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Abstract6

Making scientific information machine-readable greatly facilitates its re-use.
Many scientific articles have the goal to test a hypothesis, so making the tests
of statistical predictions easier to find and access could be very beneficial.
We propose an approach that can be used to make hypothesis tests machine
readable. We believe there are two benefits to specifying a hypothesis test
in a way that a computer can evaluate whether the statistical prediction is
corroborated or not. First, hypothesis tests will become more transparent,
falsifiable, and rigorous. Second, scientists will benefit if information related
to hypothesis tests in scientific articles is easily findable and re-usable, for
example when performing meta-analyses, during peer review, and when
examining meta-scientific research questions. We examine what a machine
readable hypothesis test should look like, and demonstrate the feasibility
of machine readable hypothesis tests in a real-life example using the fully
operational prototype R package scienceverse.
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7

In many scientific fields researchers rely on hypothesis tests to determine whether8

empirical observations corroborate predictions. In a well-specified hypothesis test, a hypoth-9

esis is used to derive predictions, which are operationalized when designing a specific study,10

and translated into a testable statistical hypothesis. Data is collected, and the statistical11

hypothesis is corroborated or not. Although this process sounds relatively straightforward,12

hypothesis tests are performed rather poorly in practice. First, statistical hypotheses are13
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stated verbally, but these verbal descriptions rarely sufficiently constrain flexibility in the14

data analysis. Second, there is a lack of transparency about which statistical tests in15

the results section are related to the predictions in the introduction section, and which16

pattern of results should be observed to conclude that a prediction is corroborated. Finally,17

researchers typically only implicitly specify what would lead them to act as if their prediction18

is confirmed (i.e., typically a p-value smaller than 0.05), and rarely specify what would lead19

them to act as if their prediction is falsified. Currently, it is often only possible to indirectly20

infer the authors’ decision criteria, leading to disagreement about whether new patterns of21

results from replications should be considered to support or refute the hypothesis.22

By contrast, a well-specified hypothesis test states the statistical hypothesis for each23

prediction in a way that eliminates flexible implementations, clearly links predictions derived24

from the theoretical hypothesis to statistical tests, and gives unambiguous criteria to conclude25

the prediction is corroborated, falsified, or that the results are inconclusive. When we refer26

to falsifiability, we limit ourselves to the falsification of statistical predictions, not entire27

theories. A specific operationalization of a theoretical prediction always requires auxiliary28

hypotheses, and if a statistical hypothesis is falsified, it remains unclear whether the problem29

lies with the theory, or the auxiliaries (Meehl, 1990). Additionally, while machine readability30

is no guarantee that a hypothesis test is logically or statistically free from error, it provides31

reviewers and readers a way to unambiguously assess this, avoiding problems of interpretation.32

We propose that the gold standard for well-specified hypothesis tests should be a33

statistical prediction that is machine readable. This means that a computer can evaluate34

whether a statistical prediction is corroborated (or not) based on clearly articulated evaluation35

criteria and the observed data. Computers do not handle ambiguity well, and making a36

hypothesis test machine readable guarantees that it is specified precisely. While some of37

the improvements we suggest could also be achieved through careful verbal descriptions of38

mutually exclusive and exhaustive decision criteria in manuscripts and preregistrations, we39

believe that there are two broad arguments for a move to machine readable hypothesis tests.40

The first argument is that by specifying hypothesis tests in a format that can be read and41

evaluated by a machine, tests of statistical predictions and the conclusions derived from42

these tests will become more transparent, statistically falsifiable, and rigorous. This provides43

a first step to improve the currently poor practices scientists use to test hypotheses. The44

second argument is that the benefits of making data FAIR (findable, accessible, interoperable,45

and reusable) also apply to statistical predictions. If all aspects required to evaluate the test46

of a statistical prediction are machine-readable, we can easily reuse this information (e.g.,47

when performing a z-curve analysis, effect size meta-analysis, or p-curve analysis), and find48

and access this information (e.g., to answer meta-scientific questions about the proportion49

of statistical results in the scientific literature that corroborate the prediction). Although50

achieving all benefits of machine readable hypothesis tests might take many decades, and51

will require extensive collaboration, coordination, and standardization, we believe machine52

readable hypothesis tests as they can be implemented based on the approach and R package53

outlined in this manuscript can already lead to immediate improvements in research practices.54
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Poor practices when testing predictions55

As a concrete example of a typical hypothesis test in the published literature, DeBruine56

(2002) posited the theoretical prediction that people would exhibit higher levels of prosocial57

behavior towards those who physically resemble them, which follows from the idea that58

actions are influenced by an implicit evaluation of relatedness based on phenotypic similarity.59

Physical resemblance was manipulated by morphing face photographs with either the60

participant’s own face (self morphs) or another person’s face (other morphs). There were two61

versions of this manipulation: faces were morphed in shape only (n = 11) or in both shape62

and color (n = 13). Prosocial behavior was measured as the choice to trust or reciprocate63

trust in a monetary trust game where the first player could decide whether to trust the64

second player to split money and the second player, if trusted, could decide whether to65

reciprocate this trust by splitting the money equally or selfishly. The theoretical hypothesis66

was operationalized, and the operationalized prediction stated that people playing a trust67

game would trust and reciprocate more when playing with a person who was represented by68

a self morph than by an other morph. The statistical prediction was tested by counting the69

number of trusting and reciprocating responses participants made to self and other morphs70

and then performing a t-test on these counts, separately analyzed for the shape morphs and71

the shape-colour morphs. The statistical results indicated that participants made more trust72

responses to self morphs than to other morphs for both morph types. However, there were73

no differences in how often they reciprocated their partners’ trust. The conclusion drawn74

from this study was that these results show that facial resemblance can increase prosocial75

behaviour. It was noted that the fact that an effect was observed for the trust measure,76

but not for the reciprocation measure, could perhaps be explained by the different pay-off77

structures in this particular game.78

The first problem we can identify in this example is that it is not clear whether the79

operationalized prediction was confirmed if an effect was observed on both the trust measure80

and the reciprocation measure, or either of the two measures. From the conclusion the81

author draws, we can infer that the statistical prediction would be considered corroborated82

if the morphing manipulation had an effect on either the trust measure, or the reciprocation83

measure, or both. However, even if the decision rule can be inferred from the discussion, it84

is still not clear which patterns would be considered corroboration or falsification in future85

replications that might find similar but not identical patterns of results.86

The second problem is that it is not clearly specified what would corroborate the87

hypothesis and what would statistically falsify the hypothesis. Although it is never explicitly88

stated, we can infer that the prediction would be corroborated when either of the two89

tests is significant at an alpha level of 0.05, without correcting for multiple comparisons.90

Furthermore, we can infer that a non-significant p-value is interpreted as the absence of any91

meaningful effect (even though this is a formally incorrect interpretation of a null hypothesis92

test).93

The third problem is that there is a range of options when analyzing the data (e.g.,94

pooling the two types of morphs in one analysis, or reporting two separate analyses by95

morph version). As is often the case when testing statistical predictions, no unique analysis96

strategy follows unequivocally from the introduction and methods section, which can lead97
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to flexibility in the data analysis.98

What Does a Formalized Test of a Prediction Look Like?99

If we want to make hypothesis tests machine readable, we need to capture all essential100

aspects of a hypothesis test in a machine-readable data structure. A hypothesis test is a101

methodological procedure to evaluate a prediction that can be described on a conceptual102

level (e.g., people exhibit higher levels of prosocial behavior towards those who physically103

resemble them), an operationalized level (e.g., people playing a trust game make more104

trusting decisions when the person they play against is a self morph versus an other morph),105

and a statistical level (e.g., the average number of trust moves is statistically larger for106

games against self morphs than against other morphs in a dependent t-test).107

When we evaluate the result of a statistical prediction, we need to perform a statistical108

test, retrieve the relevant test result, and compare this to one or more criterion values. For109

example, our statistical prediction might be that we will observe a positive difference in the110

means between two measurements, which will be examined in a dependent t-test, from which111

we will determine the lower and upper 97.5% confidence interval around the mean difference,112

which we will compare against a value of 0. Statistical hypotheses are probabilistic, and113

probabilistic hypotheses can be made falsifiable “by specifying certain rejection rules which114

may render statistically interpreted evidence ‘inconsistent’ with the probabilistic theory”115

(Lakatos, 1978, p. 25). A hypothesis test thus requires researchers to specify when the116

observed results of a statistical test will lead them to act as if their prediction is consistent117

with the data, inconsistent with the data, or inconclusive (Neyman & Pearson, 1933).118

As highlighted above, one limitation of current practice when testing hypotheses is that119

researchers often do not explicitly state what would corroborate or falsify their prediction.120

To be able to unambiguously evaluate a hypothesis, researchers need to specify the rules121

they will use to evaluate whether statistical results corroborate a prediction, falsify it, or122

when the results are inconclusive. For example, in a 2x2 design, many different patterns of123

means across the four cells could be predicted (e.g., one of two main effects, or a specific124

pattern of the observed interaction effect), but the full pattern of possible results that would125

corroborate or falsify a prediction is seldom made explicit.126

There are different approaches that can be used to statistically conclude that the127

prediction made in a study is falsified. In practice, corroborating or falsifying a statistical128

prediction in a single study is rarely sufficient to draw strong conclusions about a theory129

(Lakatos, 1978), and one should always keep random variation in mind when interpreting130

statistical results. One approach to conclude a prediction is falsified is known as equivalence131

testing (Lakens, Scheel, & Isager, 2018). An equivalence test requires researchers to specify132

a smallest effect size of interest, and tests if the presence of an effect that is large enough to133

be deemed interesting can be statistically rejected.134

Continuing our example, we might conclude our prediction is corroborated when135

we can statistically conclude the observed mean difference for the trust measure, or the136

reciprocation measure, or both, is greater than zero, and neither are statistically smaller137

than the smallest effect size we care about. The prediction would be falsified if both effects138

are statistically smaller than the smallest effect size of interest, and inconclusive if we can139
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neither conclude either effect is statistically greater than zero, nor statistically smaller than140

the smallest effect size we care about. If our statistical test is a dependent t-test, our test141

result is the upper and lower bound of a 97.5% confidence interval (i.e., a hypothesis test142

with a Bonferroni corrected alpha level of 2.5%), and our smallest effect size of interest is 0.2,143

we can conclude that we have corroborated our prediction if the lower bound of our 97.5%144

confidence intervals are larger than 0 and the upper bound is not smaller than 0.2. We145

decide that our prediction is falsified if the upper bound of our 97.5% confidence intervals146

are smaller than 0.2, and our data is inconclusive in all other situations.147

Computationally Evaluating Hypotheses148

If a prediction is machine readable, it is possible to automatically determine if a149

prediction is corroborated by the data. Although computational reproducibility is becoming150

increasingly popular as user-friendly tools are continuously being developed, there are no151

existing solutions that make hypothesis tests machine readable and re-usable. We envision152

machine readable hypothesis tests as part of a completely reproducible workflow. Computer153

scripts will load the raw data, and if needed, create the analytic data from the raw data (e.g.,154

outlier removal, transformations, computing sum scores according to pre-specified rules).155

The statistical tests are automatically performed on the analytic data, and the relevant156

test statistics are retrieved. These test statistics are compared against pre-specified criteria,157

based on decision rules that evaluate whether the prediction is corroborated, falsified, or158

inconclusive. All the information that is required to perform these operations is stored in a159

structured meta-data file.160

We provide a vignette for a Quick Demo (see Open Practices section) with a concrete161

example of a machine-readable statistical prediction for the study by DeBruine (2002)162

described above. It is written using the fully operational prototype implemented in the163

R package scienceverse and produces a JSON file, which is an open-standard file format164

(in JavaScript Object Notation) that can be used to transmit data. Because it is an open-165

standard file format, it can easily be converted into any other open data file format (for166

example, the Journal Article Tag Suite), which in essence are all nested lists.. It can also be167

converted to a human-readable report, summarising the study with verbal descriptions and168

a list containing the conclusion for each statistical prediction.169

In summary, to make statistical hypotheses machine readable, we need to identify the170

individual components that make it possible to evaluate a hypothesis test. Our example171

relies on a statistical hypothesis that is tested in an analysis that takes data as input and172

returns test results. Some of these tests results will be compared to criteria, used in the173

evaluation of the test result. The sections below describe how each component can be174

specified in a machine-readable format.175

Setting up a study. The top level list (Box 1) contains components describing176

different aspects of the study, such as authors, hypotheses, materials, methods, data, and177

analyses. In the future we might be able to describe all meta-data pointing to information178

in a scientific article that we would like to be able to retrieve, but here we will focus on the179

aspects of the study that are required to make statistical predictions machine readable. To180

achieve this, we need a meta-data file that specifies the hypotheses, the analyses, and the181

evaluation criteria for each prediction.182

example/postreg.json
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The meta-data file is structured as a JSON object, which is a list of keys and values,183

separated by a colon. The list items are separated by commas and surrounded by curly184

brackets (see Box 1). The basic structure requires keys for the study name, info, authors,185

hypotheses, methods, data, and analyses. All values (except the name) default to an empty186

array “[]” where these components can be later added.187

Box 1. The top-level structure of the machine-readable study description.

{
"name": "Kinship and Prosocial Behaviour",
"info": [],
"authors": [],
"hypotheses": [ ...Box 2... ],
"methods": [],
"data": [ ...Box 6... ],
"analyses": [ ...Box 5... ]

}
188

Hypotheses. A study could contain multiple hypotheses, but our example contains189

only one. Each hypothesis (Box 2) consists of an id for referencing the hypothesis in other190

components, a verbal human-readable description, one or more criteria to evaluate191

analysis results, and rules to determine corroboration or falsification of the hypothesis.192

If the data are available, these rules are automatically evaluated and a conclusion of193

“corroborate”, “falsify”, or “inconclusive” is added.194

Box 2. The hypothesis component.

"hypotheses": [
{

"id": "self_pref",
"description": "Cues of kinship will increase prosocial

behaviour. Cues of kinship will be
manipulated by morphed facial self-
resemblance. Prosocial behaviour will be
measured by responses in the trust game.
The prediction is that the number of
trusting AND/OR reciprocating moves will
be greater to self morphs than to other
morphs.",

"criteria": [ ...Box3... ],
"corroboration": { ...Box 4... },
"falsification": { ...Box 4... },
"conclusion": "corroborate"

}
]

195
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Criteria. Each criterion (Box 3) needs an id to be able to reference it in the196

evaluations and references a named result from an analysis with the id analysis_id.197

An operator and a comparator are provided for each criterion to specify the method of198

comparison (e.g., >, <, =, !=) and the comparison value (e.g., 0). For example, the first199

criterion specifies that if the statistical result “conf.int[1]” from “trust_analysis” is “>” than200

“0”, then the criterion “t_lo” evaluates to a conclusion of “true”. In other words, if we can201

statistically reject the null hypothesis (because the lower bound of the confidence interval202

does not overlap with 0), this criterion of our statistical prediction is corroborated. Although203

in essence this describes nothing more than what researchers do when they interpret test204

results, this decision process is now captured and made explicit in machine-readable code.205
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Box 3. Criteria for evaluation.

"hypotheses": [
{

...
"criteria": [

{
"id": "t_lo",
"analysis_id": "trust",
"result": "conf.int[1]",
"operator": ">",
"comparator": 0,
"conclusion": true

},
{

"id": "t_hi",
"analysis_id": "trust",
"result": "conf.int[2]",
"operator": ">",
"comparator": 0.2,
"conclusion": true

},
{

"id": "r_lo",
"analysis_id": "recip",
"result": "conf.int[1]",
"operator": ">",
"comparator": 0,
"conclusion": false

},
{

"id": "r_hi",
"analysis_id": "recip",
"result": "conf.int[2]",
"operator": ">",
"comparator": 0.2,
"conclusion": true

}
],

},
...

]
206

Hypothesis Evaluation. The corroboration and falsification sub-207

components (Box 4) describe rules to determine corroboration or falsification of a208

hypothesis from the criteria conclusions, and each consists of three elements. The209
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description element contains verbal descriptions of the decision rules for concluding the210

hypothesis is corroborated or falsified. The evaluation element contains a logical version211

referencing the criteria id. For example, “(t_lo & t_hi) | (r_lo & r_hi)” means that212

the corroboration result will be set to “true” if the first two criteria are both true, or if the213

last two criteria are both true, while “!t_hi & !r_hi” means that the falsify conclusion214

will be set to “true” if both of these criteria are false (note that an exclamation mark means215

‘not’).216

Box 4. Corroboration and falsification rules.

"hypotheses": [
{

...
"corroboration": {

"description": "The hypothesis is corroborated if the
97.5% CI lower bound is greater than 0
and the 97.5% CI upper bound is
greater than 0.2 (the SESOI) for either
the trust or reciprocation moves.",

"evaluation": "(t_lo & t_hi) | (r_lo & r_hi)",
"result": true

},
"falsification": {

"description": "The hypothesis is falsified if the
97.5% CI upper bound is smaller than
0.2 (the SESOI) for both trust and
reciprocation.",

"evaluation": "!t_hi & !r_hi",
"result": false

},
}

]
217

Analyses. Each analysis is specified in the analysis component (Box 5). An218

analysis consists of an id to reference the statistical test when evaluating the criteria and219

the code used to run the analysis. Once data are attached and the analyses are run, a220

list of named results can added (either manually or automatically by software such as221

scienceverse) to be referenced in the criteria. Each analysis can also contain additional222

information, such as the software used to perform the analysis. The example below specifies223

two t-tests, using the t.test function in R. In the working scienceverse prototype used in224

this manuscript, short analyses can be added directly, while longer analysis scripts that225

return a test result can be added by referencing an external analysis script.226
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Box 5. The analysis component.

"analyses": [
{

"id": "trust",
"code": " t.test(kin$trust_self, kin$trust_other,

paired = TRUE, conf.level = 0.975)",
"software": "R version 4.0.2 (2020-06-22)",
"results": {

"statistic": 2.5045,
"parameter": 23,
"p.value": 0.0198,
"conf.int": [0.0213, 0.9787],
"estimate": 0.5,
"null.value": 0,
"stderr": 0.1996,
"alternative": "two.sided",
"method": "Paired t-test",
"data.name": "kin$trust_self and kin$trust_other"

}
},
{

"id": "recip",
"code": " t.test(kin$recip_self, kin$recip_other,

paired = TRUE, conf.level = 0.975)",
"software": "R version 4.0.2 (2020-06-22)",
"results": {

"statistic": -0.2138,
"parameter": 23,
"p.value": 0.8326,
"conf.int": [-0.5089, 0.4256],
"estimate": -0.0417,
"null.value": 0,
"stderr": 0.1949,
"alternative": "two.sided",
"method": "Paired t-test",
"data.name": "kin$recip_self and kin$recip_other"

}
}

]
227

Data. Each dataset can be specified in the data component (Box 6). A dataset228

consists of an id to reference the dataset in analyses and other information such as how to229

obtain the data (e.g., doi, url). The codebook contains descriptions of each column, but it230

is even possible to include the data itself in this component. By storing the data underlying231
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the reported analyses as nested lists in the same file together with good meta-data, a reported232

analysis could be completely reproduced in the future from a single file. Furthermore, it233

becomes very easy to perform additional analyses or sensitivity analyses on the data.234

Box 6 contains a data component with a codebook created by scienceverse using the235

Psych-DS 0.1.0 format, which is currently still in development. The descriptors for each236

column can be arbitrarily detailed, or follow other meta-data formats. For other software237

that helps researchers to create and share machine-readable codebooks, see Arslan (2019).238

Automatic Evaluation. Now that the prediction is specified in a machine readable239

format, it is possible for the statistical prediction to be evaluated automatically. Automatic240

evaluation of machine readable hypotheses has at least two useful functions during the241

peer review process. First, we foresee a future where researchers are required to submit242

fully computationally reproducible analysis scripts with their submissions. This will require243

editorial assistants or reviewers to check the computational reproducibility of the reported244

results in a manuscript. Machine-readable hypothesis tests would make this check a matter245

of running a single function. The scienceverse R package can do this for code written in R,246

and a machine-readable format makes it straightforward to create scripts that automatically247

run analyses in other languages.248

Based on the information specified in the analyses, criteria, and data components, the249

study_analyze function in scienceverse reads in the analytic data, performs each analysis,250

and stores and evaluates the results. In the example above, running the study_analyze251

function will automatically load the data as the object “kin”, and perform the “trust” analysis252

by running the analysis t.test(x = kin$trust_self, y = kin$trust_other, paired =253

TRUE, conf.level = .975). The result of this analysis is automatically stored (e.g., the254

t.test function in R returns a list of named numbers, including “conf.int”: [0.0213, 0.9787]).255

The criteria are then evaluated against the results of the analyses. For example, because the256

first number in the “conf.int” result (0.0213) is larger (“>”) than zero (“0”), the conclusion257

that this criterion is “true” will be stored (see Box 3).258

After the study_analyze function has drawn conclusions about whether each criterion259

is met or not, based on the results of the analyses, the evaluation rules can be used to260

determine whether the prediction is corroborated, falsified, or neither (and thus the results261

are inconclusive). For the prediction to be corroborated, the criteria for “t_lo” and “t_hi”262

have to be met, and/or the criteria for “r_lo” and “r_hi” have to be met. Since the263

conclusions for “t_lo” and “t_hi” are both true, the prediction is corroborated, and because264

it is not true that both upper bounds for the confidence interval are smaller than 0.2, the265

prediction is not falsified. The overall conclusion is therefore that our statistical prediction266

is corroborated. It will typically be useful to create a human-readable summary. This can267

be done with the study_save function, which created output as presented in Figure 1 below.268

Such a human-readable summary would allow editorial assistants or reviewers to quickly269

check the computational reproducibility of the reported results.270

https://docs.google.com/document/d/1u8o5jnWk0Iqp_J06PTu5NjBfVsdoPbBhstht6W0fFp0/edit#heading=h.caxnnxqaobj
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Box 6. The data component.

"data": [
{

"id": "kin",
"codebook": {

"@context": "https://schema.org/",
"@type": "Dataset",
"name": "kin",
"schemaVersion": "Psych-DS 0.1.0",
"url": "https://osf.io/ewfhs/",
"variableMeasured": [

{
"@type": "PropertyValue",
"name": "trust_self",
"description": "Trusting self-morphs",
"dataType": "int"

},
{

"@type": "PropertyValue",
"name": "trust_other",
"description": "Trusting other-morphs",
"dataType": "int"

},
{

"@type": "PropertyValue",
"name": "recip_self",
"description": "Reciprocating self-morphs",
"dataType": "int"

},
{

"@type": "PropertyValue",
"name": "recip_other",
"description": "Reciprocating other-morphs",
"dataType": "int"

}
]

},
"data": {

"trust_self": [1, 2, 2, 1, 1, 1, 1, 1, 2, 0, 2, 0,
1, 2, 2, 3, 2, 2, 1, 1, 2, 0, 0, 1],

"trust_other": [1, 2, 2, 0, 1, 0, 0, 0, 1, 0, 1, 0,
1, 1, 1, 0, 1, 2, 2, 0, 0, 0, 2, 1],

"recip_self": [0, 1, 3, 2, 1, 1, 1, 3, 3, 2, 3, 1,
1, 2, 3, 3, 3, 1, 1, 1, 3, 0, 3, 1],

"recip_other": [1, 1, 2, 2, 3, 2, 1, 3, 3, 1, 3, 0,
1, 3, 3, 3, 3, 0, 3, 0, 1, 0, 3, 2]

}
}

],
271



MACHINE READABLE HYPOTHESES 13

Box 7. Results of data analysis.

"analyses": [
{

"id": "trust",
...
"results": {

"statistic": 2.5045,
"parameter": 23,
"p.value": 0.0198,
"conf.int": [0.0213, 0.9787],
"estimate": 0.5,
"null.value": 0,
"stderr": 0.1996,
"alternative": "two.sided",
"method": "Paired t-test",
"data.name": "kin$trust_self and kin$trust_other"

}
},
{

"id": "recip",
...
"results": {

"statistic": -0.2138,
"parameter": 23,
"p.value": 0.8326,
"conf.int": [-0.5089, 0.4256],
"estimate": -0.0417,
"null.value": 0,
"stderr": 0.1949,
"alternative": "two.sided",
"method": "Paired t-test",
"data.name": "kin$recip_self and kin$recip_other"

}
}

]
272

Benefits of Machine Readability273

The example we describe above that uses the coding language R to specify analyses and274

our supplemental materials provide examples that use our R package, scienceverse. However,275

the use of R specifically, or any coding language, is not essential to the general idea of machine276

readable hypotheses. Much like the Brain Imaging Data Structure format (Gorgolewski et277

al., 2016), the proposed open format makes it possible to create data processing pipelines278

in any language. One can even create a JSON-formatted text file by hand in a text editor,279
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Figure 1 . Example of machine readable output generated by scienceverse that shows the
results and evaluation of the hypotheses.
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and specify the result values manually. This could be a useful way to make the information280

in existing archives machine-readable, even if we don’t have access to the original data or281

code. Currently, implementing machine readable hypothesis tests requires some effort, both282

in learning to specify explicit criteria for corroboration and falsification, as in programming283

knowledge to enter the meta-data. Future work should focus on making this process as easy284

as possible by providing detailed examples that users can follow, and by developing online285

forms that guide researchers through the creation of a scienceverse compatible JSON file.286

We believe the benefits of making statistical predictions machine readable are worth the287

extra effort. First, machine-readable hypotheses remove ambiguity about what researchers288

predict and which criteria must be met to conclude a statistical hypothesis is corroborated.289

Predictions are explicitly linked to the tests that are performed to evalaute if the prediction290

is corroborated or not. The exact test is specified, which prevents flexibility in the data291

analysis. Furthermore, specifying the criteria for corroboration or falsification explicitly292

prevents future researchers who will replicate the study from having to infer which results293

would corroborate or falsify the original finding. Although machine readable hypotheses294

might feel extremely rigid, it is possible to specify a range of sensitivity analyses across295

which the prediction should hold.296

Another benefit of making statistical hypotheses machine readable is that many297

important aspects of the hypothesis test become accessible, findable, and usable. This will298

benefit researchers in the future. We can imagine a utopian future where meta-data files such299

as the example in Boxes 1 to 7 are accessible by browsing to a website that consists of the300

DOI, appended by /meta (e.g., https://doi.org/10.1098/rspb.2002.2034/meta). Researchers301

can access these files to load all the information that is available about statistical predictions.302

For example, when a completely reproducible workflow is used, and data can be accessed as303

part of the meta-data file, the meta-data file should be sufficient to easily calculate or access304

effect sizes from the performed statistical tests for meta-analyses.305

While making hypothesis tests machine readable can obviously not ensure that statis-306

tical predictions are sensible or logically coherent, the process of writing a machine-readable307

statistical prediction could have a secondary benefit of providing a well-structured framework308

to think through and specify all important aspects of a statistical prediction. This might not309

be easy. Researchers might find it difficult to specify all required components in advance, or310

to specify the ranges of results that would corroborate or falsify a prediction. Sometimes311

a research idea is not yet well-specified enough to be tested in a confirmatory hypothesis312

test. Hypothesis tests are an extremely formalized procedure to make a decision whether313

a prediction is corroborated or not. If researchers realize they are actually not yet ready314

to make a falsifiable statistical prediction when creating a machine-readable hypothesis315

test, we would consider this a benefit as well (Scheel, Tiokhin, Isager, & Lakens, 2020).316

Researchers might then decide to estimate the population effect size instead of testing a317

falsifiable prediction. Alternatively, they might decide to perform additional studies that318

allow them to make a more falsifiable prediction. Specifying exploratory analyses in a319

machine-readable way still has benefits such as clarifying the source of statistical values in a320

manuscript and providing values for meta-analysis.321

https://doi.org/10.1098/rspb.2002.2034/meta
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Use Cases322

Registered Reports. We realize that several aspects of our proposal to make323

hypothesis tests machine readable sound futuristic. At the same time, we believe immediate324

use cases for machine-readable hypothesis tests already exist in the form of the Registered325

Report publication format (Chambers, 2019). Registered Reports require researchers to326

clearly specify their statistical prediction, and are developed to reduce flexibility in the327

statistical analyses. After Stage 1 review based on the introduction, methods, and analysis328

plan, researchers can receive an ‘in principle acceptance’. They then collect the data, and329

submit a Stage 2 Registered Report that includes the results and conclusion. This should330

make it relatively easy for reviewers to compare planned and reported analyses. Peer331

reviewers might not always have the time to carefully check whether each reported analysis332

in the manuscript matches the planned analysis in the preregistration, and whether the333

conclusions in the manuscript follow from the test results. A machine readable hypothesis334

test can automatically generate reports that facilitate peer review.335

Furthermore, whereas submission guidelines for Registered Reports require researchers336

to specify their analyses, researchers are typically not required to explain in advance when337

they would consider their hypotheses corroborated or falsified, while doing so would make it338

easier for reviewers to evaluate the severity of a statistical test (Lakens, 2019). In Registered339

Replication Reports published in AMPPS, authors are asked to explicitly specify when340

a replication corroborates the original finding. For example, in the analysis plan of the341

Registered Replication Report on Fischer, Castel, Dodd, and Pratt (2003) by Colling et al.342

(2020), available at https://osf.io/6a2ny/, a clear decision rule for corroboration is specified:343

“If the congruency effect is positive and statistically significantly different from zero in the344

500 ms and 750 ms delay conditions but not statistically significantly different from zero345

in the 250 ms and 1000 ms delay conditions, we will consider the findings of Fischer et346

al. (2003) to be replicated within the limits they propose.”347

Scienceverse illustrates one possible workflow where, after specifying the hypotheses at348

a Stage 1 submission, a machine-readable report can be produced. This report looks similar349

to Figure 1, without any of the lines containing color-coded true or false evaluations of the350

predictions. When the data is collected, it can be added to the meta-data file generated351

at Stage 1, the preregistered analyses can then be run, and a human-readable report can352

be generated as in Figure 1. This should make it relatively easy for reviewers to compare353

planned and reported analyses.354

Power Analyses. To check the code in a preregistration, the scienceverse package355

has a function to simulate datasets by specifying the data structure for factorial designs356

(using the R-package faux, DeBruine, 2020). Another function generates a specified number357

of simulations, runs the analyses using the automatic evaluation procedure described above,358

and reports the total number of simulations for which each hypothesis was corroborated,359

falsified, or inconclusive. We provide an R script with an extended example of the study360

above that includes a power analysis in the supplemental materials (see the Open Practices361

section).362

Meta-analyses. Researchers face several challenges when they want to examine363

research lines with meta-analytic techniques such as effect size meta-analysis, p-curve analysis364

(Simonsohn, Nelson, & Simmons, 2014), or z-curve analysis (Brunner & Schimmack, 2020).365

https://osf.io/6a2ny/
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First, many scientific papers do not report the results of statistical tests in sufficient detail to366

include these studies in a meta-analysis. Effect sizes are often not computed, and although367

researchers performing a meta-analysis can attempt to manually calculate effect sizes, this368

requires access to the means, standard deviations, correlations for within comparisons,369

and exact sample sizes for each condition, which are also often missing. Effect sizes can370

sometimes still be approximated from test statistics, but these are often not reported for371

non-significant results. The second problem a researcher performing a meta-analysis faces is372

a lack of transparency about which statistical test in the results section is related to the373

theoretical predictions in the introduction section. This can make it difficult to select the374

appropriate test to include in a meta-analysis.375

The structured meta-study files we propose solve both these problems, as long as376

researchers 1) include the raw data in the meta-study file, and 2) specify for each hypothesis377

which statistical test result(s) will corroborate or falsify the predictions. In the online378

vignettes (see Open Practices section), we demonstrate how a z-curve and p-curve analysis379

can easily be performed based on the p-values stored in the results section of the meta-study380

file, and how the raw data across meta-study files can be used to identify shared variables381

across data sets and compute and analyze effect sizes in a meta-analysis. As meta-analyses382

will almost always include data from published papers that have no meta-data available,383

unless a concerted effort is made to catalog all published studies (for a noteworthy example,384

see Bosco, Field, Larsen, Chang, and Uggerslev (2020)), these benefits will at best apply to385

a subset of the studies included in a meta-analysis.386

Conclusions387

Technological innovation makes it possible to communicate scientific findings in digital388

formats that allow for much easier re-use of scientific information contained in these digital389

files compared to traditional journal articles. As we move towards a time where researchers390

are expected to share their data in a way that is FAIR (findable, accessible, interoperable,391

and reusable), we believe it is feasible and beneficial to make the rest of research machine392

readable as well. We see machine-readable hypothesis tests as a logical development, with393

immediate benefits for the rigour of hypothesis tests. Increasing the accessibility of essential394

information related to hypothesis tests in scientific papers will also facilitate peer review,395

especially of Registered Reports, and facilitate meta-scientific research. Making statistical396

predictions machine readable will be an important next step towards a scientific literature397

that can be accessed not just visually, but also computationally.398
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