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ABSTRACT. Although its international airports served as the country’s main entry points for
SARS-CoV-2, the factors driving the uneven geographic spread of COVID-19 cases and
deaths in Brazil remain largely unknown. Here we show that four major factors likely
accounted for the entire dynamics of COVID-19 in Brazil. Mathematical modeling revealed
that, initially, the “super-spreading city” of Sdo Paulo accounted for roughly 80% of the case
spread in the entire country. During the first 3 months of the epidemic, by adding only 16 other
spreading cities, we accounted for 98-99% of the cases reported in Brazil at the time.
Moreover, 26 of the major Brazilian federal highways accounted for about 30% of SARS-
CoV-2’'s case spread. As cases accumulated rapidly in the Brazilian countryside, the
distribution of COVID-19 deaths began to correlate with a third parameter: the geographic
distribution of the country’s hospital intensive care unit (ICU) beds, which is highly skewed
towards state capitals where the epidemic began. That meant that severely ill patients living
in the countryside had to be transported to state capitals to access ICU beds where they often
died, creating a “boomerang effect” that contributed to the skew of the geographic distribution
of COVID-19 deaths. Finally, we discovered that the geographic distribution of dengue fever,
amounting to more than 3.5 million cases from January 2019 to July 2020, was highly
complementary to that of COVID-19. This was confirmed by the identification of significant
negative correlations between COVID-19’s incidence, infection growth rate, and mortality to
the percentage of people with antibody (IgM) levels for dengue fever in each of the country’s
states. No such correlations were observed when IgM data for chikungunya virus, which is
transmitted by the same mosquito vector as dengue, was used. Thus, states in which a large
fraction of the population had contracted dengue fever in 2019-2020 reported lower COVID-
19 cases and deaths, and took longer to reach exponential community transmission, due to
slower SARS-CoV-2 infection growth rates. This inverse correlation between COVID-19 and
dengue fever was further observed in a sample of countries around Asia and Latin America,
as well as in islands in the Pacific and Indian Oceans. This striking finding raises the intriguing
possibility of an immunological cross-reactivity between DENV serotypes and SARS-CoV-2.
If proven correct, this hypothesis could mean that dengue infection or immunization with an
efficacious and safe dengue vaccine could produce some level of immunological protection
for SARS-CoV-2, before a vaccine for SARS-CoV-2 becomes available.


https://doi.org/10.1101/2020.09.19.20197749
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.09.19.20197749.this version posted September 21, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

2

INTRODUCTION

Barely 6 months after its first report of a COVID-19 case, on February 26, 2020,
Brazil recorded the staggering tally of more than 4,000,000 cases and 125,000 deaths [1]
as a consequence of the rampant SARS-CoV-2 epidemic that raged through the entire
country. Those numbers ensure that, by September 16", Brazil was the third most
affected country in the world, right behind the United States and India in terms of both
accumulated COVID-19 cases, and second only to the US in terms of deaths [1].

By early March, it became clear that the country’s international airports, located
mainly in large state capital cities on the Brazilian Atlantic coast (with only three main
exceptions: Brasilia, Belo Horizonte and Manaus) had been the main entry points of
SARS-CoV-2 into the country [2]. However, despite the fact that the main genotypes
arriving and spreading through the country were rapidly identified [3], the routes taken by
SARS-CoV-2 to reach the entire Brazilian territory remained mysterious until now. In
addition, the heavily skewed and heterogeneous spatial distribution of COVID-19 cases
throughout the country’s five official regions (North (NO), Northeast (NE), Central-West
(CO), Southeast (SE) and South (S)), even after six months of an out of control epidemic,
as well as the discrepancy between cases and death distributions caught our attention
(Figure 1). The focus of this study, therefore, was identifying the key factors that could
account for these uneven spatial distributions and, as a second step, explaining how the
five Brazilian regions, or even individual states, exhibited quite remarkable differences in
key epidemiological indicators (e.g. incidence, rate of growth, date of arrival of cases, and

mortality) during the first 6 months of the SARS-CoV-2 Brazilian epidemic.


https://doi.org/10.1101/2020.09.19.20197749
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.09.19.20197749.this version posted September 21, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

3

RESULTS

Figure 1 compares the distributions of all cases and deaths for all Brazilian 5,570
cities from April 1st until August 1st, 2020. Simple visual inspection of these distributions
reveals striking spatial patterns in each of them and also a clear dissimilarity. For instance,
while by August 15t most of the country was reporting a high number of COVID-19 cases,
a larger incidence of fatalities was concentrated on the coastal state capitals and medium-
size interior towns (see Figure 1 C and D). To account for such features, we first analyzed
the spatial spread of COVID-19 cases and deaths over time through the extensive
network of highways that crisscross the whole Brazilian territory, including the vast rain
forest of the north. Figure 1A-T illustrates the temporal evolution of the spatial spread of
COVID-19 cases by Brazilian micro-regions (each containing several towns) plotted on
top of the main routes taken by all longitudinal (north-south, Fig. 1 A-D), transversal (east-
west, Fig. 1 E-H), diagonal (Fig. 1 I-L), radial (Fig. 1 M-P), and connector (Fig 1. Q-T)
Brazilian federal highways. Beginning with the early phase of the epidemic (April 1st), one
can easily spot the spread of COVID-19 cases across the cities either crossed or located
near the routes of two major longitudinal highways (BR 101 and BR 116, Fig. 1 A-D) that
run from the southern-most state of the country, Rio Grande do Sul (RS), to the north
coast states of the NE region. Subsequent snapshots in time (June 1%t and August 1%t)
clearly show COVID-19 cases climbing in cities along other major highways, which
became hotspots for the epidemic. Following a comprehensive correlational analysis, we
observed that a set of 26 federal highways significantly contributed to approximately 30%
of the initial COVID-19 spread throughout Brazil (see Supplementary Tables 1). In

addition to BRs 101 and 116, these included other longitudinal (BRs 153, 156, Fig 1 A-
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D), transversal (BRs 222, 226, 232, 272, Fig. 1 E-H), diagonal (BR 316, 319, 324, 364,
374, 381, Fig. 1 I-L), radial (10, 20, 40, 50, 60, Fig. 1 M-P), and connector (BR 401, 408,
425,447,448, 450, 460, Fig 1. Q-T) federal highways. Similarly, a set of federal highways
(BRs 101, 116, 222, 232, 272, 308, 319, 374, 381, 20, 40, 50, 408, 447, 450, and 465)
was highly correlated with the distribution of COVID-19 deaths across the whole country
(Supplementary Table 2).

Next, we focused on identifying the major Brazilian cities contributing to COVID-
19 case spread through the Brazilian highway grid. Mathematical modeling (see Methods)
revealed that, during the first 3 weeks of the epidemic (from the last week of February to
mid-March), by itself the city of Sdo Paulo, which is situated near the largest Brazilian
international airport and is responsible for the highest highway traffic flow in the country,
was responsible for the spread of more than 80% of the original cases that found their
way throughout Brazil (Figure 2A). Because of such a staggering initial contribution, and
the fact that it never dropped below 30% for the next 3 months, Sao Paulo clearly became
the main Brazilian super-spreader city of the SARS-CoV-2 epidemic.

Following this initial 3-week epidemic period, other major Brazilian cities began to
contribute their share to the spread of COVID-19 cases throughout the country.
Thereafter, the cities of Rio de Janeiro (SE region), Belo Horizonte (SE), Fortaleza (NE),
Recife (NE), Sdo Luis (NE), Jodo Pessoa (NE), Porto Alegre (S), Curitiba (S), Brasilia
(CO), and Manaus (NO) all made significant contributions. Thus, during the first three
months of the pandemic, by considering only the top 17 spreading cities, and the
highways highlighted above, we were able to account for the spread of about 98-99% of

the COVID-19 cases reported in Brazil at the time.
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Although the distributions of COVID-19 cases and deaths were significantly
correlated (r = -0.886, p< 0.0001), our correlation analysis revealed the existence of an
unaccounted residual. This meant that the distribution of deaths (Figure 1D) could not be
explained solely by the origin of the cases (i.e. the city in which the person was originally
infected). Instead, to account for this residual we had to bring to the foreground what soon
became another fundamental factor in the Brazilian COVID-19 epidemic: the geographic
distribution of intensive care unit (ICU) beds across the country.

In Brazil, the vast maijority of tertiary hospitals, and hence, the largest share of
intensive care unit beds is located in state capitals, their metropolitan areas, and a handful
of mid-size towns in the interior of each state. By tracking the flow of COVID-19 cases
since the beginning of April, and taking into account patient admissions in ICUs
nationwide, we were able to identify, in mid-June, a very peculiar flow of people all over
Brazil (Figure 3A). As mentioned above, during the initial stages of the epidemic, COVID-
19 cases began to grow rapidly in the state capitals where major international airports
were located. As cases increased there, a considerable number of infected people began
eventually moving towards the vast Brazilian interior through the highway grid. Once they
reached their destinations in the countryside, these infected people likely became
responsible for community transmission in smaller towns along the roads and immediate
vicinities. As community transmission began to happen in earnest, and case numbers
rose rapidly in the countryside towns, a growing number of severely ill patients began to
overwhelm smaller local hospitals that lacked enough qualified personnel and ICU beds
to manage such an unusually high demand for critical care. Under these dire

circumstances, a large portion of these patients had to be transported to the large state
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capitals in search of better specialized care and available ICU beds. In some states, like
Sao Paulo, this patient migration was also directed to mid-size towns with large public
university hospitals, such as the cities of Ribeirdo Preto and Campinas. As shown in
Figures 3A and B, this flow of severely ill patients from the countryside to capitals took
place all over Brazil, multiple times during the past 6 months. We named the overall
phenomenon that created the flow of infected people from state capitals to the interior,
and then brought severely ill patients back to the state capitals and large Brazilian cities,
“the boomerang effect”.

Figure 3A summarizes all major boomerangs that took place throughout Brazil
during the past 6 months. Arcs represent the countryside origins of the largest patient
flows towards state capitals and mid-size interior cities for the entire country. Once again,
Sao Paulo emerged as the city with the highest boomerang effect, followed by Belo
Horizonte, Recife, Salvador, Fortaleza, and Teresina, all state capital cities (Figure 3A).
Boomerangs were so pervasive throughout the country that they triggered major surges
in hospital admissions in most state capitals in all Brazilian regions (see yellow highlights
in Fig. 3B), leading to peaks of lethality in each of these cities (Figure 3B). Moreover, the
boomerang flow was not restricted to roads and highways. For instance, in the Amazon
rain forest, severely ill people were transported by boats of all sorts using the large rivers
of the North region, from many small riverside communities, towards the two largest
Amazon cities, Manaus and Belém (see Figure 3A).

At this point, we decided to test whether the skewed geographic distribution of ICU
beds across the country could account for the death distribution residual we described

above. Figure 4A illustrates the spatial distribution of ICU beds across all of Brazil. Once
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this distribution was plotted on top of the COVID-19 death distribution (Figure 4B), the
two matched almost perfectly. Thus, when the distribution of ICU beds was summed to
the distribution of COVID-19 cases, we obtained a high correlation with the COVID-19
death distribution (R? = 0.846, p = 0.0001). In other words, independently of their original
residence, either interior towns or large cities, a significant number of people died in the
state capitals and mid-size cities where tertiary hospital facilities and ICU beds were
highly concentrated. Therefore, as a result of the boomerang effect, large numbers of
severely ill patients had to migrate to larger cities and, eventually, a high fraction of them
perished there. Combined with the deaths of the residents of large cities, the widespread
boomerang contributed decisively to the geographic skewing of the COVID-19 death
distribution in all of Brazil.

During our analysis, we noticed a peculiar irregularity in the temporal evolution of
the COVID-19 case spread across the Brazilian regions. Contrary to the COVID-19
pattern of spatial spread expected by our mathematical simulations (Figure 2B, yellow
bars), we noticed that some states, like Parana (PR), Santa Catarina (SC), Rio Grande
do Sul (RS), Mato Grosso do Sul (MS), Mato Grosso (MT), Goias (GO) Minas Gerais
(MG) and Bahia (BA), which reported their initial cases (Figure 2B, blue bars) during the
month of March, tended to display a very slow growth of COVID-19 cases thereafter
(Figure 2B, red bars). That happened despite the fact that these states were all crossed
by major highways and received a great deal of traffic flow from the super-spreading city
of Sdo Paulo. Such differential spread in cases further defined the peculiar shape of the

distribution of COVID-19 cases across Brazil by June 30" (Figure 5A).
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By the end of June (Figure 5A and A’), outside the vast area affected in the NO
region, a series of vast “empty COVID-19” regions were identified in the central-west (CO)
and southeast (SE) regions and all over most of the transitional inland territory,
immediately westward from the Atlantic coastal cities (see white arrows in Figure 5A and
A’), which by then had all become major COVID-19 hotspots. This coastal hotspot line
extended all the way from S&o Paulo (SE) to S&o Luis (NE), passing through the
metropolitan area of large capital cities like Rio de Janeiro, Salvador, Aracaju, Maceio,
Recife, Joao Pessoa, Natal, and Fortaleza (see white arrows in Figure 5A and A’).

After ruling out a series of other factors, we decided to search the Brazilian Ministry
of Health databases and its regular epidemiological bulletins for any potential interfering
factors that could account for this peculiar skewed shape. Figure 5B-C and B’-C’ reveals
the rather surprising finding of our search. In Figure 5A and A’ we reproduce the Brazilian
map with the distribution of COVID-19 cases (Figure 5A) and incidence (Figure 5A’) by
municipality on June 31st. Next to it, we display the Brazilian maps depicting the spatial
distributions of confirmed dengue fever cases (1,337,095 in 2020) and incidence in 2020
(Figure 5B and B’), and the total sum of dengue cases (3,585,665 cases) and incidence
for 2019-2020 (Figure 5C and C’) for all Brazilian towns.

Visual inspection of these maps clearly indicated that they were complementary;
i.e. areas in which there was a scarcity of COVID-19 cases were equivalent to regions in
which a large concentration of dengue fever cases had occurred during the Brazilian
dengue epidemic of 2019-2020 (see white arrows in Figure 5C and C’). Indeed, all the
abnormalities observed in the COVID-19 case rate of growth and the delays in the

COVID-19 case curves of states like PR, SC, RS, GO, MS, MT, MG and BA (Figure 2B)
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could now be explained by the geographic distribution of large concentrations of dengue
fever cases in these states.

Figure 5D plots the evolution of dengue fever cases in Brazil in 2019 and 2020,
together with the equivalent curve for COVID-19 cases in 2020. Notice that a precipitous
fall in the number of dengue fever cases began by epidemiological week (EW) 11 (03/08—
03/14/2020, see white arrow). This was paralleled by a concurrent growth of COVID-19
cases in Brazil. In fact, the dengue fever cases in 2020 dropped much earlier than
expected according to its seasonal pattern [4], as illustrated by the curve of cases
obtained in 2019.

To further characterize the potential interaction between dengue fever and COVID-
19, we plotted the incidence of COVID-19 cases and deaths, as well as the rate of growth
of COVID-19 cases and the number of days required to reach 1,000 COVID-19 cases per
100,000 inhabitants per state, as a function of the percentage of the population in each
state showing positive IgM antibodies for dengue fever, as reported by the Brazilian
Ministry of Health (Figure 6A-D). Further analysis revealed the existence of a highly
significant inverse exponential correlation between COVID-19 cases (r = -0.659, p<
0.0001) and deaths (r=-0.514 p< 0.006), as well as COVID-19’s infection growth rate (r
=-0.662, p< 0.0001) and the percentage of people exhibiting positive IgM to the dengue
virus (DENV) in each state. These inverse correlations grew over time until reaching a
peak around July 1, 2020. Furthermore, when the number of days needed for reaching
1000 cases/100,000 inhabitants were plotted against the DENV IgM levels per state, we
observed a significant linear positive correlation (r= 0.594, p< 0.001). Essentially this

analysis revealed that states that had higher incidence of dengue fever during the 2020
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dengue epidemic were less likely to exhibit COVID-19 cases and deaths, showed slower
rates of growth of COVID-19 infections, and hence took longer to accumulate COVID-19
cases. In Figure 6A-F we also highlighted the dengue serotypes (DENV 1-4) that were
identified in each Brazilian State (see Brazilian Map on the insert of Figure 6A). Although
we did not explore this variable further, it is interesting to notice that the combination of
DENV 1-2 was the most prevalent in most of the country in 2020.

As a control measure, we repeated all the above analysis (see Figure 6E and F)
using serological data obtained during the same 2020 period for patients diagnosed with
chikungunya, a virus mainly transmitted by the same insect vectors of dengue fever
(Aedes aegypti and Aedes albopictus), and which is also endemic in Brazil, albeit at much
lower levels. No significant correlation to any COVID-19 epidemiological parameter was
found with the percentages of people displaying positive IgM for chikungunya (CKG) in
all Brazilian states (Figure 6E, COVID-19 case incidence and CKG IgM, r= -0.03, p =
0.84; COVID-19 death incidence and CKG IgM, r= 0.141, p = 0.49).

To further investigate the potential relationship between dengue fever and COVID-
19, we plotted the incidence of COVID-19 versus dengue in 2020, for all 5,570 Brazilian
cities; all together (Figure 6G) and according to the specific region to which they belonged,
such as the North (Fig. 6H), Northeast (Fig. 61), Southeast (Fig. 6J), Center-West, (Fig.
6K), and South region (Fig. 6L)). These latter scatter plots revealed a clear inverse pattern
of interaction for each region with clear interregional differences. For instance, while the
NO states had a larger proportion of cities with very high COVID-19 incidence, and very
low dengue incidence, the CO states had a distribution that was the mirror opposite: a

much larger number of cities with high dengue incidence and lower COVID-19 cases.
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While dengue cases were more numerous in the NE, compared to the NO region, this
region was dominated by cities with high COVID-19 and low dengue incidences. A larger
number of cities with high incidence of dengue, and very low COVID-19 incidence,
occurred in the SE and SO regions. By adding to these plots circles to represent the
population size of every town per region, we also observed another interesting
phenomenon: COVID-19 tended to dominate in larger cities where the dengue incidence
was much lower than in mid- or small-size towns, where dengue incidence was much
higher and the incidence of COVID-19 much lower.

To further quantify the inverse relationship between COVID-19 and dengue fever
incidence, we selected a subset of 799 cities from all regions and tried to describe their
relationship using a hyperbolic function (see Methods for details, Figure 6G’). The fitting
of a hyperbolic function was very significant (r = 0.72, p = 0.0001). A similar hyperbolic
fitting was also obtained for a sample of 1,466 cities (r = 0.55, p = 0.0001).

To test whether the inverse correlation between COVID-19 and dengue key
epidemiological indicators observed in Brazil was specific to the country or more general,
we collected incidence data for COVID-19 and dengue fever for a sample of 15 countries
around the world, notably in Southeast Asia, Latin America, and several islands in the
Pacific and Indian Ocean were dengue is known to be very prevalent (Figure 7). When
the incidence of COVID-19 versus the incidence of dengue fever for 2019-20 was plotted
for these countries, we again obtained a highly significant inverse exponential correlation
(r =0.7794 and p< 0.0006). In other words, the more dengue fever cases a country had

during the worldwide dengue epidemic of 2019 and the first few months of 2020, the less
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COVID-19 cases the country exhibited until July 2020. Basically, this was very similar to

the results obtained using the data for the Brazilian states.

Discussion

Overall, we identified four major factors that concurrently accounted for most of the
dynamics of the COVID-19 pandemic in Brazil. From its original entry at all major Brazilian
international airports during the month of March [2], SARS-CoV-2 spread first to the large
metropolitan areas of state capitals located next to these airports. From that point on,
after community transmission was established and began to rise exponentially in these
cities, and given that no major road blocks were implemented during the early months of
the epidemic, a small group of these large cities began spreading SARS-CoV-2 to the
entire country, through the extensive highway grid that covers all of Brazil. By itself, Sdo
Paulo, the city with highest population in Brazil, emerged as the country’s super-spreader
city par excellence, accounting for the largest case spreading influence throughout the
next 3 months. A small set of other 16 spreading cities contributed to the seeding of initial
cases throughout the whole country via a subset of 26 major federal highways. This
highway-driven spread was the main mechanism through which initial cases arrived in all
Brazilian cities. Thus, in about 30 days SARS-CoV-2 was transported to all five regions
of the country, across the north-south axis, a distance of roughly 5,313 kilometers.

Our analysis confirmed yet again the extreme relevance of human mobility in
spreading infectious diseases [5-8]. Our data also corroborated, at a national level, a
recent analysis of the spread of COVID-19 cases to the interior of the state of
Pernambuco, which implicated a major transverse federal highway, BR 232, as well as

other smaller state roads [9]. Since Brazil’s air space remained open for international (and
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national) travel until the end of March, and no travel restrictions were imposed on the
main roads leaving the super-spreading city (Sao Paulo) and other major Brazilian state
capitals, Brazilian highways provided transportation for infected people to all parts of the
country for a full month after the first case was reported in Sdo Paulo. Thus, by the time
(mid- to late-March) state governments began issuing decrees imposing social isolation
measures for all people (except for those deemed essential workers), all the pre-
conditions for COVID-19 community transmission around the entire country, were already
in place. Our analysis revealed that traffic through federal highways alone contributed to
30% of this COVID-19 case spread, but since we did not analyze state and municipal
roads like other studies [9], the contribution of roads to the movement and spread of
infected people all over Brazil is likely to be much higher.

We also observed that the distribution of COVID-19 related deaths overlapped
quite well with the equivalent spatial distribution of ICU beds throughout Brazil. The higher
the number of ICU beds in a city, the higher the number of deaths it recorded from March
to September 2020. Nationwide analysis of the cause of this overlap, which we named
the boomerang effect, revealed that while state capitals, mostly located on the country’s
Atlantic coast, provided the main sources of infections to mid- and small-size towns
located in Brazil’s vast interior, later on these same interior towns countered this flow by
sending hordes of seriously ill patients back to the capitals in search of better hospital
infrastructure and available ICU beds. As a result of this gigantic human flow, people from
interior towns began to account for a large percentage of patient admissions in both public
and private hospitals in state capitals. Thereafter, several of these hospitals in both mid-

size towns and state capitals became overwhelmed and some even collapsed altogether,
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like in the city of Manaus [10] where the boomerang effect was mainly operating through
the Amazon River. During a few weeks, ICU bed occupancy reached more than 90% in
multiple Brazilian state capitals, an event never before seen in Brazilian medical history
[11]. Although most state governments tried to mitigate this crisis by quickly adding new
infirmary and ICU beds to their hospitals, the lack of specialized personnel, individual
protection and sophisticated medical equipment, such as modern artificial ventilators,
reduced the efficiency of such countermeasures. As a result, each ICU bed available in
the country accounted for 1.23 deaths, according to our partial correlation analysis.

The Brazilian federal health care system, known as the “Sistema Unico de Saude”
(SUS; in English: Unified Health System) was created 32 years ago [12] with the mission
to provide free health care to every Brazilian citizen anywhere in the country. Today, SUS
constitutes the only option through which 7 out of 10 Brazilians have access to high-
quality medical care for free [13]. Yet, the COVID-19 epidemic crisis clearly exposed the
inadequacy of the policy of concentrating the largest share of tertiary hospital facilities
and ICU beds in a handful of mid-size towns and state capitals throughout Brazil. Although
our study did not address this issue directly, its findings suggest that, had the geographic
distribution of ICU beds been less skewed toward big cities, many more lives could have
been saved throughout the country. Indeed, critically ill patients in less populated areas
would have had regional access to ICU beds and therefore would have received quicker
treatment and had a better chance for improved clinical outcomes. Regional access
would also have reduced the demand on critical resources and specialized medical
personnel necessary for transporting such seriously ill patients over long distances to

metropolitan hospitals, eliminating the widespread boomerang effect documented here.


https://doi.org/10.1101/2020.09.19.20197749
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.09.19.20197749.this version posted September 21, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

15

By far the most unexpected finding of our study was the discovery that the spatial
distribution of dengue fever cases in Brazil, recorded during the period of January 2019
to July 2020, was almost perfectly complementary to the distribution of COVID-19 cases
for most of the first 6-month period of the SARS-CoV-2 epidemic. Further analysis
revealed that the incidence of COVID-19 cases and deaths, as well as the growth rate of
the infection, exhibited a significant inverse correlation with the percentage of state
residents exhibiting high IgM levels for DENV in 2020. That meant that in states in which
dengue fever had been rampant during the 2019-2020 dengue epidemic, fewer COVID-
19 cases were reported, fewer people died of COVID-19, the rate of growth for COVID-
19 infection was slower, and more time was needed to reach progressive case incidence
thresholds (e.g. 1,000 COVID-19 cases per 100,000 inhabitants) in 2020. Since, we did
not find any correlation between the percentage of people in each state exhibiting IgM to
CKG virus to any COVID-19 epidemiological indicator, our analysis confirmed the
specificity of our findings to the DENV serotypes responsible for dengue fever.

To the best of our knowledge, such inverse interactions between dengue fever and
COVID-19 have not yet been described in the literature. Given that the four Flavivirus
serotypes that cause dengue fever are not closely related to SARS-CoV-2 whatsoever,
this finding was really very striking. Nonetheless, these inverse correlations clearly helped
us understand the peculiar shape of the geographic spread of COVID-19 cases, in the
early months of the Brazilian epidemic. Basically, the states belonging to the CO and S
regions (e.g. PR, MS, MT, GO, RS, SC states), as well as in specific subregions of the
states of Minas Gerais and Bahia that had a high incidence of dengue fever cases during

2019-2020, took longer times to reach significant numbers of COVID-19 cases than
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predicted by our mathematical modelling. Given that the higher the percentage of a state’s
population exhibiting IgM to DENV, the longer it took for that state to cross 1,000 COVID-
19 cases per 100,000 inhabitants, this finding seems to indicate that the huge 2019-2020
epidemic that produced more than 3.5 million reported cases of dengue fever in Brazil
could have contributed significantly to the slowing down of the spatiotemporal spread of
COVID-19 in 2020, reducing considerably both the total number of COVID-19 cases and
deaths. Since close to 100-400 million people around the world become infected with
dengue fever each year [14], this finding could have a significant impact on the
management of the current SARS-CoV-2 pandemic.

Assuming that other independent factors that could have contributed
independently to the occurrence of such inverse correlations can be ruled out, the most
parsimonious interpretation of our findings is that through some, as of yet unknown,
mechanism, SARS-Cov-2 and the DENV competed for the same pool of susceptible
people and that those who contracted dengue during 2019-2020 may have been
protected, to some degree, from infection by SARS-CoV-2. A few further findings support
this hypothesis. First, while dengue cases in 2019 had reached a very high number
(2,248,570), the Brazilian Ministry of Health alerted to the growing incidence of dengue
cases during the first two months of 2020 (in: Boletim Epidemioldgico 10 [15]). Yet,
starting on EW 11, dengue cases began dropping precipitously in Brazil. That was
precisely the time that the COVID-19 epidemic began increasing in most states of the SE,
in the entire NO region, and in 8 out of 9 NE states. Research of international reports on
dengue fever revealed that a similar dramatic fall in dengue fever cases has happened

all over the world around the time the COVID-19 pandemic began, particularly in countries
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in Southeast Asia and most Latin American nations that experienced a rampant dengue
fever epidemics in 2019 [16]. Thus, whenever COVID-19 arrived in a given country in
early 2020, the occurrence of new dengue fever cases tended to diminish quickly and
then almost disappear from the record. This worldwide phenomenon further strengthened
our finding of a potential inverse relationship between key epidemiological parameters
describing the concurrent COVID-19 and dengue fever epidemics taking place in Brazil
in 2019-2020. Seen in this context, there is a possibility that widely popularized success
stories of COVID-19 management, like those from Vietnam and other Southeast Asia
countries, and even the whole continent of Africa [17], may owe, in reality, a great deal of
their good fortunes in handling the COVID-19 epidemic to their high dengue fever
prevalence in 2019-2020.

In its official epidemiological bulletins issued regularly, the Brazilian Ministry of
Health attributed the sudden decline in dengue cases to possible under-notification
problems caused by the COVID-19 epidemic [18]. We, instead, propose that at least part
of such precipitous drops in both dengue fever cases likely may reflect the fact that SARS-
CoV-2 was rapidly outcompeting the dengue Flavivirus serotypes for infecting the same
pool of susceptible people across Brazil. Essentially, if a subject became infected with
SARS-CoV-2, he/she would not be infected by dengue viruses. Clearly, further
epidemiological and immunological studies will be needed to test this hypothesis.

According to our hypothesis, SARS-CoV-2 may have been able to outcompete
DENV, and trigger a sudden decrease in dengue fever incidence all over the world after
March 2020, primarily because it relies on human-to-human transmission, while dengue

viruses depend mainly on mosquitos of the Aedes genus (Aedes aegypti and Aedes
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albopictus) for transmission. Given that the dengue’s vector can only survive under
certain climate conditions, like altitudes below 2,000 meters [19-21], SARS-CoV-2 would
have a clear competitive advantage when introduced in a common ecological niche, being
able to spread faster and infect a larger population of susceptible people, over a much
larger territory, particularly in big cities. This seems to be confirmed by the fact that larger
Brazilian cities exhibited much higher incidence of COVID-19 than dengue. Conversely,
in medium and small cities the dengue virus was able to infect a great fraction of the
susceptible population and, according to our hypothesis, may have protected them
somewhat from acquiring COVID-19.

This previously unknown “dengue effect” may explain, at least in part, why most
mathematical modeling carried out in the early stages of the COVID-19 Brazilian epidemic
were significantly off in their predictions of cases and deaths for the country [22, 23]. The
same happened with predictions for countries in Africa and Southeast Asia. In the context
of our findings, the explanation for this mismatch could be that previously acquired
immunity for dengue fever may have protected people from contracting SARS-Cov-2.
This was confirmed by the discovery of a highly significant, exponential inverse correlation
between the incidence of dengue and COVID-19 when data from several countries in
Latin America, Southeast Asia, and along the Pacific and Indian Oceans were pooled and
analyzed together. Detailed analysis of these worldwide data will be covered in two other
upcoming studies from our group.

In patients infected by one of the serotypes of DENV, IgM titers begin to increase
in the bloodstream after the first couple of days of acute illness [24]. They peak around

7-14 days and disappear after 50-60 days [24]. In parallel, the patients’ lymphocyte B
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cells begin producing IgG antibodies, which also peak around 2 weeks after the onset of
symptoms but, different from their IgM counterparts, remain in high titers for much longer
periods of time [24]. That explains why patients infected by one of the four DENV
serotypes retain long-term immunity to that serotype, albeit not to the other three [25, 26].
Since the IgM lifetime is so short, it seems logical to conclude, therefore, that the highly
significant negative correlations we observed in Brazil, between state populations levels
of dengue-induced IgM and several epidemiological indicators of COVID-19 infection,
was at least concurrently paralleled by the production of higher titers of IgG antibodies in
the dengue affected population. This seems to be confirmed by the fact that when we
analyzed data from several countries around the world, high inverse correlations were
found initially by using only 2019 dengue fever incidence data against 2020 COVID-19
incidence in each country. That further suggests that a single episode of dengue fever
could suffice to generate some level of long-term, IgG-mediated cross-immunity to
COVID-19.

Heterologous immunity is a well-known phenomenon, particularly between closely
related species of parasites, protozoa, bacteria and viruses [27]. However, it has also
been documented between unrelated species. Indeed, this phenomenon led to the
hypothesis that routine use of the bacillus Calmette-Guérin (BCG) vaccine in certain
countries could explain their lower incidence to a variety of viruses [28, 29], and that the
BCG-induced trained immunity could even offer a protection against COVID-19 [30].
Cross-reactive specific antibodies, but also T cells, can underlie heterologous immunity
[27]. For instance, pre-existing cross-reactivity, mediated by CD4* T cells to SARS-CoV-

2 has been reported in 25-50% of people not exposed to the new coronavirus [31, 32].


https://doi.org/10.1101/2020.09.19.20197749
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.09.19.20197749.this version posted September 21, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY-NC-ND 4.0 International license .

20

Recently, Mateus et al. reported that a range of such CD4* T cells can exhibit cross-
reactivity between SARS-CoV-2 and a series of other coronaviruses that cause the
common cold [33].

This year a few reports have indicated the occurrence of serological cross-
reactivity between dengue fever and COVID-19 [34-37]. For instance, Lustig et al.
reported that in a group of 55 patients who tested positive for SARS-Cov-2, 12 patients
tested positive for dengue (nine cases positive IgM, 2 positive IgG, and 1 for both).
Moreover, they also reported that 21 (or 22%) out of 95 serum samples of patients
diagnosed with dengue fever prior to September 2019 (before the outbreak of the COVID-
19) exhibited positive/equivocal SARS-CoV-2 serology targeting the S protein (sixteen
IgA and five IgG) [35]. The same authors indicated that in-silico analysis revealed
potential similarities between SARS-CoV-2 epitopes in HR2-domain of the spike protein
and the envelope-protein of both Zika and dengue viruses [35]. In another report, two
patients in Singapore who were diagnosed originally through a serological test as having
been infected with a dengue virus, later on proved to have contracted SARS-CoV-2 [37].
A recent study conducted in Brazil showed that, in a pool of 44 patients who had dengue,
one case also exhibited a false positive result for two COVID-19 rapid tests [38]. The
same study showed that, in another pool of 32 patients who had tested positive for SARS-
Cov-2, no one exhibited positive IgG/IgM results for dengue virus [38]. Finally, Nath et al.
observed that out of 13 serum samples positive for dengue antibody collected in 2017
(before the COVID-19 pandemic), five produced false positive for SARS-CoV-2 when
rapid IgG/IGM tests were employed [36]. While the authors of these studies interpreted

their results as indicating specificity problems with COVID-19 serology tests, in light of
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our results, we believe that these findings may provide the first immunological-based
evidence of a potential genuine cross-reactivity between DENV and SARS-CoV-2.
Moreover, since no study so far has focused on the potential role of T cells in mediating
cross-reactivity between the DENV and SARS-CoV-2 viruses, the level of heterologous
immunity between these two viral families may be higher than shown by antibody-based
studies. Thus, based on these preliminary reports and our own epidemiological findings,
we postulate that cross-reactivity, both cellular and humoral, may occur between one or
more DENV serotypes that cause dengue fever and COVID-19.

But what is the best antigen candidate that could produce such an immunological
cross-reactivity between the dengue virus and SARS-CoV-2? Two recent studies suggest
that nucleocapsid proteins in both virus families could fulfill this role. In a drug testing
study, Mukherjee and Roy claimed that two anti-viral drugs (Daclatasvir and Letermovir)
and one antibiotic (Rifampicin) dock strongly with both the SARS-CoV-2 nucleocapsid
RNA binding domain, but also with the RNA binding site of the DENV capsid protein [39],
which is about 80% conserved across all four DENV serotypes. This finding suggests that
both the DENV and SARS-CoV-2 nucleocapsid share some common structural features.
This is particularly relevant, given that, according to a recent study by Edridge et al., in
addition to the coronavirus’ spike protein which elicits neutralizing antibodies, this virus
family’s nucleocapsid is recognized as being immunogenic and a “sensitive protein to
monitor seasonal coronavirus infections” [40]. Moreover, the nucleocapsid structure is
conserved across coronaviruses, including SARS-CoV-2 [40]. Altogether, these
observations raise the possibility that an immunological cross-reaction between DENV

serotypes and SARS-CoV-2 could be mediated, at least in part, by antibodies (but also a
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cellular reaction) produced against these two viruses’ nucleocapsid. According to our
hypothesis, such an immunological response to DENV could offer some level of
protection against the SARS-CoV-2 infection. Obviously, such a hypothesis needs to be
tested in a series of further studies.

Interestingly enough, a recent review by Henrina et al. [41] also highlights the
enormous similarities between COVID-19 and dengue fever, not only in terms of clinical
presentation, but more strikingly, in terms of their common pathophysiology (see Table 2
of Henrina et al., 2020). For instance, the so called cytokine storm syndrome, as well as
widespread endothelium dysfunction, is present in severe cases of both COVID-19 and
in the most serious clinical manifestation of dengue, known as dengue hemorrhagic fever
[41]. Moreover, in both diseases, albeit through different mechanisms, D-dimer levels are
elevated [41], and may serve as an indicator of the severity of the clinical manifestation
[41].

In the context of the worldwide health emergency created by the current
coronavirus pandemic, our surprising results bring up the possibility that antibodies (or
lymphocyte B and T cells) produced as a response to an episode of dengue fever may
provide a certain level of immunological protection against COVID-19. That immediately
raises the intriguing hypothesis that immunization for dengue fever could also induce
some level of clinically significant immunological protection against SARS-CoV-2.
Although many further studies will certainly be needed to clarify whether this is a valid
theory and how high and long lasting such a protection could be, there are several factors
that speak in favor of pursuing this line of inquiry as a follow-up to the findings reported

here. First, currently there are at least two potential dengue vaccines either approved or
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in final stages of Phase Il clinical trials [42, 43]. Dengvaxia (Sanofi, Paris, France), also
known as CYD-TDV, was approved by the World Health Organization in 2016, and later
licensed in more than 20 countries, after positive results on Phase lll clinical trials that
showed levels of up to 66% efficacy overall, but only 38% for seronegatives, among
children tested in Asia and Latin America [43]. However, a longer follow up of Dengvaxia’s
effects revealed that children who were seronegative for DENV exhibited a higher than
expected chance of developing serious dengue symptoms that required hospitalization
[44]. That triggered a revision of the vaccine’s recommendation, limiting its use to people
who had already been exposed to dengue and showed antibodies to at least one dengue
serotype. Despite this limitation, the European Medicines Agency and the US Federal
Drug Administration (FDA) approved Dengvaxia for use in December 2018 and in May
2019 respectively, provided it is preceded by immunological profiling and given only to
seropositive subjects.

A second vaccine, TAK-003 (TAKEDA) has already reported partial results on its
Phase lll clinical trials [42]. Out of 13,380 subjects that received at least one dose of TAK-
003, the vaccine’s overall efficiency reached 80.9%, and 75% in seronegatives [42].
When dengue hospitalizations were considered, TAK-003’s efficiency reached 95.4% of
the tested population [42]. TAK-003 was more effective (97.7%) for the DENV-2 serotype,
but also moderately effective for the other three (73.7% for DENV-1, 63.2% for DENV-3,
and inconclusive results of 63% for DENV-4). Finally, different from DengvaxiaTAK-003,
Phase Ill data revealed an incidence of severe adverse effects similar to the control group

[42].
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Given this context, we propose that the next step would be to carry out clinical
studies to measure how effective infection by DENV has been in protecting patients
against SARS-CoV-2 infection in a population in which DENV was very prevalent during
2019-2020. Such a clinical study could quickly yield some fundamental information and
test our hypothesis in a relative short-time. Assuming that our hypothesis is confirmed,
i.e. that DENV infection produces a clinically relevant level of COVID-19 immunity,
consideration could be given to the next step: testing whether immunization with a dengue
vaccine can lead to similar levels of protection against COVID-19. If these second level
studies confirm our hypothesis, one could imagine using a safe and efficacious dengue
vaccine, on an emergency basis, to reduce the transmission rate of SARS-CoV-2, by
producing a significant level of immunity before a specific vaccine to SARS-CoV-2
becomes available.

The multiple-step course of action proposed here would be totally justified on both
scientific and ethical grounds provided a few key prerequisites are fulfilled. Firstly, dengue
fever is a serious disease that can lead to hospitalization and even death, particularly in
those infected a second time [24]. Therefore, immunizing large cohorts would be totally
justified, provided that a safe and efficacious vaccine is available. That means finding a
definite solution for avoiding serious side effects in the population that is seronegative for
DENV in countries where dengue fever is endemic, like Brazil, and most of Latin America,
and Asia. Secondly, in countries where dengue is not present, dengue immunization does
not offer any major risk since subjects are highly unlikely to be brought in contact with
dengue. As such, dengue immunization could proceed, as soon as definitive clinical

evidence shows categorically that our hypothesis is meritorious. Optimism about this
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proposal is reinforced by the fact that the DENV and SARS-CoV-2 belong to distinct virus
families. Therefore, the chances that those immunized against dengue may later develop
serious side effects when exposed to SARS-CoV-2, such as those mediated by the
phenomenon of antibody dependent enhancement [45], should be, at least in theory,
much smaller, or even non-existent, than those observed when closely-related viruses
are involved (like the DENV and Zika mediating viruses, both members of the Flavivirus
family) [46].

Finally, it is worth speculating that, since other flaviviruses exist that generate
human diseases, like Zika and yellow fever for instance, still unknown cross-
immunological interactions between SARS-CoV-2 and other flaviviruses (or even other
viruses, for that matter) may exist. Investigating and deciphering such interactions may
be highly relevant for establishing other potentially useful emergency mitigation strategies
for reducing the rate of growth of SARS-CoV-2 infection. For instance, since the traditional
yellow fever vaccine is well-known and readily available worldwide, it would be interesting
to investigate whether there is any cross-immunological interaction between the yellow
fever virus and SARS-Cov-2 in subjects recently vaccinated against yellow fever. In case
this is true, the yellow fever vaccine could also be considered as an emergency strategy
to reduce the number of cases of COVID-19.

As emphasized above, this and other potential emergency strategies will require
further clinical studies to decide whether they constitute valid and safe clinical approaches
to mitigate the human impact of the COVID-19 pandemic while there is no approved

vaccine or therapy for dealing with SARS-CoV-2.
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MATERIALS AND METHODS
Data sources for COVID-19 cases and deaths

We obtained data describing the temporal evolution of COVID-19 cases and
deaths in Brazil at the municipal and state levels from several sources, including the
Brazilian Ministry of Health [47], official daily epidemiological bulletins issued by each
Brazilian State [48], and other souces as compiled by Cota et al. [49]. Both cases and
death data refer to notifications per day. To compute incidence (cases per 100,000
inhabitants), we used population size estimates for each of the 5,570 Brazilian
municipalities for 2019 [50]. Such population size estimates were aggregated to allow the
computation of COVID-19 at the state level.

We also used the Ministry’s data on Severe Acute Respiratory Infections (SARI)
data, in which COVID-19 cases represents close to 98% of the data in 2020, to obtain
detailed information about patients’ residence and hospitalization location throughout
Brazil (https://opendatasus.saude.gov.br/dataset/bd-srag-2020). The SARI data contains
only a subset of the official reported COVID-19 cases since they cover only hospitalized
cases. Dengue epidemiological and serological data were provided by data published in
the official epidemiological bulletins regularly during 2019 and 2020 by the Brazilian
Ministry of Health.

Data source for the Brazilian Federal road system

The shapefile with geospatial data describing the distribution of the Brazilian
federal roads was obtained from the Brazilian National Road System [51]. Roads were
categorized according to the official typology: longitudinal roads (codes starting with 1, as

in BR101) are those crossing the country from north to south; transversal roads which
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cross the country from east to west (codes starting with 2); diagonal roads (codes starting
with 3); connector roads are shorter roads connecting major federal roads (codes starting
with 4); and radial roads, those departing from Brazil’s capital, Brasilia, which has a
central geographical position (codes starting with 0).
Highway multi-linear model

To investigate the most representative highways concerning the COVID-19 spatial
distribution pattern, we built a multi-linear model on a city level. Highways were included
in the model as dummy variables, considering 1 for cities it crosses, and 0 for cities it
does not cross. Model selection started from all federal highways and then a 3 step
filtering process was performed. The first filter eliminated variables (representing
highways) with coefficients with statistical p-values larger than 0.10, then 2 subsequent
steps of elimination were performed for variables with p-values larger than 0.05. The
resulting multi-linear model significantly adjusted 26 highways (R2 = 0.3, p < 0.025 for all
variables) when the response variable was the accumulated COVID-19 cases on the 12th
of September 2020, and significantly adjusted 16 highways (R2 = 0.23, p < 0.015 for all
variables) for accumulated COVID-19 deaths on the same date.
Spatial spreading model

The spatial spreading of COVID-19 throughout the country was modelled following
the approach described in Peixoto et al. [7]. This approach is based on a complex mobility
network of all Brazilian cities coupled with a compartmental model containing infected
and susceptible individuals, adequate for simulations of initial epidemic dynamics. The
mobility data is based on individual pairwise mobile geolocation data, resulting in multiple

daily travel information between cities, collected from the Brazilian company Inloco
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(https://www.inloco.com.br/covid-19). The compartmental model adopted an infection
rate of r=0.2 individuals per day, because it provides more realistic forecasts for the initial
growth of the pandemic in Brazil, compared to the initial infection rates obtained for the
country (e.g. [22, 52].

The flux intensity parameter was set to s=1, that is, no compensation of the flux
intensity was performed, and the real daily sampled movement counts were used to infer
the mobility between cities. The code and mobility data are available at the GitHub
repository https://github.com/pedrospeixoto/mdyn
Model of the super-spreaders

For each state capital of Brazil, a separate simulation considering one infected
individual in the capital was performed using the spatial spreading model. The simulations
were run from 2020-03-01 until 2020-05-01, with a result, on the final day, consisting of
the potential spatial spreading pattern for each capital city. The super-spreaders model
was built by projecting, in the least-squares sense, the daily observed COVID-19 cases
into the sub-space generated by the linear combination of the spreading patterns obtained
for each capital city. This provided a linear model for each day of observed COVID-19
cases, with coefficients representing the degree of participation of a given city in the
observed spatial pattern of COVID-19 cases. With a basis of the most representative 17
capital spreading patterns, the super-spreaders linear model accounted for at least an
adjusted coefficient of determination of 0.94 in all dates analyzed in this study (over 0.98
in the first 2 months analysed).

Model prediction of case spatial distribution
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The spatial spreading model was used to infer the theoretical spatial distribution of
initial cases across all states in Brazil. The model was initialized with the observed
COVID-19 cases for each municipality in the country on March 30" of 2020, the day when
all international Brazilian airports were closed. From this day on, only regional
dissemination of COVID-19 cases followed. While the model is not expected to capture
the exact number of cases in future times, it provides an accurate estimate for the
geographic spread and distribution of cases, which was by then mostly dominated by the

mobility data.

Flavivirus correlation analysis

To ensure robustness, the interplay between COVID-19 and Flavivirus epidemics
was analyzed considering several different viewpoints. Simple linear regression analysis
was performed in most cases, considering exponential growth where appropriate. Also,
for each state of the country, a log-log linear model was adjusted considering the period
that goes from the observation of the 10th COVID-19 cases until 90 days afterwards.
These models were adherent with at least a coefficient of determination of 0.95, providing
a very good representation of the initial growth of the pandemic in each state. The slopes
of these models, representing the initial growth rate of the COVID-19 epidemic in Brazil,
were used in the correlation analysis with the population levels of IgM for dengue fever in
each state.
Methodological limitations

The dynamical model, while fully coupled in space by mobility, adopts a simplified

compartmental dynamic, with susceptible-infected only. This limits the model's ability to
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foresee longer periods in time, compared for instance with the many existing variants of
SEIR models. However, it reduces the complexity in parameter calculations and, most
importantly, in the estimation of initial conditions for unobserved compartments. To
compensate for this limitation, we only used the model for short periods of time and
focused our conclusions on the spatial distribution patterns of the forecasted results rather
than on the precise case count calculated.
Dataset information and limitations

Mobility data: The mobile mobility dataset was provided by Inloco
(https://www.inloco.com.br/covid-19), available upon request, and samples approximately
one-fifth of the Brazilian population. While having a vast coverage of the Brazilian
population, it may have uneven distribution in space, age, and social classes. The data is
mainly dominated by adults and, is more abundant in large cities, but samples more than
90% Brazilian municipalities. This dataset is, to the best of our knowledge, the largest
database of the kind available for research in Brazil.
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Figure 1. Maps of Brazil were used to represent the routes of the main longitudinal (A-
D), transversal (E- H), diagonal (I-L), radial (M-P), and connector (Q-T) federal highways,
as well as the evolution of the geographic distribution of COVID-19 cases on three dates
(April 18, June 1%t, and August 1%!), and the distribution of COVID-19 deaths on August
18t (D). Overall, a group of 26 highways (see text) from all five road categories contributed
to approximately 30% of the COVID-19 case spreading throughout Brazil. The numbers
of some of these spreading highways are highlighted in red. Notice how many hotspots
(red color) for COVID-19 cases occur in micro-regions containing cities that are located
along major highway routes like BRs 101, 116, 222, 232, 236, 272, 364, 374, 381, 010,
050, 060, 450, and 465. Although the distributions for COVID-19 cases and deaths were
correlated, geographic discrepancies between the two distributions can be clearly seen
by comparing them on August 1%t (C and D). A color code (See Figure bottom) ranks
Brazilian micro-regions (each comprising several tows) according to their number of

COVID-19 cases and deaths.
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Figure 2
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Figure 2. (A) Individual contribution of the 17 state capital cities that were responsible for
98% of spreading of COVID-19 cases for the 5570 Brazilian municipalities, from March
18tto June 11, Notice how S&o Paulo contributed to more than 80% of all case spreading
during the first weeks of March. Throughout the period until June 11%, Sao Paulo’s
contribution never decreased below 30%. For that reason, the city was labeled as the
COVID-19 super-spreader Brazilian city. Notice also the high contribution of Rio de
Janeiro, Brasilia, and five state capitals in the Northeast region: Fortaleza, Recife,
Salvador, Séo Luis, and Jodo Pessoa. Manaus and Belém were the largest spreading
cities in the North (Amazon) region and Porto Alegre and Curitiba the most important in
the South region. During this period, the contributions of Goiania, Campo Grande and
Cuiba, in the Central-West region were the largest in their region but much smaller when
compared to other regions and their spreaders. (B) Bars represent the day the first
COVID-19 case (blue bars) was officially reported in each state (using Sado Paulo’s first
case on February 26™", 2020 as the 0 reference), the number of days estimated by a
mathematical model for each state to reach 500 cases per 100,000 inhabitants (yellow
bars), and the days in which each of Brazilian states actually reach the mark of 500 cases
per 100,000 inhabitants (orange bars). Notice how much longer it took for states like MT,
BA, SC, SP, GO, MS, PR, MG to reach the 500/100,000 milestone when compared to
states like AP, AM, RR, AC, PA, and TO in the North region, MA, CE, PB, PI, SE, AL, and
RN in the Northeast region, ES in the Southeast region, and DF in the Center-West

region.
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Figure 3. Quantification of the Brazilian “boomerang effect”. (A) Representation of all
“‘boomerangs” that occurred around major Brazilian state capitals (see labels for names)
and mid-size cities across the whole country. In this map, arcs represent the flow of
people from the interior towards the capital. The arc color code represents the number of
interior cities that sent severely ill patients to be admitted in hospitals in a capital or mid-
size town; red being the highest number of locations, orange and yellow next, while a
smaller number of locations are represented in light blue. Most of the flow of people
represented in this graph took place through highways. Red arcs likely represent long-
distance flow by airplanes. In the Amazon, most of the flow of people towards Manaus
occurred by boats through the Amazon river and its tributaries. Notice that again Séo
Paulo appears as the city with the highest boomerang effect, followed by Belo Horizonte,
Recife, Salvador, Fortaleza, and Teresina. (B) Lethality and hospitalization data, divided
for capital and interior (for lethality) and capital resident and non-resident (hospitalization),
for a sample of state capitals in all five regions of Brazil. Yellow shading in the lethality
graphs represent periods in which more deaths occurred in the interior, in relation to the
capital. In the hospitalization graphs, yellow shading depicts periods of increasing
admission of people residing in the countryside to the capital hospital system. The overall
flow of people from capital to the interior and back to the capital characterized the
boomerang effect, targeting the hospital system of the capital city. Notice that boomerang

effect was pervasive all over the country, occurring in every Brazilian state.
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Figure 4. (A) Distribution of ICU beds across all Brazil. Bar height is proportional to the
number of ICU beds in each city. Notice how the coastal state capitals accumulate most
of the ICU beds in the whole country, with much fewer beds available in the interior of
most states. The city of Sdo Paulo exhibits the larger number of ICU beds in the whole
country. (B) Superimposition of the COVID-19 death distribution (color code legend on
the left lower corner) on top of the ICU bed distribution as seen in (A). For each bar, its
height represents the number of ICU beds in a city, while color represents the number of
deaths that occurred in that city. Again, the city of Sdo Paulo, which has by far the highest
number of ICU beds accumulated the highest number of COVID-19 related fatalities,
followed by state capitals like Rio de Janeiro, Fortaleza, Brasilia, Salvador, Manaus,

Recife, and Belém.
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Figure 5. Comparison between the geographic distribution of COVID-19 cases (A), and
incidence (A”) until June 30", 2020, and dengue fever cases and incidence in Brazil (B
and B’) until May 31%t, 2020, and for dengue fever cases and incidence (C and C’)
summing all data from 2019 and until May 315, 2020. Notice that the COVID-19 and the
dengue maps for 2020 and 2019 plus 2020 are rather complementary, with regions in
which COVID-19 cases and incidences were very high by late June 30", like the entire
North region (see white arrows) and the Brazilian coast (see white arrows), from Sao
Paulo, Rio de Janeiro, and Vitéria (SE region), passing through all major capitals of the
Northeast region (Salvador, Aracaju, Maceid, Recife, Jodo Pessoa, Natal, Fortaleza and
Sao Luis, all the way to Belém in the North region. On the other hand, the highest number
of dengue cases and incidence (C) are distributed over the west region of the Parana,
Séao Paulo, and Mato Grosso and Mato Grosso do Sul, Goias, and Brasilia, the country’s
capital (see white arrows in C and C’). The states of Bahia (NE region) and Minas Gerais
(SE region) also showed very high dengue incidence levels (see white arrows).
Comparison of the evolution of COVID-19 (yellow line), dengue 2019 and dengue 2020
new cases per epidemiological week. Notice how dengue fever cases in 2020 began to
drop quickly when COVID-19 cases start to grow rapidly in Brazil (see white arrow). That
happened even though dengue fever cases in 2020 grew at a much higher rate than in
2019, leaving the Brazilian Ministry of Health to predict that in 2020 the dengue epidemic

would be much worse.
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Figure 6 — (A-F) Inverse exponential correlations between COVID-19 case incidence per
100,000 per inhabitants (A, r =-0.659, p<0.0001), COVID-19 death incidence (B, r=0.51,
p <0.006), rate of growth of COVID-19 cases (C, r = -0.66, p < 0.0001) against the
percentage of state population with positive IGM for dengue fever. (D) Positive correlation
between number of days to reach 1,000 COVID-19 cases per 100,000 inhabitants and
percentage of state population with positive IGM for dengue fever. (E and F) Lack of
correlation between COVID-19 case . Notice that the Y axes in the plots A-C are in
logarithmic scale. There was no correlation between COVID-19 case (E) (r = -0.03, p =
0.84) and death incidence (F) (r = 0.141, p = 0.49) as a function of the percentage of state
population with IgM for chikungunya virus. (G- L) Scatter plots depict the inverse
interaction between COVID-19 incidence and the 2020 dengue fever incidence for all
5,570 Brazilian municipalities (G) and divided per the North (H), Northeast (I), Southeast
(J), Center-West (K), and South (L) regions. In each plot, the diameter of circles
represents city population. These scatter plots reveal that cities with high COVID-19
incidence exhibited very low dengue fever incidence and vice-versa. This inverse
relationship is better described in a subset of 799 cities from all regions using a hyperbolic
fit (y = -155.941349476.6/(x+1000)) (r = 0.72, p = 0) (G’). For this analysis, we
disregarded cities with small incidence in both DENV (x) and COVID (y), following the
threshold of y + [max(y)/max(x)] x < 1,000 cases per 100,000 inhabitants. That explains
the triangular edge at the bottom of the graph. A similar hyperbolic fitting was also
obtained for 1,466 cities when the incidence cutoff was reduced to y + [max(y)/max(x)] <

500 cases per 100,000 inhabitants (r = 0.55, p = 0.0).
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Figure 7. Inverse exponential correlation (R2 = 0.605, r = 0.7794 and p< 0.0006) between
COVID-19 case incidence as a function of the dengue fever incidence for a sample of

countries in Latin America, Asia, and a few islands in the Pacific and Indian Oceans.
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Supplementary Materials

Table 1. Output of multivariate linear model using federal highways as independent
variables, defined at city level with 1 where it crosses and 0 where not, and COVID-19
accumulated cases up to the 12" of September as dependent variable. Software used:

Python/stamodels.

OLS Regression Results

Dep. Variable: COVID-19 cases R-squared (uncentered): 0.300
Model: OLS Adj. R-squared (uncentered): 0.296
Method: Least Squares F-statistic: 91.17

Date: Fri, 18 Sep 2020 Prob (F-statistic): 0.00

Time: 22:34:03 Log-Likelihood: -54495.

No. Observations: 5570 AlIC: 1.090e+05

Df Residuals: 5544 BIC: 1.092e+05

Df Model: 26

Covariance Type: nonrobust

Highways  coef stderr t P>|t|] [0.025 0.975]

10 1376.1596 602.883 2.283 0.022 194.273 2558.046
101 1923.1095 273.813 7.023 0.000 1386.329 2459.890
116 2482.4830 300.351 8.265 0.000 1893.678 3071.288
153 851.7395 353.438 2410 0.016 158.863 1544.616
156 3553.5455 1297.440 2.739 0.006 1010.054 6097.037
20 1324.3592 598.019 2.215 0.027 152.007 2496.712
222 2092.1731 624.049 3.353 0.001 868.793 3315.553
226 1174.1774 530.969 2.211 0.027 133.270 2215.085
232 1865.1459 832.103 2.241 0.025 233.898 3496.394
272 4463.0694 578.873 7.710 0.000 3328.252 5597.887
316 1180.2546 430.952 2.739 0.006 335.419 2025.090
319 6613.6954 1317.867 5.018 0.000 4030.160 9197.231
324 2687.9860 689.525 3.898 0.000 1336.248 4039.725
364 1201.8737 457.288 2.628 0.009 305.410 2098.337
374 6591.6562 668.518 9.860 0.000 5281.098 7902.214
381 5607.5653 542.971 10.328 0.000 4543.129 6672.002
40 2631.0293 676.988 3.886 0.000 1303.868 3958.191
401 9020.0000 2151.562 4.192 0.000 4802.096 1.32e+04
408 2742.4245 966.136 2.839 0.005 848.418 4636.431
425 8005.4770 2526.973 3.168 0.002 3051.619 1.3e+04
447 1.193e+04 3055.063 3.905 0.000 5939.770 1.79e+04
448 4900.2670 2172.424 2.256 0.024 641.464 9159.070
450 1.359e+05 4535.776 29.964 0.000 1.27e+05 1.45e+05
465 2.986e+04 2513.815 11.878 0.000 2.49e+04 3.48e+04
50 9478.0408 644.509 14.706 0.000 8214.552 1.07e+04
60 2599.5477 728.586 3.568 0.000 1171.233 4027.863
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Omnibus: 15534.421 Durbin-Watson: 2.002
Prob(Omnibus): 0.000 Jarque-Bera (JB): 848528010.990
Skew: 35.457 Prob(JB): 0.00

Kurtosis: 1913.787 Cond. No. 16.7

Table 2. Output of multivariate linear model using federal highways as independent
variables, defined at city level with 1 where it crosses and 0 where not, and COVID-19
accumulated deaths up to the 121" of September as dependent variable. Software used:

Python/stamodels.

OLS Regression Results

Dep. Variable: COVID-19 deaths R-squared (uncentered): 0.230
Model: OLS Adj. R-squared (uncentered): 0.228
Method: Least Squares F-statistic: 103.6

Date: Fri, 18 Sep 2020 Prob (F-statistic): 7.02e-300

Time: 23:20:41 Log-Likelihood: -37659.

No. Observations: 5570 AlC: 7.535e+04

Df Residuals: 5554 BIC: 7.546e+04

Df Model: 16

Covariance Type: nonrobust

coef stderr t P>|t] [0.025 0.975]

101 81.3736 13.311 6.113 0.000 55.278 107.469
116 113.3821 14.461 7.841 0.000 85.033 141.731

20 88.1148 29.047 3.033 0.002 31.171 145.059

222 108.6331 30.229 3.594 0.000 49.372 167.895
232 127.5577 40.435 3.155 0.002 48.289 206.826
272 196.7080 28.137 6.991 0.000 141.548 251.868
308 112.3929 39.546 2.842 0.004 34.867 189.919
319 296.6364 63.094 4.702 0.000 172.948 420.325
374 289.4084 32.502 8.904 0.000 225.692 353.124
381 229.0207 26.404 8.674 0.000 177.258 280.783
40 192.6486 32.922 5.852 0.000 128.109 257.188
408 175.9069 46.982 3.744 0.000 83.803 268.011
447 376.1264 148.566 2.532 0.011 84.879 667.374
450 1986.4747 215.770 9.206 0.000 1563.481 2409.468
465 3341.9438 122.228 27.342 0.000 3102.328 3581.559
50 362.7620 31.338 11.576 0.000 301.327 424.197

Omnibus: 14643.501 Durbin-Watson: 1.999
Prob(Omnibus): 0.000 Jarque-Bera (JB): 508907991.744
Skew: 30.421 Prob(JB): 0.00
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Kurtosis: 1482.554 Cond. No. 16.3

Table 3. Output of multivariate linear model using hospital beds and accumulated COVID-
19 cases (until 15t of July, 2020) as independent variables, and COVID-19 accumulated

deaths as dependent variable. Software used: Python/stamodels.

OLS Regression Results

Dep. Variable: COVID-19 deaths R-squared: 0.846
Model: OLS Adj. R-squared: 0.846
Method: Least Squares F-statistic: 1.524e+04
Date: Fri, 18 Sep 2020 Prob (F-statistic): 0.00
Time: 23:24:26 Log-Likelihood: -30603.

No. Observations: 5570 AlC: 6.121e+04

Df Residuals: 5567 BIC: 6.123e+04

Df Model: 2

Covariance Type: nonrobust

coef stderr t P>|t] [0.025 0.975]

const -3.6450 0.795 -4.586 0.000 -5.203 -2.087
beds 1.2363 0.049 24991 0.000 1.139 1.333
cases 0.0391 0.001 44.475 0.000 0.037 0.041

Omnibus: 13139.500 Durbin-Watson: 1.869
Prob(Omnibus): 0.000 Jarque-Bera (JB): 525256895.055
Skew: 22.747 Prob(JB): 0.00

Kurtosis: 1506.714 Cond. No. 2.33e+03
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