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6 Abstract

Making scientific information machine-readable greatly facilitates its re-use.
Many scientific articles have the goal to test a hypothesis, so making the tests
of statistical predictions easier to find and access could be very beneficial.
We propose an approach that can be used to make hypothesis tests machine
readable. We believe there are two benefits to specifying a hypothesis test
in a way that a computer can evaluate whether the statistical prediction is
corroborated or not. First, hypothesis tests will become more transparent,
falsifiable, and rigorous. Second, scientists will benefit if information related
to hypothesis tests in scientific articles is easily findable and re-usable, for
example when performing meta-analyses, during peer review, and when
examining meta-scientific research questions. We examine what a machine
readable hypothesis test should look like, and demonstrate the feasibility
of machine readable hypothesis tests in a real-life example using the fully
operational prototype R package scienceverse.
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8 In many scientific fields researchers rely on hypothesis tests to determine whether
9 empirical observations corroborate predictions. In a well-specified hypothesis test, a hypoth-
10 esis is used to derive predictions, which are operationalized when designing a specific study,
1 and translated into a testable statistical hypothesis. Data is collected, and the statistical
12 hypothesis is corroborated or not. Although this process sounds relatively straightforward,
13 hypothesis tests are performed rather poorly in practice. First, statistical hypotheses are
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MACHINE READABLE HYPOTHESES 2

stated verbally, but these verbal descriptions rarely sufficiently constrain flexibility in the
data analysis. Second, there is a lack of transparency about which statistical tests in
the results section are related to the predictions in the introduction section, and which
pattern of results should be observed to conclude that a prediction is corroborated. Finally,
researchers typically only implicitly specify what would lead them to act as if their prediction
is confirmed (i.e., typically a p-value smaller than 0.05), and rarely specify what would lead
them to act as if their prediction is falsified. Currently, it is often only possible to indirectly
infer the authors’ decision criteria, leading to disagreement about whether new patterns of
results from replications should be considered to support or refute the hypothesis.

By contrast, a well-specified hypothesis test states the statistical hypothesis for each
prediction in a way that eliminates flexible implementations, clearly links predictions derived
from the theoretical hypothesis to statistical tests, and gives unambiguous criteria to conclude
the prediction is corroborated, falsified, or that the results are inconclusive. When we refer
to falsifiability, we limit ourselves to the falsification of statistical predictions, not entire
theories. A specific operationalization of a theoretical prediction always requires auxiliary
hypotheses, and if a statistical hypothesis is falsified, it remains unclear whether the problem
lies with the theory, or the auxiliaries (Meehl, 1990). Additionally, while machine readability
is no guarantee that a hypothesis test is logically or statistically free from error, it provides
reviewers and readers a way to unambiguously assess this, avoiding problems of interpretation.

We propose that the gold standard for well-specified hypothesis tests should be a
statistical prediction that is machine readable. This means that a computer can evaluate
whether a statistical prediction is corroborated (or not) based on clearly articulated evaluation
criteria and the observed data. Computers do not handle ambiguity well, and making a
hypothesis test machine readable guarantees that it is specified precisely. While some of
the improvements we suggest could also be achieved through careful verbal descriptions of
mutually exclusive and exhaustive decision criteria in manuscripts and preregistrations, we
believe that there are two broad arguments for a move to machine readable hypothesis tests.
The first argument is that by specifying hypothesis tests in a format that can be read and
evaluated by a machine, tests of statistical predictions and the conclusions derived from
these tests will become more transparent, statistically falsifiable, and rigorous. This provides
a first step to improve the currently poor practices scientists use to test hypotheses. The
second argument is that the benefits of making data FAIR (findable, accessible, interoperable,
and reusable) also apply to statistical predictions. If all aspects required to evaluate the test
of a statistical prediction are machine-readable, we can easily reuse this information (e.g.,
when performing a z-curve analysis, effect size meta-analysis, or p-curve analysis), and find
and access this information (e.g., to answer meta-scientific questions about the proportion
of statistical results in the scientific literature that corroborate the prediction). Although
achieving all benefits of machine readable hypothesis tests might take many decades, and
will require extensive collaboration, coordination, and standardization, we believe machine
readable hypothesis tests as they can be implemented based on the approach and R package
outlined in this manuscript can already lead to immediate improvements in research practices.
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MACHINE READABLE HYPOTHESES 3

Poor practices when testing predictions

As a concrete example of a typical hypothesis test in the published literature, DeBruine
(2002) posited the theoretical prediction that people would exhibit higher levels of prosocial
behavior towards those who physically resemble them, which follows from the idea that
actions are influenced by an implicit evaluation of relatedness based on phenotypic similarity.
Physical resemblance was manipulated by morphing face photographs with either the
participant’s own face (self morphs) or another person’s face (other morphs). There were two
versions of this manipulation: faces were morphed in shape only (n = 11) or in both shape
and color (n = 13). Prosocial behavior was measured as the choice to trust or reciprocate
trust in a monetary trust game where the first player could decide whether to trust the
second player to split money and the second player, if trusted, could decide whether to
reciprocate this trust by splitting the money equally or selfishly. The theoretical hypothesis
was operationalized, and the operationalized prediction stated that people playing a trust
game would trust and reciprocate more when playing with a person who was represented by
a self morph than by an other morph. The statistical prediction was tested by counting the
number of trusting and reciprocating responses participants made to self and other morphs
and then performing a t-test on these counts, separately analyzed for the shape morphs and
the shape-colour morphs. The statistical results indicated that participants made more trust
responses to self morphs than to other morphs for both morph types. However, there were
no differences in how often they reciprocated their partners’ trust. The conclusion drawn
from this study was that these results show that facial resemblance can increase prosocial
behaviour. It was noted that the fact that an effect was observed for the trust measure,
but not for the reciprocation measure, could perhaps be explained by the different pay-off
structures in this particular game.

The first problem we can identify in this example is that it is not clear whether the
operationalized prediction was confirmed if an effect was observed on both the trust measure
and the reciprocation measure, or either of the two measures. From the conclusion the
author draws, we can infer that the statistical prediction would be considered corroborated
if the morphing manipulation had an effect on either the trust measure, or the reciprocation
measure, or both. However, even if the decision rule can be inferred from the discussion, it
is still not clear which patterns would be considered corroboration or falsification in future
replications that might find similar but not identical patterns of results.

The second problem is that it is not clearly specified what would corroborate the
hypothesis and what would statistically falsify the hypothesis. Although it is never explicitly
stated, we can infer that the prediction would be corroborated when either of the two
tests is significant at an alpha level of 0.05, without correcting for multiple comparisons.
Furthermore, we can infer that a non-significant p-value is interpreted as the absence of any
meaningful effect (even though this is a formally incorrect interpretation of a null hypothesis
test).

The third problem is that there is a range of options when analyzing the data (e.g.,
pooling the two types of morphs in one analysis, or reporting two separate analyses by
morph version). As is often the case when testing statistical predictions, no unique analysis
strategy follows unequivocally from the introduction and methods section, which can lead
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MACHINE READABLE HYPOTHESES 4

to flexibility in the data analysis.

What Does a Formalized Test of a Prediction Look Like?

If we want to make hypothesis tests machine readable, we need to capture all essential
aspects of a hypothesis test in a machine-readable data structure. A hypothesis test is a
methodological procedure to evaluate a prediction that can be described on a conceptual
level (e.g., people exhibit higher levels of prosocial behavior towards those who physically
resemble them), an operationalized level (e.g., people playing a trust game make more
trusting decisions when the person they play against is a self morph versus an other morph),
and a statistical level (e.g., the average number of trust moves is statistically larger for
games against self morphs than against other morphs in a dependent t-test).

When we evaluate the result of a statistical prediction, we need to perform a statistical
test, retrieve the relevant test result, and compare this to one or more criterion values. For
example, our statistical prediction might be that we will observe a positive difference in the
means between two measurements, which will be examined in a dependent ¢-test, from which
we will determine the lower and upper 97.5% confidence interval around the mean difference,
which we will compare against a value of 0. Statistical hypotheses are probabilistic, and
probabilistic hypotheses can be made falsifiable “by specifying certain rejection rules which
may render statistically interpreted evidence ‘inconsistent’ with the probabilistic theory”
(Lakatos, 1978, p. 25). A hypothesis test thus requires researchers to specify when the
observed results of a statistical test will lead them to act as if their prediction is consistent
with the data, inconsistent with the data, or inconclusive (Neyman & Pearson, 1933).

As highlighted above, one limitation of current practice when testing hypotheses is that
researchers often do not explicitly state what would corroborate or falsify their prediction.
To be able to unambiguously evaluate a hypothesis, researchers need to specify the rules
they will use to evaluate whether statistical results corroborate a prediction, falsify it, or
when the results are inconclusive. For example, in a 2x2 design, many different patterns of
means across the four cells could be predicted (e.g., one of two main effects, or a specific
pattern of the observed interaction effect), but the full pattern of possible results that would
corroborate or falsify a prediction is seldom made explicit.

There are different approaches that can be used to statistically conclude that the
prediction made in a study is falsified. In practice, corroborating or falsifying a statistical
prediction in a single study is rarely sufficient to draw strong conclusions about a theory
(Lakatos, 1978), and one should always keep random variation in mind when interpreting
statistical results. One approach to conclude a prediction is falsified is known as equivalence
testing (Lakens, Scheel, & Isager, 2018). An equivalence test requires researchers to specify
a smallest effect size of interest, and tests if the presence of an effect that is large enough to
be deemed interesting can be statistically rejected.

Continuing our example, we might conclude our prediction is corroborated when
we can statistically conclude the observed mean difference for the trust measure, or the
reciprocation measure, or both, is greater than zero, and neither are statistically smaller
than the smallest effect size we care about. The prediction would be falsified if both effects
are statistically smaller than the smallest effect size of interest, and inconclusive if we can
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MACHINE READABLE HYPOTHESES )

neither conclude either effect is statistically greater than zero, nor statistically smaller than
the smallest effect size we care about. If our statistical test is a dependent t-test, our test
result is the upper and lower bound of a 97.5% confidence interval (i.e., a hypothesis test
with a Bonferroni corrected alpha level of 2.5%), and our smallest effect size of interest is 0.2,
we can conclude that we have corroborated our prediction if the lower bound of our 97.5%
confidence intervals are larger than 0 and the upper bound is not smaller than 0.2. We
decide that our prediction is falsified if the upper bound of our 97.5% confidence intervals
are smaller than 0.2, and our data is inconclusive in all other situations.

Computationally Evaluating Hypotheses

If a prediction is machine readable, it is possible to automatically determine if a
prediction is corroborated by the data. Although computational reproducibility is becoming
increasingly popular as user-friendly tools are continuously being developed, there are no
existing solutions that make hypothesis tests machine readable and re-usable. We envision
machine readable hypothesis tests as part of a completely reproducible workflow. Computer
scripts will load the raw data, and if needed, create the analytic data from the raw data (e.g.,
outlier removal, transformations, computing sum scores according to pre-specified rules).
The statistical tests are automatically performed on the analytic data, and the relevant
test statistics are retrieved. These test statistics are compared against pre-specified criteria,
based on decision rules that evaluate whether the prediction is corroborated, falsified, or
inconclusive. All the information that is required to perform these operations is stored in a
structured meta-data file.

We provide a vignette for a Quick Demo (see Open Practices section) with a concrete
example of a machine-readable statistical prediction for the study by DeBruine (2002)
described above. It is written using the fully operational prototype implemented in the
R package scienceverse and produces a JSON file, which is an open-standard file format
(in JavaScript Object Notation) that can be used to transmit data. Because it is an open-
standard file format, it can easily be converted into any other open data file format (for
example, the Journal Article Tag Suite), which in essence are all nested lists.. It can also be
converted to a human-readable report, summarising the study with verbal descriptions and
a list containing the conclusion for each statistical prediction.

In summary, to make statistical hypotheses machine readable, we need to identify the
individual components that make it possible to evaluate a hypothesis test. Our example
relies on a statistical hypothesis that is tested in an analysis that takes data as input and
returns test results. Some of these tests results will be compared to criteria, used in the
evaluation of the test result. The sections below describe how each component can be
specified in a machine-readable format.

Setting up a study. The top level list (Box 1) contains components describing
different aspects of the study, such as authors, hypotheses, materials, methods, data, and
analyses. In the future we might be able to describe all meta-data pointing to information
in a scientific article that we would like to be able to retrieve, but here we will focus on the
aspects of the study that are required to make statistical predictions machine readable. To
achieve this, we need a meta-data file that specifies the hypotheses, the analyses, and the
evaluation criteria for each prediction.
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The meta-data file is structured as a JSON object, which is a list of keys and values,
separated by a colon. The list items are separated by commas and surrounded by curly
brackets (see Box 1). The basic structure requires keys for the study name, info, authors,
hypotheses, methods, data, and analyses. All values (except the name) default to an empty
array “[]” where these components can be later added.

Box 1. The top-level structure of the machine-readable study description.

{
"name": "Kinship and Prosocial Behaviour",
"info": [],
"authors": [],
"hypotheses": [ ...Box 2... 1],
"methods": [],
"data": [ ...Box 6... ],
"analyses": [ ...Box 5... ]
}

Hypotheses. A study could contain multiple hypotheses, but our example contains
only one. Each hypothesis (Box 2) consists of an id for referencing the hypothesis in other
components, a verbal human-readable description, one or more criteria to evaluate
analysis results, and rules to determine corroboration or falsification of the hypothesis.
If the data are available, these rules are automatically evaluated and a conclusion of
“corroborate”; “falsify”, or “inconclusive” is added.

Box 2. The hypothesis component.

"hypotheses": [
{

"id": "self_pref",

"description": "Cues of kinship will increase prosocial
behaviour. Cues of kinship will be
manipulated by morphed facial self-
resemblance. Prosocial behaviour will be
measured by responses in the trust game.
The prediction is that the number of
trusting AND/OR reciprocating moves will
be greater to self morphs than to other
morphs.",

"criteria": [ ...Box3... ],

"corroboration": { ...Box 4... },

"falsification": { ...Box 4... },

"conclusion": "corroborate"

b
]
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Criteria. Each criterion (Box 3) needs an id to be able to reference it in the
evaluations and references a named result from an analysis with the id analysis_id.
An operator and a comparator are provided for each criterion to specify the method of
comparison (e.g., >, <, =, =) and the comparison value (e.g., 0). For example, the first
criterion specifies that if the statistical result “conf.int[1]” from “trust_analysis” is “>" than
“0”, then the criterion “t_lo” evaluates to a conclusion of “true”. In other words, if we can
statistically reject the null hypothesis (because the lower bound of the confidence interval
does not overlap with 0), this criterion of our statistical prediction is corroborated. Although
in essence this describes nothing more than what researchers do when they interpret test
results, this decision process is now captured and made explicit in machine-readable code.
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Box 3. Criteria for evaluation.

"hypotheses": [
{
"criteria": [

{
"id": "t_lo",
"analysis_id": "trust",
"result": "conf.int[1]",
"operator": ">",
"comparator": O,
"conclusion": true

s

{
"id": "t_hi",
"analysis_id": "trust",
"result": "conf.int[2]",
"operator": ">",
"comparator": 0.2,
"conclusion": true

},

{
"id": "r_lo",
"analysis_id": "recip",
"result": "conf.int[1]",
"operator": ">",
"comparator": O,
"conclusion": false

b

{
"id": "r_hi",
"analysis_id": "recip",
"result": "conf.int[2]",
"operator": ">",
"comparator": 0.2,
"conclusion": true

}

P
12,
]
Hypothesis Evaluation. The corroboration and falsification sub-

components (Box 4) describe rules to determine corroboration or falsification of a
hypothesis from the criteria conclusions, and each consists of three elements. The
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description element contains verbal descriptions of the decision rules for concluding the
hypothesis is corroborated or falsified. The evaluation element contains a logical version
referencing the criteria id. For example, “(t_lo & t_hi) | (r_lo & r_hi)” means that
the corroboration result will be set to “true” if the first two criteria are both true, or if the
last two criteria are both true, while “!'t_hi & !'r_hi” means that the falsify conclusion
will be set to “true” if both of these criteria are false (note that an exclamation mark means
‘not’).

Box 4. Corroboration and falsification rules.

"hypotheses": [
{
"corroboration": {
"description": "The hypothesis is corroborated if the
97.5% CI lower bound is greater than O
and the 97.5% CI upper bound is
greater than 0.2 (the SESOI) for either
the trust or reciprocation moves.",
"evaluation": "(t_lo & t hi) | (r_lo & r_hi)",
"result": true
X,
"falsification": {
"description": "The hypothesis is falsified if the
97.5% CI upper bound is smaller than
0.2 (the SESOI) for both trust and
reciprocation.",
"evaluation": "!t_hi & !r_hi",
"result": false
X,
}
]

Analyses. Each analysis is specified in the analysis component (Box 5). An
analysis consists of an id to reference the statistical test when evaluating the criteria and
the code used to run the analysis. Once data are attached and the analyses are run, a
list of named results can added (either manually or automatically by software such as
scienceverse) to be referenced in the criteria. Each analysis can also contain additional
information, such as the software used to perform the analysis. The example below specifies
two t-tests, using the t.test function in R. In the working scienceverse prototype used in
this manuscript, short analyses can be added directly, while longer analysis scripts that
return a test result can be added by referencing an external analysis script.
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Box 5. The analysis component.

10

"analyses": [
{
"id": "trust",
"code": " t.test (kin$trust_self, kin$trust other,
paired = TRUE, conf.level = 0.975)",
"software": "R version 4.0.2 (2020-06-22)",
"results": {
"statistic": 2.5045,
"parameter": 23,
"p.value": 0.0198,
"conf.int": [0.0213, 0.9787],
"estimate": 0.5,
"null.value": O,
"stderr": 0.1996,
"alternative": "two.sided",
"method": "Paired t-test",
"data.name": "kin$trust self and kin$trust_ other"
+
},
{
"id": "recip",
"code": " t.test(kin$recip_self, kin$recip_other,
paired = TRUE, conf.level = 0.975)",
"software": "R version 4.0.2 (2020-06-22)",
"results": {
"statistic": -0.2138,
"parameter": 23,
"p.value": 0.8326,
"conf.int": [-0.5089, 0.4256],
"estimate": -0.0417,
"null.value": O,
"stderr": 0.1949,
"alternative": "two.sided",
"method": "Paired t-test",
"data.name": "kin$recip_self and kin$recip_other"
+
}
]
Data. Each dataset can be specified in the data component (Box 6). A dataset

consists of an id to reference the dataset in analyses and other information such as how to
obtain the data (e.g., doi, url). The codebook contains descriptions of each column, but it
is even possible to include the data itself in this component. By storing the data underlying
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the reported analyses as nested lists in the same file together with good meta-data, a reported
analysis could be completely reproduced in the future from a single file. Furthermore, it
becomes very easy to perform additional analyses or sensitivity analyses on the data.

Box 6 contains a data component with a codebook created by scienceverse using the
Psych-DS 0.1.0 format, which is currently still in development. The descriptors for each
column can be arbitrarily detailed, or follow other meta-data formats. For other software
that helps researchers to create and share machine-readable codebooks, see Arslan (2019).

Automatic Evaluation. Now that the prediction is specified in a machine readable
format, it is possible for the statistical prediction to be evaluated automatically. Automatic
evaluation of machine readable hypotheses has at least two useful functions during the
peer review process. First, we foresee a future where researchers are required to submit
fully computationally reproducible analysis scripts with their submissions. This will require
editorial assistants or reviewers to check the computational reproducibility of the reported
results in a manuscript. Machine-readable hypothesis tests would make this check a matter
of running a single function. The scienceverse R package can do this for code written in R,
and a machine-readable format makes it straightforward to create scripts that automatically
run analyses in other languages.

Based on the information specified in the analyses, criteria, and data components, the
study_analyze function in scienceverse reads in the analytic data, performs each analysis,
and stores and evaluates the results. In the example above, running the study_analyze
function will automatically load the data as the object “kin”, and perform the “trust” analysis
by running the analysis t.test(x = kin$trust_self, y = kin$trust_other, paired =
TRUE, conf.level = .975). The result of this analysis is automatically stored (e.g., the
t.test function in R returns a list of named numbers, including “conf.int”: [0.0213, 0.9787]).
The criteria are then evaluated against the results of the analyses. For example, because the
first number in the “conf.int” result (0.0213) is larger (“>”) than zero (“0”), the conclusion
that this criterion is “true” will be stored (see Box 3).

After the study_analyze function has drawn conclusions about whether each criterion
is met or not, based on the results of the analyses, the evaluation rules can be used to
determine whether the prediction is corroborated, falsified, or neither (and thus the results
are inconclusive). For the prediction to be corroborated, the criteria for “t_lo” and “t_ hi”
have to be met, and/or the criteria for “r_lo” and “r_hi” have to be met. Since the
conclusions for “t_lo” and “t__hi” are both true, the prediction is corroborated, and because
it is not true that both upper bounds for the confidence interval are smaller than 0.2, the
prediction is not falsified. The overall conclusion is therefore that our statistical prediction
is corroborated. It will typically be useful to create a human-readable summary. This can
be done with the study_save function, which created output as presented in Figure 1 below.
Such a human-readable summary would allow editorial assistants or reviewers to quickly
check the computational reproducibility of the reported results.


https://docs.google.com/document/d/1u8o5jnWk0Iqp_J06PTu5NjBfVsdoPbBhstht6W0fFp0/edit#heading=h.caxnnxqaobj
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Box 6. The data component.

"data": [
{
"id": "kin",
"codebook": {
"@context": "https://schema.org/",
"@type": "Dataset",
"name": "kin",
"schemaVersion": "Psych-DS 0.1.0",
"url": "https://osf.io/ewfhs/",
"variableMeasured": [
{
"@type": "PropertyValue",
"name": "trust_self",
"description": "Trusting self-morphs",
"dataType": "int"
X,
{
"Otype": "PropertyValue",
"name": "trust_other",
"description": "Trusting other-morphs",
"dataType": "int"
3,
{
"@type": "PropertyValue",
"name": "recip_self",
"description": "Reciprocating self-morphs",
"dataType": "int"
X,
{
"@type": "PropertyValue",
"name": "recip_other",
"description": "Reciprocating other-morphs",
"dataType": "int"
b
]
X,
"data": {
"trust_self": [1, 2, 2, 1, 1, 1, 1, 1, 2, 0, 2, O,
1, 2, 2,3,2,2,1,1, 2,0, 0, 1],
"trust_other": [1, 2, 2, 0, 1, O, O, O, 1, O, 1, O,
1, 1,1, 0,1, 2,2, 0,0,0, 2, 1],
"recip_self": [0, 1, 3, 2, 1, 1, 1, 3, 3, 2, 3, 1,
1, 2,3, 3,3,1,1,1, 3,0, 3, 1],
"recip_other": [1, 1, 2, 2, 3, 2, 1, 3, 3, 1, 3, 0,
1, 3, 3, 3, 3,0, 3,0,1, 0, 3, 2]
X
b
1,
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Box 7. Results of data analysis.

"analyses": [
{
"id": "trust",
"results": {
"statistic": 2.5045,
"parameter": 23,
"p.value": 0.0198,
"conf.int": [0.0213, 0.9787],
"estimate": 0.5,
"null.value": O,
"stderr": 0.1996,
"alternative": "two.sided",
"method": "Paired t-test",
"data.name": "kin$trust self and kin$trust other"
}
},
{
"id": "recip",
"results": {
"statistic": -0.2138,
"parameter": 23,
"p.value": 0.8326,
"conf.int": [-0.5089, 0.4256],
"estimate": -0.0417,
"null.value": O,
"stderr": 0.1949,
"alternative": "two.sided",
"method": "Paired t-test",
"data.name": "kin$recip_self and kin$recip_other"
}
}
]

Benefits of Machine Readability

The example we describe above that uses the coding language R to specify analyses and
our supplemental materials provide examples that use our R package, scienceverse. However,
the use of R specifically, or any coding language, is not essential to the general idea of machine
readable hypotheses. Much like the Brain Imaging Data Structure format (Gorgolewski et
al., 2016), the proposed open format makes it possible to create data processing pipelines
in any language. One can even create a JSON-formatted text file by hand in a text editor,
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Evaluation of Statistical Hypotheses
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Abstract

A reanalysis of data from DeBruine (2002) Facial Resemblance Enhances Trust, PRSLB.

Results
Hypothesis 1: self_pref

Cues of kinship will increase prosocial behaviour. Cues of kinship will be manipulated by morphed facial self-resemblance.
Prosaocial behaviour will be measured by responses in the trust game. The prediction is that the number of trusting AND/OR
reciprocating moves will be greater to self morphs than to other morphs.

e t lo is confirmed if analysis trust yields conf.int[1] > O The result was conf.int[1] = 0.021 (TRUE)

e t hi is confirmed if analysis trust yields conf.int[2] > 0.2 The result was conf.int[2] = 0.979 (TRUE)
* r lo is confirmed if analysis recip yields conf.int[1] > O The result was conf.int[1] = -0.509 (FALSE)
e r hi is confirmed if analysis recip yields conf.int[2] > 0.2 The result was conf.int[2] = 0.426 (TRUE)

Corroboration (TRUE)

The hypothesis is corroborated if the 97.5% Cl lower bound is greater than 0 and the 87.5% CI upper bound is greater than
0.2 (the SESOQI) for either the trust or reciprocation moves.

(t lo &« t hi) | (r lo & r hi)

Falsification (FALSE)
The hypothesis is falsified if the 97.5% CI upper bound is smaller than 0.2 (the SESOI) for both trust and reciprocation.

1t hi & !r hi

All criteria were met for corroboration.

Analyses
Analysis 1: trust

t.test(kin$trust self, kinS$trust other, paired = TRUE, conf.level = 0.975)

Analysis 2: recip

t.test(kin$recip_self, kin$recip other, paired = TRUE, conf.level = 0.975)

Figure 1. Example of machine readable output generated by scienceverse that shows the
results and evaluation of the hypotheses.
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and specify the result values manually. This could be a useful way to make the information
in existing archives machine-readable, even if we don’t have access to the original data or
code. Currently, implementing machine readable hypothesis tests requires some effort, both
in learning to specify explicit criteria for corroboration and falsification, as in programming
knowledge to enter the meta-data. Future work should focus on making this process as easy
as possible by providing detailed examples that users can follow, and by developing online
forms that guide researchers through the creation of a scienceverse compatible JSON file.

We believe the benefits of making statistical predictions machine readable are worth the
extra effort. First, machine-readable hypotheses remove ambiguity about what researchers
predict and which criteria must be met to conclude a statistical hypothesis is corroborated.
Predictions are explicitly linked to the tests that are performed to evalaute if the prediction
is corroborated or not. The exact test is specified, which prevents flexibility in the data
analysis. Furthermore, specifying the criteria for corroboration or falsification explicitly
prevents future researchers who will replicate the study from having to infer which results
would corroborate or falsify the original finding. Although machine readable hypotheses
might feel extremely rigid, it is possible to specify a range of sensitivity analyses across
which the prediction should hold.

Another benefit of making statistical hypotheses machine readable is that many
important aspects of the hypothesis test become accessible, findable, and usable. This will
benefit researchers in the future. We can imagine a utopian future where meta-data files such
as the example in Boxes 1 to 7 are accessible by browsing to a website that consists of the
DOI, appended by /meta (e.g., https://doi.org/10.1098 /rspb.2002.2034/meta). Researchers
can access these files to load all the information that is available about statistical predictions.
For example, when a completely reproducible workflow is used, and data can be accessed as
part of the meta-data file, the meta-data file should be sufficient to easily calculate or access
effect sizes from the performed statistical tests for meta-analyses.

While making hypothesis tests machine readable can obviously not ensure that statis-
tical predictions are sensible or logically coherent, the process of writing a machine-readable
statistical prediction could have a secondary benefit of providing a well-structured framework
to think through and specify all important aspects of a statistical prediction. This might not
be easy. Researchers might find it difficult to specify all required components in advance, or
to specify the ranges of results that would corroborate or falsify a prediction. Sometimes
a research idea is not yet well-specified enough to be tested in a confirmatory hypothesis
test. Hypothesis tests are an extremely formalized procedure to make a decision whether
a prediction is corroborated or not. If researchers realize they are actually not yet ready
to make a falsifiable statistical prediction when creating a machine-readable hypothesis
test, we would consider this a benefit as well (Scheel, Tiokhin, Isager, & Lakens, 2020).
Researchers might then decide to estimate the population effect size instead of testing a
falsifiable prediction. Alternatively, they might decide to perform additional studies that
allow them to make a more falsifiable prediction. Specifying exploratory analyses in a
machine-readable way still has benefits such as clarifying the source of statistical values in a
manuscript and providing values for meta-analysis.
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Use Cases

Registered Reports. We realize that several aspects of our proposal to make
hypothesis tests machine readable sound futuristic. At the same time, we believe immediate
use cases for machine-readable hypothesis tests already exist in the form of the Registered
Report publication format (Chambers, 2019). Registered Reports require researchers to
clearly specify their statistical prediction, and are developed to reduce flexibility in the
statistical analyses. After Stage 1 review based on the introduction, methods, and analysis
plan, researchers can receive an ‘in principle acceptance’. They then collect the data, and
submit a Stage 2 Registered Report that includes the results and conclusion. This should
make it relatively easy for reviewers to compare planned and reported analyses. Peer
reviewers might not always have the time to carefully check whether each reported analysis
in the manuscript matches the planned analysis in the preregistration, and whether the
conclusions in the manuscript follow from the test results. A machine readable hypothesis
test can automatically generate reports that facilitate peer review.

Furthermore, whereas submission guidelines for Registered Reports require researchers
to specify their analyses, researchers are typically not required to explain in advance when
they would consider their hypotheses corroborated or falsified, while doing so would make it
easier for reviewers to evaluate the severity of a statistical test (Lakens, 2019). In Registered
Replication Reports published in AMPPS, authors are asked to explicitly specify when
a replication corroborates the original finding. For example, in the analysis plan of the
Registered Replication Report on Fischer, Castel, Dodd, and Pratt (2003) by Colling et al.
(2020), available at https://osf.io/6a2ny/, a clear decision rule for corroboration is specified:
“If the congruency effect is positive and statistically significantly different from zero in the
500 ms and 750 ms delay conditions but not statistically significantly different from zero
in the 250 ms and 1000 ms delay conditions, we will consider the findings of Fischer et
al. (2003) to be replicated within the limits they propose.”

Scienceverse illustrates one possible workflow where, after specifying the hypotheses at
a Stage 1 submission, a machine-readable report can be produced. This report looks similar
to Figure 1, without any of the lines containing color-coded true or false evaluations of the
predictions. When the data is collected, it can be added to the meta-data file generated
at Stage 1, the preregistered analyses can then be run, and a human-readable report can
be generated as in Figure 1. This should make it relatively easy for reviewers to compare
planned and reported analyses.

Power Analyses. To check the code in a preregistration, the scienceverse package
has a function to simulate datasets by specifying the data structure for factorial designs
(using the R-package faux, DeBruine, 2020). Another function generates a specified number
of simulations, runs the analyses using the automatic evaluation procedure described above,
and reports the total number of simulations for which each hypothesis was corroborated,
falsified, or inconclusive. We provide an R script with an extended example of the study
above that includes a power analysis in the supplemental materials (see the Open Practices
section).

Meta-analyses. Researchers face several challenges when they want to examine
research lines with meta-analytic techniques such as effect size meta-analysis, p-curve analysis
(Simonsohn, Nelson, & Simmons, 2014), or z-curve analysis (Brunner & Schimmack, 2020).
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First, many scientific papers do not report the results of statistical tests in sufficient detail to
include these studies in a meta-analysis. Effect sizes are often not computed, and although
researchers performing a meta-analysis can attempt to manually calculate effect sizes, this
requires access to the means, standard deviations, correlations for within comparisons,
and exact sample sizes for each condition, which are also often missing. Effect sizes can
sometimes still be approximated from test statistics, but these are often not reported for
non-significant results. The second problem a researcher performing a meta-analysis faces is
a lack of transparency about which statistical test in the results section is related to the
theoretical predictions in the introduction section. This can make it difficult to select the
appropriate test to include in a meta-analysis.

The structured meta-study files we propose solve both these problems, as long as
researchers 1) include the raw data in the meta-study file, and 2) specify for each hypothesis
which statistical test result(s) will corroborate or falsify the predictions. In the online
vignettes (see Open Practices section), we demonstrate how a z-curve and p-curve analysis
can easily be performed based on the p-values stored in the results section of the meta-study
file, and how the raw data across meta-study files can be used to identify shared variables
across data sets and compute and analyze effect sizes in a meta-analysis. As meta-analyses
will almost always include data from published papers that have no meta-data available,
unless a concerted effort is made to catalog all published studies (for a noteworthy example,
see Bosco, Field, Larsen, Chang, and Uggerslev (2020)), these benefits will at best apply to
a subset of the studies included in a meta-analysis.

Conclusions

Technological innovation makes it possible to communicate scientific findings in digital
formats that allow for much easier re-use of scientific information contained in these digital
files compared to traditional journal articles. As we move towards a time where researchers
are expected to share their data in a way that is FAIR (findable, accessible, interoperable,
and reusable), we believe it is feasible and beneficial to make the rest of research machine
readable as well. We see machine-readable hypothesis tests as a logical development, with
immediate benefits for the rigour of hypothesis tests. Increasing the accessibility of essential
information related to hypothesis tests in scientific papers will also facilitate peer review,
especially of Registered Reports, and facilitate meta-scientific research. Making statistical
predictions machine readable will be an important next step towards a scientific literature
that can be accessed not just visually, but also computationally.
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