Aiu. a predictor we mean that a
reliable temporal relationship between two variables is identifiec, -u.uut yet having validated

causality, i.e., a bellwether factor.

Although the datasets seem to be sufficiently representativ2, v 2re appears to be room for
improvement. For example, including the data of mc -+ w 2ather stations might help to improve the
approximation of the weather conditions the Jutc 1 population experiences on average, and help to
distinguish patterns per province. Furthei more, it might be useful to include wind speeds, given that
these constitute a vector for the dispersi! 7t _ollen in the Netherlands, which has a maritime and
temperate climate. Additionally, the ~ffecis of climate change on pollen maturation (Frei & Gassner,
2008) might also be an importam acior. Another example of improving the representativeness would
be by including more polle 1ty 3s in the particle counts than are currently covered by the current
methodology of the Europes 1 Allergy Network. Further, reclassification or recalibration of pollen
types on a rational scale in terms of allergenicity, let’s say 0-100%, would be very useful. For
example, if pollen types are identified with a reliable score of 0%, these could be used to differentiate
a medical versus a non-medical explanatory pathway, including interaction effects. Reversely, the
impact of the most allergenic pollen types like Betula and Poaceae could be better understood using

such a rational scale.

Specifically, the validity and reliability of the hay fever index is unclear, and the dataset is not

maintained. There might be lag effects, but these are unknown. Furthermore, self-prescription of over-



the-counter hay fever medication might be based on an erroneous self-diagnosis. It might also be a
good idea to include alternative datasets, such as search-engine based trend analysis to generate a
complete dataset for a whole period of study. These could be validated separately. Alternatively,

representative medical datasets could be obtained.

Finally, the ILI dataset, which is now based on a sample of 40 representative local primary care units,
could be improved. For example, including all patients visiting any primary care unit in the
Netherlands would reduce the need for extrapolation, with its inherent risk of bias, and information
about the allergy status of patients. The use of AlLIswwua including inc_~ation time, seems to be a more
elegant option than carrying out multiple tests with AILI. At the sar. 2 tirae, it could be argued that this
metric might be better as a two-week forward-looking movinc av ~r2ge. This is because it is unlikely
that any effects will be noticed in the first week, given the avei >ge reporting delays and incubation

period.

5. Conclusion

We conclude that pollen and solar radiati>n both tiave highly significant inverse correlations with
changes in flu-like incidence in the Net ‘e’ fa..Js. Furthermore, the inverse correlation between pollen
and flu-like incidence become strony,»r wnen the incubation time is included, and are also manifest in
relation to changes in flu-like inciJance. A compound variable — based on the thresholds for total
pollen, allergenic pollen ar 1 so.r radiation — shows the strongest correlation with changes in flu-like

incidence, and appears to be useful as a predictor for switches in flu-like seasonality.

COVID-19 has dominated the tail-end of the 2019-2020 flu-like season in the Netherlands. And,
although COVID-19 appears to be also subject to flu-like seasonality, like pandemics that preceded it,

it is still too early to draw conclusions about this.

It will require further research to test the findings, threshold values and predictive model for flu-like
seasonality in other countries with different climates. Controlled experiments are needed to deepen the

biomedical understanding of how allergic rhinitis and immuno-activation by pollen protects against



the spread of flu-like viruses, and to confirm and understand the assumed interaction between pollen

and viral bio-aerosol.
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Table 1: Overview of means (M) and standard deviations (SD) per variable in the dataset, including

Log10 transformed data, and datasets that are reduced for sensitivity analysis.

Log10 transformed

Variable Mean SD Mean SD
Allergenic pollen concentration in grains/m3 349 987 1.84 0.86
Total pollen concentration in grains/m3 732 1368 217 0.98
Total pollen concentration in grains/m3 (minus weeks 42 to 50) 870 1452 2.45 0.76
Low-level allergenic pollen concentration in grains/m3 383 626 1.85 1.03
Flu-like incidence (ILI) per 100K citizens 47 40.2 1.54 0.35
AlLI -0.25 15.4
AlLlzwma 0.26 8.9
AlLlzwma (Minus weeks 42 to 50) -0.c9 9.3
Index hay fever 11 116 1.81 0.39
Relative humidity (%) 79 8.27
Temperature in °C 10.8 5.82
Solar radiation in J/cm2 1047 709
Compound Model in thresholds passed 1.4 1.10

Table 2: Summary of univariate regression analyses . Zollen (1), solar radiation (2) and our
compound pollen/solar radiation predictor (. o’. changes in flu-like incidence (41LIsyma). This shows
all highly significant (p < 0.001) results, Lot the correlation for solar radiation is weak (0.06) and the

compound predictor is the strongest (0.27). The log10 (4) analysis is a check on the non-linearity of

pollen concentrations in relation t) 2" lawua, leading to the same conclusion.

A Flu-change (AILIzwma) hi 95%CI Intercept  Multiple R sq. F-stat on DF

1. Total pollen per 100/m® incr - -0.253  -0.334t0-0.171 1.53 0.14 37.1(1,222) 0.001
2. Solar radiation per 100 J/cm? incr -0.312  -0.475t0-0.153 2.98 0.06  14.43(1,222) 0.001
3. Compound predictor per incr. of 1 -3.88 -4.82t0 -2.94 4.95 0.23  65.59 (1,222) 0.001
4. Log10 (Total pollen grains/m®) incr. -3.73 -4.84 t0 -2.63 7.71 0.17  43.87(1,219) 0.001

Table 3: Summary of univariate regression analyses of total pollen concentration on hay fever (p <
0.001) and hay fever on flu-like incidence/100K citizens per week (p < 0.001), whereby pollen leads to
an increase in hay fever, which in turn is associated with a decrease in flu-like incidence. To
compensate for non-linearity, the regression of log10(hay fever) on log10(flu-like incidence) is added,

with a similar, highly significant outcome.



Flu-like incidence per 100K p.w. Estimate 95%CI Intercept  Multiple R sq. F-stat on DF

Hay fever index per 1% incr. -0.12677  -0.181t0-0.0723 63.81 0.11  20.74 (1,164) 0.001

A Hay Fever Index (2016=100) Estimate 95%CI Intercept  Multiple R sq. F-stat on DF

Total pollen per 100/m? incr. 5.3049 3.922 t0 6.688 67.78 0.26  56.52(1,164) 0.001

Log10 (Flu-like incidence per 100K) Estimate 95%CI Intercept  Multiple R sq. F-stat on DF

Log10(hay fever index) -0.444  -0.573t0-0.316 2.360 022 4596 (1,164) 0.001

Figure 1: A simplified theoretic model explaining pollen-flu inverse seasonality, whereby pollen might
have an allergenic (1) and/or immune-triggering (I1) function, inhibiting flu-like epidemic incidence in
combination with meteorological conditions and triggers. The direc. ~fzct (111) on flu-like bio-aerosol

is currently unknown.

Figure 2: The overview of flu-like virus positive cases in 20." till week 24) shows that from week 13
onwards SARS-CoV-2 is dominant. The Rhinovirus ¢aces spike is outside the timeline of our research

(source: Nivel.nl, 2020).

Figure 3: Total pollen concentrations vs. i.*i-like incidence in the Netherlands, whereby especially
passing the 610 total pollen grains/m® tiir 2shold marks the seasonal switches around week 10 (5
weeks) and week 33 (£2 weeks). Fr e interpretation of the relationship, an incubation time of up to
2 weeks should be taken into accou ~t, and the change in flu-like incidence (Ro >1 or Ro <1) should be

considered.

Figure 4: Scatter diagram snowing the inverse relationship between changes in flu-like incidence

(ILlswma) and log10(pollen concentrations in grains/m®).
Figure 5: Inverse correlation between hay fever and flu-like incidence.

Figure 6: Both allergenic and low-level allergenic pollen are positively correlated to hay fever.
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Graphical abstract

Highlights
e Testing pollen-flu seasonality theory for 2016-2020 in the Netherlands, overlapping COVID-
19
e Pollen have allergenic and immuno-activating properties
e Highly significant inverse correlation between pollen and flu-like incidence
e Solar radiation is a co-inhibitor of flu-like epidemics

e COVID-19 does not break with seasonality pattern, but mor< J~ta are needed for conclusion



