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Emergent electromagnetic induction in a 
helical-spin magnet

Tomoyuki Yokouchi1 ✉, Fumitaka Kagawa1,2, Max Hirschberger1,3, Yoshichika Otani1,4,  
Naoto Nagaosa1,2 & Yoshinori Tokura1,2,5 ✉

An inductor, one of the most fundamental circuit elements in modern electronic 
devices, generates a voltage proportional to the time derivative of the input current1. 
Conventional inductors typically consist of a helical coil and induce a voltage as a 
counteraction to time-varying magnetic flux penetrating the coil, following Faraday’s 
law of electromagnetic induction. The magnitude of this conventional inductance is 
proportional to the volume of the inductor’s coil, which hinders the miniaturization of 
inductors2. Here, we demonstrate an inductance of quantum-mechanical origin3, 
generated by the emergent electric field induced by current-driven dynamics of spin 
helices in a magnet. In microscale rectangular magnetic devices with nanoscale spin 
helices, we observe a typical inductance as large as −400 nanohenry, comparable in 
magnitude to that of a commercial inductor, but in a volume about a million times 
smaller. The observed inductance is enhanced by nonlinearity in current and shows 
non-monotonous frequency dependence, both of which result from the 
current-driven dynamics of the spin-helix structures. The magnitude of the 
inductance rapidly increases with decreasing device cross-section, in contrast to 
conventional inductors. Our findings may pave the way to microscale, simple-shaped 
inductors based on emergent electromagnetism related to the quantum-mechanical 
Berry phase.

Inductors are ubiquitous in contemporary electronics, used in ana-
logue circuits and information processing, in transformers, filters and 
resonators, to name but a few applications. Conventional inductors or 
induction coils based on classical electromagnetism store the magnetic 
energy LI2/2 (where L is inductance and I is input current) and generate 
a voltage proportional to dI/dt. As the magnitude of the inductance 
is proportional to the product of the coil’s winding number and its 
cross-section, it is difficult to reduce the dimensions of the device 
while keeping L large enough. In superconductors, another inductance 
mechanism, known as kinetic inductance, offers inductance inversely 
proportional to the cross-section4. However, using superconductors 
in electric devices is still challenging, and available current densities 
are limited by the critical current density for the superconducting 
ground state. Thus, a new principle for inductors is highly desirable.

Our approach to developing microscale inductors that overcome 
these issues is based on the use of current-induced spin dynamics in a 
helical-spin magnet. When conduction electrons flow with their spin 
direction aligned along an underlying spin structure, they can acquire 
a Berry phase5,6. This acts as an effective electromagnetic field, termed 
the emergent electromagnetic field. In the continuum limit, the emer-
gent magnetic (bi) and electric (ei) fields are described as6,7
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where n is a unit vector parallel to the direction of spins, ϵijk is the Levi–
Civita symbol, and the Einstein convention is adopted. The emergent 
magnetic field arises from non-coplanar spin structures and is propor-
tional to the solid angle subtended by n. One example of bi is found in 
topological spin structures called skyrmions7–9, in which the direction 
of spins wraps the unit sphere exactly once (Fig. 1a). Hence, skyrmions 
carry emergent magnetic field, which leads to the topological Hall 
effect10. In contrast, non-collinear spin structures such as helices and 
ferromagnetic domain walls cannot produce bi because the solid angle 
covered by n is zero (Fig. 1b).

As opposed to bi, however, ei is related to the dynamics of spin struc-
tures and proportional to the solid angle swept out by n(t). Hence, the 
motion of non-collinear spin structures can induce ei, also called 
spin-motive force11–17. Motion of the non-collinear spin structures can 
be generally described by two collective coordinates3,13,18: the position 
X and the angle ϕ representing a tilt of the spin from the helical plane 
(see Fig. 1c for the definition). Because X and ϕ are canonically conjugate 
to each other, a change in position X always accompanies the tilt of 
spins from the helical plane (that is, a change in ϕ). Consequently, when 
the non-collinear spin structures are on the move, the solid angle  
swept by n(t) is non-zero (Fig. 1c), and an emergent electric field ei 
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proportional to the time-derivative of ϕ, ϕ∂t , is generated3,13. For exam-
ple, in the case of a proper-screw helix, the emergent electric field ex 
can be described as3:

e
Ph
eλ

ϕ= ∂ , (3)x t

where λ is the period of the helix, P is spin polarization factor, e is the 
charge on the electron, and the x-axis is taken parallel to the magnetic 
modulation vector Q (see Supplementary Information for details). 
Because the canonical conjugate relation between X and ϕ holds regard-
less of the direction of the helical plane18, ex can also be generated in 
cycloidal-type spin modulations. So far, emergent electric fields arising 
from the motion of ferromagnetic domain walls driven by magnetic 
field (H) have been reported experimentally14–16. We note that the 
emergent electric field is also derived from generalized Faraday’s law13.

In the case of current-driven motion of non-collinear spin structures, 
the emergent electric field is predicted to produce an inductive volt-
age3. When a non-collinear spin structure is driven by a current parallel 
to Q due to spin-transfer torque or spin–orbit torque (Fig. 1c), ϕ can 
be phenomenologically described as ϕ Aj B j C j= + + +x xx

3 5 ⋯, where 
jx is the current density. Since ei due to the motion of non-collinear 
structures is proportional to ϕ∂t  as described above, the consequent 
ei is proportional to the time derivative of the current density ( j∂t x). In 
other words, the emergent electric field generated by current-driven 

motion produces an inductive voltage. Hereafter, we call this induct-
ance ‘emergent inductance’. The emergent inductive voltage can be 
described as
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where delectrode and Sc are the distance of electrodes and the 
cross-sectional area of the device, respectively (see Supplementary 
Information for details). Notably, since the current density is inversely 
proportional to Sc, the emergent inductance increases with decreas-
ing Sc under fixed input current. In particular, the higher-order terms 
arising from the nonlinearity of ϕ make this increase more steeply than 
the inverse of Sc, and as will be discussed below, the contribution from 
higher-order terms is dominant.

To experimentally investigate the emergent inductance, we focus on 
the short-period helimagnet Gd3Ru4Al12, in which various non-collinear 
spin structures such as proper-screw, magnetic skyrmion and trans-
verse conical (TC), with helical pitch λ ≈ 2.8 nm, appear owing to 
competition among the Ruderman–Kittel–Kasuya–Yosida (RKKY) 
interaction, magnetic anisotropy and thermal fluctuations19–23. The 
short helical pitch and weak magnetic anisotropy of Gd3Ru4Al12 provide 
an ideal platform for exploration of the emergent inductance because 
the emergent inductance is inversely proportional to λ (equation (3)) 
and spins move easily owing to weak magnetic anisotropy. By using the 
focused ion beam (FIB) technique, we fabricated microscale rectangular 
thin-plate devices of Gd3Ru4Al12 (Fig. 1d; see Methods and Extended 
Data Figs. 1 and 2 for the determination of magnetic phases for the 
thin-plate devices). First, we investigate the emergent inductance by 
using a standard lock-in technique, in which the inductance appears 
in the imaginary part of the complex impedance (Im Z1f), which is also 
called reactance (see Methods). Here, 1f represents the fundamental 
frequency components in the lock-in measurement.

Figure  2a–d presents H-dependent Im  Z1f measured with 
current-density amplitude j0 = 3.3 × 108 A m−2, frequency f = 10 kHz and 
H // c-axis. Prominent signals of Im Z1f are observed in the proper-screw 
and TC phases. In contrast, in ferromagnetic and paramagnetic phases, 
Im Z1f is as small as −4 mΩ, which we assign to background signal, prob-
ably from contact electrodes and cables connecting the sample and the 
lock-in amplifier. The correspondence between enhanced Im Z1f signals 
and the non-collinear phases is further confirmed from the contour map 
of Im Z1f in the temperature (T)–H phase diagram (Fig. 1e). As presented 
in Extended Data Fig. 3, the imaginary part of background-subtracted 
complex impedance (Im ΔZ1f) is linearly proportional to the frequency 
from 0 kHz to10 kHz, which indicates that Im ΔZ1f is governed by the 
inductive reactance, that is, Im ΔZ1f = 2πfL′ (see also Methods; frequency 
dependence above 10 kHz is discussed later).

By fabricating more than ten devices of different lengths, thicknesses 
and widths, we confirmed reproducibility and excluded the possi-
bility that the observed Im Z1f signal was due to non-intrinsic effects 
such as external contact contributions (see Methods and Extended 
Data Fig. 4). We note that the range of the magnitude of j0 used in this 
study is much smaller than the typical critical current density for the 
translational motion of helices24. Hence, the relaxation-type motion25 
probably occurs because of spin-transfer torque in the present case 
(see also Methods).

As shown in Fig. 2a–c, Im Z1f in the fan phase is much smaller than 
that in the proper-screw and TC phases, although the fan structure 
is also non-collinear. This is well explained by the emergent induct-
ance mechanism; as shown in Fig. 2e–j, the direction of spins of the 
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Fig. 1 | Concept of emergent inductance. a, b, Schematics for spin 
configurations of a skyrmion (a) and a proper-screw helix (b) in real space (left) 
and its projection into the unit sphere (right). c, Schematics for spin 
configurations under the current-driven motion of a proper-screw helix in real 
space and its projection into the unit sphere at several points in time. The light 
blue shading in the unit spheres shows the solid angle swept by the direction of 
the spins. The magnitudes of current and emergent electric field at the 
corresponding time points are denoted by the red points in the top and bottom 
panels, respectively. d, Scanning electron microscope image of a thin-plate 
Gd3Ru4Al12 device, approximately 300 nm thick and 5 μm wide. e, Contour 
mapping of the imaginary part of the complex impedance (Im Z1f) measured 
with j0 = 3.3 × 108 A m−2 and f = 10 kHz. Fan, fan structure region; Ferro, 
ferromagnetic region; para, paramagnetic region. Different symbols indicate 
different phase boundaries.
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fan structure does not rotate by 2π, in contrast to the screw and TC 
structure (red lines in Fig. 2h–j). Hence, when the fan structure is 
driven by current, the solid angle swept by n(t) (light blue region in 
Fig. 2h–j) is smaller than those for the screw and TC structures, which 
leads to the smaller emergent electric field. Although current-driven 
motion of skyrmions also generates the emergent electric field7,26,27, 
it does not contribute to Im Z1f in the present set-up. This is because 
the emergent electric field due to skyrmion motion is generated 
perpendicular to the current direction7,26,27. Thus, the small Im Z1f 
signal observed in the skyrmion phase perhaps arises from coex-
isting proper-screw and TC phases. Phase coexistence is indicated 
by the topological Hall signal associated with the skyrmion phase 
(see Methods).

According to equation (3), the emergent electric field is expected to 
be generated parallel to Q. Hence, to further confirm that the observed 
Im Z1f signals stem from the emergent inductance, we investigate its 
dependence on Q-direction, which is controlled with H applied in the 
ab-plane (see Methods and Extended Data Fig. 5). Figure 2k presents the 
H dependence of Im Z1f measured with H // I // a-axis where I is current. 
The magnitude of Im Z1f reaches its maximum when the multi-domain 
Q state is transformed to the single-Q (longitudinal) conical state with 
Q // H // I. Additionally, as shown in Fig. 2l, when H is rotated within the 
ab-plane in the single-Q conical state, Im Z1f is greatest at Q // I (θ = 90°). 
These results indicate that the inductive voltage is generated parallel to 
the Q direction, in accordance with the expected behaviour of the emer-
gent inductance. The reduction of Im Z1f with increasing H in the single-Q 
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Fig. 2 | Emergent inductance in Gd3Ru4Al12. a–d, Magnetic field dependence 
of the imaginary part of the complex impedance (Im Z1f) measured with 
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fan (g) structures in real space. h–j, Schematics for current-induced motion for 

proper-screw helical (h), TC (i) and fan ( j) structures projected onto the unit 
sphere. k, H-dependence of Im Z1f measured with j0 = 3.3 × 108 A m−2, f = 10 kHz 
and H // j // a-axis. l, Angle (θ) dependence of Im Z1f in the single-domain conical 
phase measured with j0 = 3.3 × 108 A m−2 and f = 10 kHz. Here, H is rotated in the 
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devices. The thick grey line is a guide to the eye.
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conical state (Fig. 2k) is also consistent with the emergent inductance 
mechanism; the cone-angle of the conical structure decreases with 
increasing H, which reduces the solid angle swept by n(t) and thus ex.

We estimate the magnitude of the emergent inductance (L′) by using 
the relationship Im ΔZ1f = 2πfL′. At μ0H = 0 T, T = 6.5 K, j0 = 3.3 × 108 A m−2 and 
f = 10 kHz (Fig. 2a), for example, L′ is approximately −100 nH. In contrast to 
conventional inductors, the magnitude of L′ increases when decreasing 
the cross-section of the thin plate, as expected in the emergent induct-
ance formalism (Fig. 2m). The sign of the observed inductance is nega-
tive, unlike conventional inductors; conventional inductance is related 
to the magnetic energy1, and hence negative inductance is energetically 
unstable. Because the emergent inductance mechanism is different, 
the magnetic energy is irrelevant in the present case, and the negative 
sign is also allowed. Incidentally, negative inductance can be used for 
applications: for example, high-speed circuits and chaotic oscillators 
are proposed28. Furthermore, positive emergent inductance can also 
be realized (see Supplementary Information for detailed discussion).

The inductance shows current-nonlinear behaviour, which further 
supports the notion that the observed inductance arises from the 
emergent electric field induced by current-driven motion of helical 
spin structures. As shown in Fig. 3a, Im ΔZ1f strongly depends on the 
current density. This is not due to the heating effect (see Methods). 
Since the emergent electric field is proportional to ϕ∂t , the observed 
nonlinearity of Im ΔZ1f is attributed to the nonlinearity of ϕ with respect 
to j. In fact, the equations of motion for the non-collinear spin structures 
possess nonlinear terms3,18. If we phenomenologically describe ϕ up 
to the third order of j as ϕ = Aj+Bj3, Im ΔZ1f in the proper-screw state is 
given by ( )Z A B jIm Δ = +f hωd

eλS
1 3

4 0
2

c
 (see Supplementary Information). 

The observed j-dependence is fitted well by this equation (dashed  
lines in Fig. 3a). The nonlinear behaviour is also confirmed from higher- 
harmonic measurement; as presented in Fig. 3b, c, the imaginary part 
of the third-harmonic complex impedance (Im Z3f) is enhanced in the 
non-collinear phases and disappears above the transition temperature. 
The magnitudes of Im ΔZ1f and Im Z3f are consistent with each other 
(see Supplementary Information for details).

Finally, we discuss the frequency dependence of the emergent induct-
ance in the high-frequency region. As mentioned above, we performed 
measurements with the lock-in amplifier below 10 kHz. To investigate 

the frequency dependence in the range of much higher frequencies, 
we measured the complex impedance with an LCR meter and analysed 
the data by assuming a frequency-dependent complex inductance, 
L ω L ω iL ω~( ) = ′( ) + ″( ) (see Methods). Below 10 kHz, L ω( )

∼
 measured by 

the LCR meter is almost the same as that measured with the lock-in 
amplifier (Fig. 4a and Extended Data Fig. 6); L″ is almost negligible and 
frequency-independent, whereas L′ is observed in the non-collinear 
phases. Above 10 kHz, in contrast, L′ shows a rapid decrease concom-
itant with a peak of L″(Fig. 4b). This Debye-type relaxation originates 
from the frequency dependence of current-driven motion of the spin 
structures determined by the extrinsic pinning, for example, due to 
impurities; the spins cannot fully follow alternating currents with a 
frequency above 10 kHz, resulting in smaller amplitude of ϕ and thus 
L′ (see Supplementary Information for detailed discussion).

We have demonstrated a mechanism to generate electromagnetic 
inductance originating from the emergent electric field. Here, the 
quantum-mechanical Berry phase due to the current-driven motion 
of short-pitch helical spin structures plays an important part. The 
emergent inductance provides an opportunity for miniaturization of 
an inductor without reducing the magnitude of the inductance and 
without the need for manufacturing complex microstructures3. To 
realize emergent inductance at room temperature, non-collinear spin 
structures due to the Dzyaloshinskii–Moriya interaction are also prom-
ising candidates29,30. Additionally, control of magnetic anisotropy by 
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voltage can be used for tuning the current-induced dynamics of a helix 
and thus the magnitude of inductance.
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Methods

Device fabrication
Using the FIB technique (NB-5000, Hitachi), we cut thin plates out of 
a single crystal of Gd3Ru4Al12. The single crystals were grown under 
argon gas flow with a floating zone furnace equipped for high-vacuum 
operation. Our thin plates were mounted on a silicon stage and were 
fixed by FIB-assisted tungsten deposition. We used electron-beam 
gold deposition or FIB-assisted tungsten deposition to make electrical 
contact to the sample.

Transport measurement
Complex impedance was measured by the lock-in technique (SR-830, 
Stanford Research Systems, and LI5640, NF Corporation) and the LCR 
meter (Agilent Technologies, E4980A). In the lock-in measurement, we 
input a sine-wave current (I = I0 sin ωt) and recorded both in-phase (V X

f1 ) 
and out-of-phase (V Y

f1 ) voltage components with a standard four-terminal 
method. The imaginary part of the linear impedance, namely the reac-
tance, is defined as Z V IIm = /f

Y
f1 1 . For the estimation of the inductance, 

we assumed that Im Z1f was governed by the inductive reactance. In 
addition, since the lock-in measurement was performed below 10 kHz, 
we ignored the frequency dependence and the imaginary part of the 
inductance, both of which become important only above 10 kHz, as 
revealed by LCR measurement. Hence, the real part of the inductance 
can be described as L Z ω′ = Im Δ /f1 , where ω = 2πf is the angular fre-
quency and Im ΔZ1f is the imaginary part of background-subtracted 
complex impedance. Here, we ascribed Im Z1f observed in the paramag-
netic phase to the background contribution. For the third-harmonic 
measurement, we measured the out-of-phase third-harmonic voltage 
component (V Y

f3 ) and defined the third harmonic imaginary part of 
impedance (Im Z3f) as Z V IIm = /f

Y
f3 3 ; in this case, the background con-

tribution was negligibly small, which indicates that the background 
signal is caused by linear reactance probably resulting from contact 
electrodes and cables connecting the sample and the lock-in amplifier.

In measurements with the LCR meter, we used a two-terminal method 
and corrected the contribution from the cables with a standard open/
short/load correction procedure. To remove the contribution from 
the contacts and extract the bulk contribution of the complex imped-
ance Z ω( )͠ , we subtracted the contact contribution that was estimated 
above the transition temperature from the measured data. To estimate 
the inductance, we assume a series connection of a frequency- 
independent resistance (R) and a frequency-dependent complex 
inductance L ω L ω iL ω~( ) = ′( ) + ″( ). Under this assumption, the relation-
ship among Z͠ ω( ), 

∼
L ω( ) and R is described as Z ω L ω R( ) = ( ) +

∼͠ . Then 
L ω′( ) and L ω″( ) are calculated from the experimentally obtained value 
of Z͠ ω( ) as follows: L ω Z ω ω′( ) = Im ~( )/  and L ω Z ω R ω″( ) = [Re ( ) − ]/͠    
=  ͠ ͠Z ω Z ω[Re ( ) − Re (0)]/ .

Considering the increase in sample temperature owing to Joule heat-
ing, we derived the sample temperature from the longitudinal resis-
tivity of the sample itself for all measurements. In the measurement 
of the current-density dependence, we kept the sample temperature 
constant by adjusting the temperature of the heat bath. In addition, 
even if a possible temperature gradient originating from Joule heating 
generates pure spin current due to the spin Seebeck effect, this does 
not contribute to Im Z1f: since the present device is a symmetric single 
layer, the pure spin current is not converted to a voltage signal, which 
generally requires asymmetric structure.

The type of motion of spin structures
On the basis of the current density and frequency dependencies of the 
inductance signals, we conclude that the relaxation dynamics of the 
helix due to spin-transfer torque results in the observed inductance 
signals in the present study.

The amplitude of the alternating current density used in this study 
(~108 A m−2) is much smaller than the critical current density for 

translational motion (~1011 A m−2). Generally, in such cases, relaxation 
dynamics is known to occur25. Hence, we conclude that the motion of 
helices shows relaxation dynamics in which the position of the helical 
spin structure oscillates at the local minimum of the free energy.

The observed frequency profile is also consistent with relaxation 
dynamics. As shown in Fig. 4, we observed a Debye-type frequency 
profile with characteristic frequency of approximately 10 kHz. Relaxa-
tion dynamics usually shows a Debye-type frequency profile whose 
characteristic frequency is of the order of kilohertz, consistent with 
our observations.

Resistivity and transition temperatures for Gd3Ru4Al12 
thin-plate sample
Extended Data Fig. 1a shows the temperature (T) dependence of 
the longitudinal resistivity (ρxx) in a thin-plate device of Gd3Ru4Al12. 
The temperature dependence of the thin-plate sample is similar to 
that of bulk samples23, indicating minimal damage due to the FIB 
fabrication process. In bulk samples of Gd3Ru4Al12, two long-range 
magnetic orders exist at zero magnetic field: (1) a proper-screw 
structure below TN1 = 17.2 K and (2) sinusoidal magnetic order in the 
ab plane between TN2 = 18.7 K and TN1 = 17.2 K. At both transition tem-
peratures, ρxx–T shows kinks23. Hence, we determined TN1 and TN2 
for our thin-plate samples from kinks in the ρxx–T curve as shown in 
Extended Data Fig. 1b. The transition temperatures in the thin-plate 
samples (TN1 = 16.6 and TN2 = 17.8) differ slightly from those in bulk 
samples. This is probably due to uniaxial strain, which arises from a 
difference in thermal expansion between the Gd3Ru4Al12 thin plates 
and the silicon sample stage.

Determination of magnetic phases for thin-plate devices with H 
parallel to c-axis
When the magnetic field is applied parallel to the c-axis, Gd3Ru4Al12 
exhibits several magnetic phases: proper-screw, TC, fan, V, skyrmi-
ons and induced-ferromagnetic phases23. The magnetic structure in 
phase V is unidentified at the time of writing. We determined these 
magnetic phases from measurements of magnetoresistivity and Hall 
conductivity (σxy) as follows. (1) The TC phase is identified from a dip 
structure in magnetoresistivity. As shown in Extended Data Fig. 2a–d, 
ρxx has a dip structure at low temperatures (blue shading in Extended 
Data Fig. 2a). In the case of bulk samples, a similar dip structure is 
observed in the TC phase. Hence, we attribute the observed dip to the 
formation of the TC structure. (2) The fan-to-ferromagnetic transition 
is determined from kinks in the H-derivative of magnetoresistivity 
(dρxx/dH) in the high-field region (green triangles in Extended Data 
Fig. 2e–h). (3) The skyrmion phase is determined from the topo-
logical Hall effect, which appears as an additional contribution to 
the H-linear normal and M-linear anomalous Hall conductivities. In 
Extended Data Fig. 2i–l, we present the H-dependence of σxy. Our field 
profiles of σxy exhibit hump-like structures in the intermediate-field 
region below 10 K (red shading in Extended Data Fig. 2i–k), which we 
ascribed to the topological Hall contribution due to the formation of 
skyrmions. Correspondingly, dρxx/dH also shows kinks at the phase 
boundaries of the skyrmion phase (red squares in Extended Data 
Fig. 2e–g). The topological Hall signal gradually emerges from the 
proper-screw phase, which indicates that the skyrmion phase coex-
ists with other phases such as proper screw and TC phases. This is 
consistent with the observation of small Im Z1f signal in the skyrmion 
phase, which is anticipated to originate from the coexisting proper 
screw and TC phases (see also the main text). (4) We determine the 
phase boundaries of the V phase from kinks in dρxx/dH (light blue 
triangles in Extended Data Fig. 2h). The magnetic phase diagram 
for the thin-plate samples is similar to that for bulk samples, except 
for an expansion of the skyrmion phase towards low temperatures. 
Again, this is probably due to uniaxial strain arising from a difference 
in thermal expansion.
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Frequency dependence of complex impedance measured by 
lock-in amplifier
In the lock-in measurement, we assume that Im Z1f is governed by the 
inductive reactance. In addition, since the lock-in measurement is 
performed below 10 kHz, we ignore the frequency dependence of the 
inductance, as well as its imaginary part. Both become important above 
10 kHz as revealed by LCR measurements. Under these assumptions, 
the relationship between inductance (L′) and the complex impedance 
can be described as follows:

Z ωL fLIm Δ = ′ = 2π ′, (5)f1

where ω = 2πf is the angular frequency and Im ΔZ1f is the imaginary 
part of the background-subtracted complex impedance. We ascribe 
Im Z1f observed in the paramagnetic phase to the background con-
tribution. To confirm the validity of equation (5), we investigate the 
frequency dependence of Im ΔZ1f. As shown in Extended Data Fig. 3, 
Im ΔZ1f increases almost linearly with increasing frequency (f), which 
indicates that Im Z1f is governed by the inductive reactance.

Emergent inductance for devices of different shapes and 
electrode materials
We fabricated more than 10 devices to confirm reproducibility and 
exclude the possibility that the observed signal is due to extrinsic 
effects, such as external contact contributions. In Extended Data 
Fig. 4a–e, we show scanning electron microscope images of thin-plate 
devices with different sizes and geometries. The magnetic-field 
dependence of the imaginary part of the background-subtracted 
impedance (Im ΔZ1f) for the corresponding thin-plate devices is 
shown in Extended Data Fig. 4g–k. Here, the current and frequency 
were I = 1 mA and f = 10 kHz, respectively. In all devices, Im ΔZ1f exhib-
its similar field profiles; Im ΔZ1f is enhanced in the proper-screw 
helical phase and the TC phase. In addition, as shown in Extended 
Data Fig. 4m, the magnitude of Im ΔZ1f is proportional to delectrode, 
indicating that the influence of contacts, if any, is minimal. We also 
fabricated a device with gold electrodes (Extended Data Fig. 4f); 
the magnetic-field profile of Im Z1f (Extended Data Fig. 4l) is similar 
to those for the devices with tungsten electrodes (Extended Data 
Fig. 4g–k). These results indicate that the observed enhancement 
of Im Z1f does not originate from an extrinsic factor such as device 
shape and contact electrodes.

We note that the relative magnitude of Im ΔZ1f in the TC phase with 
respect to the proper-screw helical phase depends on the device. This 
is probably due to device-dependent phase coexistence between TC 
and other competing phases, such as skyrmion and fan. As the transi-
tion between TC and the competing orders is a first-order transition, 
TC can coexist with the other phases. Generally, the ratio of volume 
fractions for two coexisting phases is sensitive to extrinsic properties 
such as disorder. Hence, in the present case, probably owing to a slight 
difference in the number of disorder sites introduced during the device 
fabrication process, the ratio between TC and the competing phase 
differs from device to device, which results in device dependence of 
the magnitude of Im ΔZ1f within the boundaries of TC. In fact, devices 
with larger Im ΔZ1f in TC show a sharp dip structure in the magnetore-
sistivity, which is a hallmark of TC as discussed above. In contrast, in the 
devices with small Im ΔZ1f in TC, the dip structure in magnetoresistivity 
is smeared out.

Determination of magnetic phases with H parallel to the a-axis
The magnetic phase diagram for thin plates with H // a is determined 
from measurements of magnetoresistivity and planar Hall resistivity 
(ρ yx

PHE). In Extended Data Fig. 5a, we show H-dependent ρxx at 5.5 K. There 
are two kinks in ρxx (purple and green triangles in Extended Data Fig. 5a). 
The lowest-field region (green shadow) is a multi-domain proper-screw 

state with in-plane Q vectors23. Since the multi-Q-domain proper-screw 
is usually transformed to the single-Q conical state with Q // H on 
increasing the magnetic field, we assign the intermediate phase (light 
green shading) to the single-Q conical state. The high-field region above 
2.5 T is assigned to the ferromagnetic phase.

To confirm this assignment, we measured the planar Hall effect, 
which can sensitively probe the direction of the Q vector31. The relation-
ship between the Q direction and the planar Hall resistivity (ρ yx

PHE) can 
be described as ρ θ∝ sin 2yx Q

PHE , where θQ is the relative angle between 
current direction and Q direction. In the single-Q conical state, Q is 
parallel to the magnetic-field direction, that is, θQ = θH where θH is the 
field angle. Therefore ρ yx

PHE is proportional to sin 2θH. In contrast, in the 
multi-Q-domain proper-screw state, ρ yx

PHE does not depend on θH 
because the Q direction does not follow the field direction. In Extended 
Data Fig. 5b, c, we present the field angle dependence of ρ .yx

PHE  In the 
low-field (<0.6 T) phase, ρ yx

PHE is independent of θH (Extended Data 
Fig. 5b), consistent with the low-field phase remaining a multi-Q-domain 
proper-screw phase unaffected by the field direction. In contrast, ρ yx

PHE 
obeys a sin 2θH dependence in the intermediate-field phase (Extended 
Data Fig. 5c), indicating that the intermediate-field phase is a single-Q 
conical state with Q // H. We note that the slight deviation of ρ yx

PHE from 
the sin 2θH curve is probably due to weak pinning of the Q vector.

Emergent inductance measured with LCR meter
Further experiments were carried out with an LCR meter to check the 
influence of the electrodes on the frequency dependence of the com-
plex inductance. We thus measured the frequency dependence of the 
inductance for an additional device with gold electrodes. In Extended 
Data Fig. 6b, we show the frequency dependence of the complex induct-
ance L ω L ω iL ω~( ) = ′( ) + ″( ) in this device. The observed profile is com-
parable to that in the device with tungsten electrodes (Fig. 4 in the main 
text), indicating that the observed frequency dependence, especially 
suppression of the signal above 10 kHz, does not originate from the 
influence of contacts.

In Extended Data Fig. 6c–e, we show the magnetic field dependence 
of Im Z at f = 7.71 kHz measured with the LCR meter. Both the mag-
netic field and current are applied parallel to the a-axis. The magni-
tude of Im Z is largest at the phase boundary between multi-domain 
proper-screw and single-domain conical phase and almost zero in the 
ferromagnetic and paramagnetic phases. These features are all in good 
agreement with Im Z measured with the lock-in amplifier (Fig. 2k).

Magnitude of the inductance
As shown in the main text, the emergent inductance is approximately 
−400 nH for a Gd3Ru4Al12 thin-plate cross-section 0.8 μm2 and length 
9 μm (volume 7.2 × 10−18 m3). In the case of a commercially used conven-
tional small inductor32, the inductance is typically 300 nH for a device 
of size 0.6 mm× 0.3 mm× 0.3 mm (volume 5.4 × 10−11 m3). Therefore, the 
inductance value reported here is comparable to that of a commercial 
inductor, but the volume of the circuit element based on emergent 
inductance is around 106 times smaller.

Data availability
The data that support the findings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 6 | Emergent inductance measured with LCR meter.  
a, Frequency dependence of complex impedance Z from which we calculated 
the complex inductance L ω L ω iL ω~( ) = ′( ) + ″ ( ) (Fig. 4b). The inset is the 
magnified view of Im Z in the low-frequency range on a linear scale. Grey 
shading corresponds to the grey-shaded region in Fig. 4b. b, Frequency 

dependence of 
∼
L ω( ) for a thin-plate device with gold electrodes. c–e, Magnetic 

field dependence of the imaginary part of the complex impedance (Im Z) 
measured with an LCR meter at various temperatures, for magnetic field 
applied in the hexagonal plane. See Methods for the procedure for extracting 
the bulk contribution of Z.
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