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Recent work has suggested that the replicability of 
social-science research may be disturbingly low (Baker, 
2016). For instance, several systematic high-powered 
replication projects have demonstrated successful rep-
lication rates ranging from 36% (Open Science Collabo-
ration, 2015) to 50% (Klein et al., 2018), 62% (Camerer 
et al., 2018), and 85% (Klein et al., 2014). These low 
replication rates have been explained by several factors 
that operate at different levels. At the level of the sci-
entific field as a whole, problems include publication 
bias (Francis, 2013) and perverse incentive structures 
(Giner-Sorolla, 2012). At the level of individual studies, 
problems concern low statistical power (Button et al., 
2013; Ioannidis, 2005) and questionable research prac-
tices, such as data-driven flexibility in statistical analysis 
(i.e., significance seeking; John, Loewenstein, & Prelec, 
2012; Simmons, Nelson, & Simonsohn, 2011; Wagenmakers, 
Wetzels, Borsboom, & van der Maas, 2011). Here we 
focus on yet another problem that has recently been 
associated with poor replicability: the a priori implau-
sibility of the research hypothesis (Benjamin et al., 2018; 
Ioannidis, 2005).

If the a priori implausibility of the research hypoth-
esis is indicative of replication success, then replication 
outcomes can be reliably predicted from a brief descrip-
tion of the hypothesis at hand. Indeed, results from 
recent surveys and prediction markets demonstrated 
that researchers (i.e., experts) in psychology and related 
social sciences can anticipate replication outcomes with 
above-chance accuracy. As a group, experts correctly 
predicted the replication outcomes for 58%, 67%, and 
86% of the studies included in the Reproducibility Proj-
ect: Psychology (Dreber et al., 2015), the Many Labs 2 
project (ML2; Forsell et al., 2018), and the Social Sci-
ences Replication Project (SSRP; Camerer et al., 2018), 
respectively. These surveys and prediction markets 
involved forecasters with a Ph.D. in the social sciences 
(e.g., psychology, economics). In addition, the forecast-
ers in the studies by Forsell et al. and Camerer et al. 
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Large-scale collaborative projects recently demonstrated that several key findings from the social-science literature 
could not be replicated successfully. Here, we assess the extent to which a finding’s replication success relates to 
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to disentangle detection ability from response bias. Our study suggests that laypeople’s predictions contain useful 
information for assessing the probability that a given finding will be replicated successfully.
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had been provided with statistical information from the 
original studies, including p values, effect sizes, and/or 
sample sizes. These findings raise two key questions 
about anticipated replicability: First, do forecasters need 
to be social-science experts to predict replication out-
comes with above-chance accuracy? Second, are fore-
casters’ predictions driven by intuitions about empirical 
plausibility alone or also influenced by statistical infor-
mation about the original effect?

In this study, our primary aim was to investigate 
whether and to what extent accurate predictions of 
replicability can be generated by people without a 
Ph.D. in psychology or other professional background 
in the social sciences (i.e., laypeople) and without 
access to the statistical evidence obtained in the original 
study. Laypeople may be able to reliably evaluate the 
plausibility of research hypotheses (and hence reliably 
predict replication outcomes), even without access to 
relevant statistical information or in-depth knowledge 
of the literature. After all, social science concerns itself 
with constructs that are often accessible and interesting 
to a lay audience (Milkman & Berger, 2014). Conse-
quently, when presented with a nontechnical descrip-
tion of a study’s topic, operationalization, and result, 
laypeople may well be able to produce accurate repli-
cability forecasts. For example, consider the nontechni-
cal description of Kidd and Castano’s (2013) research 
hypothesis that we presented to participants in our 
study:

Can reading literary fiction improve people’s 
understanding of other people’s emotions? 
Participants read a short text passage. In one 
group, the text passage was literary fiction. In the 
other group, the text passage was non-fiction. 
Afterwards, participants had to identify people’s 
expressed emotion (e.g., happy, angry) based on 
images of the eyes only. Participants were better 
at correctly recognizing the emotion after reading 
literary fiction.

A general understanding of the concepts (e.g., literary 
fiction, emotions) and proposed relation between those 
concepts (e.g., reading literary fiction improves emo-
tion recognition) may suffice to form intuitions about 
plausibility that match the (eventual) empirical evi-
dence. The accuracy of such intuitions can be gauged 
by comparing laypeople’s predictions with the empiri-
cal outcome. Hence, to test the accuracy of laypeople’s 
intuitions about the plausibility of research hypotheses, 
we selected 27 high-profile findings that have recently 
been submitted to high-powered replication attempts 
(Camerer et al., 2018; Klein et al., 2018).

If laypeople can indeed make accurate predictions 
about replicability, these predictions may supplement 
theoretical considerations concerning the selection of 
candidate studies for replication projects. Given limited 
resources, laypeople’s predictions concerning replica-
bility could be used to define the subset of studies for 
which one can expect to learn the most from the data. 
In other words, researchers could use laypeople’s pre-
dictions as input to assess information gain in a quan-
titative decision-making framework for replication 
(Hardwicke, Tessler, Peloquin, & Frank, 2018; MacKay, 
1992). This framework follows the intuition that—for 
original studies with surprising effects (i.e., low plau-
sibility) or small sample sizes (i.e., little evidence)—
replications can bring about considerable informational 
gain.

More generally, if even laypeople can to a large 
extent correctly pick out unreplicable findings, this sug-
gests that researchers should be cautious when making 
bold claims on the basis of studies with risky and coun-
terintuitive hypotheses. Laypeople’s adequate predic-
tions of replicability may thus provide empirical support 
for a culture change that emphasizes robustness and 
“truth” over novelty and “sexiness” (Dovidio, 2016; 
Giner-Sorolla, 2012; Nosek, Spies, & Motyl, 2012). When 
extended to novel hypotheses, laypeople’s skepticism 
may even serve as a red flag, prompting researchers to 
go the extra mile to convince their audience—laypeo-
ple and peers alike—of the plausibility of their research 
claim (e.g., by using larger samples, engaging in Reg-
istered Reports, or setting a higher bar for evidence; 
see Benjamin et al., 2018; Chambers, 2013).

The secondary aim of the current study was to assess 
the extent to which the inclusion of information about 
the strength of the evidence obtained in an original 
study improves laypeople’s prediction of replication 
outcomes. In contrast to the investigations of experts’ 
prediction accuracy by Camerer et al. (2018) and Forsell 
et al. (2018), we used Bayes factors rather than p values 
and effect sizes to quantify the evidence in the original 
studies ( Jeffreys, 1961; Kass & Raftery, 1995).

We preregistered the following hypotheses: First, we 
hypothesized that, on the basis of assessments of the 
a priori plausibility of the research hypotheses at hand, 
(a) laypeople can predict replication success with 
above-chance accuracy, and (b) their confidence is 
associated with the magnitude of the observed effects 
of interest in the replication studies. The former hypoth-
esis would be supported by prediction accuracy above 
50% and the latter by a positive correlation between 
people’s confidence in replicability and the effect size 
in the replication. In addition, we hypothesized that the 
inclusion of information on the strength of the original 
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evidence (i.e., the Bayes factor) would improve predic-
tion performance.

Disclosures

Preregistration

The current study was preregistered on the Open Sci-
ence Framework. The preregistration documents are 
available at https://osf.io/wg9s3/.

Data, materials, and online resources

Readers can access all materials, reanalyses of the origi-
nal studies, the anonymized raw and processed data 
(including relevant documentation for the data of ML2 
and SSRP), and the R code to conduct all our confirma-
tory and exploratory analyses (and for all figures cre-
ated in R) in our Open Science Framework project at 
https://osf.io/wg9s3. In the Supplemental Material 
(http:// journals.sagepub.com/doi/10.1177/2515 
245920919667), we provide additional details on the 
methods and additional exploratory analyses. Specifi-
cally, the online supplement presents details on the 
Bayesian reanalyses of the original studies, the sam-
pling plan, and the statistical models and prior speci-
fications; includes tables with the descriptions (in 
English and Dutch) of all the original studies as pre-
sented to the participants; and reports two additional 
exploratory analyses. The first of these analyses con-
cerns the accuracy of predictions derived from the 
Bayes factors alone, without human evaluation, and the 
second analysis is a Bayesian logistic regression model 
that includes random effects for both participants and 
studies.

Reporting

We report how we determined our sample size, all data 
exclusions, all manipulations, and all measures in the 
study.

Ethical approval

The study was approved by the local ethics board of the 
University of Amsterdam, and all participants were 
treated in accordance with the Declaration of Helsinki.

Method

Participants

In total, we obtained data from 257 participants, who 
were recruited from the online platform Amazon 
Mechanical Turk (MTurk; n = 83), the online participant 
pool of first-year psychology students at the University 

of Amsterdam (n = 138), and social-media platforms 
such as Facebook (n = 36). Participants from MTurk 
received financial compensation, University of Amster-
dam students received research credits, and participants 
from social media were given the opportunity to enter 
a raffle for a voucher from a Dutch Web shop. After 
exclusions (discussed later in this section), the final 
sample consisted of 233 participants, 123 in the descrip-
tion-only condition and 110 in the description-plus-
evidence condition.

Sampling Plan

We determined that we would need a minimum of 103 
observations per condition to achieve an 80% probabil-
ity of obtaining strong evidence (i.e., a Bayes factor > 
10) in favor of our experimental hypothesis, assuming 
a medium effect size (δ = 0.5), a default Cauchy prior 
with a scale parameter of r = .707, and a study design 
comparing two independent groups (i.e., a t test). As 
preregistered, data collection continued after the mini-
mum number of participants was reached (i.e., 103 in 
each condition), until the preestablished data-collection 
termination date of April 22, 2019.

Materials

Participants were presented with 27 studies, a subset 
of the studies included in the SSRP (Camerer et  al., 
2018) and the ML2 project (Klein et al., 2018).

Study selection.  In the description-plus-evidence con-
dition, participants were provided with study descrip-
tions accompanied by Bayes factors indicating the 
strength of the original evidence. Therefore, one of the 
main criteria for inclusion in the set of studies was that 
the original analysis allowed for a Bayesian reanalysis 
using the Summary Stats module in JASP ( JASP Team, 
2019); that is, the main analysis had to have been con-
ducted using a paired-samples or independent-samples t 
test, a correlation test, or a binomial test.1 Details about 
the reanalyses are provided in the Supplemental Material. 
We subsequently checked whether the percentage of 
successful replications in our subset was similar to the 
percentages in ML2 and the SSRP (i.e., 50% and 62%). 
This was the case; our subset included 14 successful and 
13 unsuccessful replications (i.e., 52% successful).

Presentation of studies.  The materials for each study 
included a short description of the research question, its 
operationalization, and the key finding. These descriptions 
were inspired by those provided in the SSRP and ML2, but 
were rephrased to be comprehensible by laypeople. In the 
description-only condition, solely these descriptive texts 
were provided; in the description-plus-evidence condition, 

https://osf.io/wg9s3/
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the Bayes factor and its verbal interpretation (e.g., “moder-
ate evidence”) were added to the description of each 
study. The verbal interpretations were based on a classifi-
cation scheme proposed by Jeffreys (1939) and adjusted 
by M. D. Lee and Wagenmakers (2013, p. 105). These ver-
bal labels were added to help participants interpret the 
Bayes factors, because the concept of evidence ratios 
might be difficult or ambiguous for laypeople (Etz, 
Bartlema, Vanpaemel, Wagenmakers, & Morey, 2019). To 
prevent participants from reading about the replication 
outcomes of the original studies during the survey itself, 
we ensured that the descriptions did not contain identify-
ing information, such as the names of the authors, the 
study titles, or any direct quotes. In addition to the 27 
study descriptions, the survey included one bogus item as 
an attention check. In the description of this study, partici-
pants were instructed to answer “no” to the question of 
whether the study would be replicated and to indicate a 
confidence of 75% in this prediction. Participants from The 
Netherlands could choose to read the study descriptions in 
English or Dutch. The translation of the descriptions from 
English into Dutch was assisted by the online translation 
software DeepL (https://www.deepl.com/en/translator).

Procedure

The survey was generated using the online survey soft-
ware Qualtrics (https://www.qualtrics.com). Partici-
pants were randomly assigned to the description-only 
or the description-plus-evidence condition. First, they 
read an explanation of the term replication and its 
relevance in science: “You will be asked whether you 
think that the described study will replicate. This means: 
if an independent lab will do this study again with a 
large number of participants, using the same materials, 
will they find convincing evidence for the same effect? 
If the effect really exists, it should be found by a dif-
ferent lab. However, it seems that not all studies can 
be replicated, because some results are based on coin-
cidence, or poorly designed or executed studies.” Par-
ticipants in the description-plus-evidence condition 
additionally received a short explanation of the Bayes 
factor and the commonly used verbal categories for 
interpreting the strength of evidence they indicate (Lee 
& Wagenmakers, 2013, p. 105). The explanation of the 
Bayes factor was as follows: “A Bayes factor (BF) is the 
degree to which evidence is found for the existence of 
the effect, based on the data at hand. For instance, if 
BF = 2, the data suggest that it is 2 times more likely 
that the effect is present, than that there is no effect.”2

After the instructions, participants were presented 
with the 27 studies plus the bogus attention-check 
study. Each study was presented and rated on a sepa-
rate page. After reading the study description (and the 

Bayes factor plus verbal interpretation in the description-
plus-evidence condition), participants could select a 
tick box to indicate that they did not understand the 
description. Next, participants indicated whether they 
believed that the study would be replicated successfully 
(yes/no) and expressed their confidence in their deci-
sion on a sliding scale ranging from 0 to 100. The order 
in which the studies were presented was randomized 
across participants.3 Finally, at the end of the survey, 
participants were asked whether they were already 
familiar with the ML2 project or the SSRP.

Data exclusions

Following our preregistered plan, we excluded partici-
pants (a) if they had a Ph.D. in psychology (i.e., they 
qualified as experts rather than laypeople), (b) if they 
indicated that they did not understand more than 50% 
of the descriptions, (c) if they did not read the descrip-
tions carefully (i.e., they failed the included attention 
check), or (d) if they were already familiar with either 
of the replication projects from which the studies were 
drawn. We applied a more stringent definition of experts 
than did previous survey studies of prediction accuracy 
(i.e., Camerer et al., 2018; Dreber et al., 2015; Forsell 
et  al., 2018); whereas the previous studies defined 
experts as researchers in psychology, ranging from 
graduate students to full professors, we defined experts 
as people with a Ph.D. degree in psychology and hence 
classified graduate students as laypeople.4 Participants 
who indicated that they had a Ph.D. in psychology were 
immediately redirected to the end of the survey and 
could not complete the study. As specified in our pre-
registration, participants passed the attention check if 
they answered as explicitly instructed, that is, if they 
selected “no” as their answer to the dichotomous rep-
lication question and rated their confidence in the inter-
val between 70% and 80%. We excluded 3 participants 
because they indicated that they were familiar with the 
replication projects and 22 participants because they 
failed the attention check. No participants indicated 
that they understood less than 50% of the study descrip-
tions. In total, we excluded 1.6% (i.e., 99) of all predic-
tions because participants indicated that they did not 
understand the study description. Seventy-two percent 
of participants (i.e., 167) understood all the study 
descriptions.

Statistical models

We constructed Bayesian (hierarchical) models to esti-
mate and test the parameters of interest for our hypoth-
eses. For all analyses, the outcome measures were chosen 
according to what was most relevant and informative for 

https://www.deepl.com/en/translator
https://www.qualtrics.com
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answering the research questions. For the primary analy-
sis, we estimated accuracy rates (0–1), as these afford the 
most intuitive and simple interpretation of prediction 
performance and are directly comparable with the mea-
sures used in previous prediction survey studies. The 
experimental effect of condition (description only vs. 
description plus evidence) was evaluated by means of 
Brier scores, because in this case the unit of interest was 
the individual’s prediction performance, which takes into 
account accuracy and confidence and is the most sensi-
tive measure for comparing people’s performance across 
conditions. In the correlation analysis, the unit of interest 
was the study rather than the participant; hence, we 
looked at the confidence ratings per study (aggregated 
across participants). All models and priors are described 
in detail in the Supplemental Material.

Results

Descriptive pattern

Figure 1 displays participants’ confidence ratings for 
their predictions of the replicability of each of the 27 
included studies, in order of the average rating. Positive 
ratings reflect confidence in replicability, and negative 
ratings reflect confidence in nonreplicability; −100 
denotes extreme confidence that the effect would fail 
to be replicated. Note that these data were aggregated 
across the description-only and the description-plus-
evidence conditions. The studies in the top 10 rows are 
studies for which participants showed relatively high 
agreement in predicting replication success. Out of 
these 10 studies, 9 were replicated successfully and 
only 1 was not (i.e., the study by Anderson, Kraus, 
Galinsky, & Keltner, 2012). The studies in the bottom 
4 rows are studies for which participants showed rela-
tively high agreement in predicting replication failure. 
In fact, none of these 4 studies were replicated success-
fully. For the remaining 13 studies in the middle rows, 
the group response was relatively ambiguous, as 
reflected by bimodal densities that were roughly equally 
distributed between the negative and positive ends of 
the scale. Out of these 13 studies, 5 were replicated suc-
cessfully, and 8 failed to be replicated successfully. Over-
all, Figure 1 provides a compelling demonstration that 
laypeople are able to predict whether or not high-profile 
social-science findings will be replicated successfully. In 
Figure 2, participants’ predictions are displayed sepa-
rately for the description-only and the description-plus-
evidence conditions.

Figure 3 provides a more detailed account of the 
data for three selected studies. Most participants cor-
rectly predicted that the effect found in the study in the 
top panel (i.e., Gneezy, Keenan, & Gneezy, 2014) would 

be successfully replicated. For the study in the middle 
panel (i.e., Tversky & Gati, 1978), participants showed 
considerable disagreement; slightly more than half 
incorrectly predicted that the study would be replicated 
successfully. Finally, most participants correctly pre-
dicted that the effect found in the study in the bottom 
panel (i.e., Shah, Mullainathan, & Shafir, 2012) would 
fail to be replicated.

Before conducting our preregistered confirmatory 
analyses, we conducted an exploratory analysis inves-
tigating the relation between the Bayes factors of the 
original studies and the effect sizes of the replication 
studies. To a large extent, our study was based on the 
assumption that the Bayes factors of the original studies 
carry relevant information about replicability. To verify 
this claim, we computed a Spearman correlation coef-
ficient between the log-transformed Bayes factors of the 
original studies and the standardized effect sizes of the 
replication studies expressed as Pearson correlation 
coefficients. The data provided overwhelming evidence 
in favor of a positive correlation (BF+0 = 162).5 The 
median value of ρ was .62, 95% credible interval (CI) = 
[.33, .78]. Thus, the Bayes factors of the original studies 
indeed conveyed useful information (see Fig. 4).

Preregistered analyses

Quality check.  Following our preregistered plan, we 
implemented a quality check on the data, which served 
as a prerequisite for our confirmatory analyses. We had 
decided to consider the data inappropriate for subse-
quent analyses if the data provided strong evidence for 
the hypothesis that overall laypeople perform worse than 
chance level when predicting the replicability of empiri-
cal studies. An accuracy rate worse than chance level 
(i.e., less than 50%) would indicate that participants did 
not understand or follow the instructions correctly or 
misinterpreted the presented information (i.e., the 
description of the study and the Bayes factor). We tested 
the restricted hypothesis Hr1 that the overall accuracy of 
laypeople is below 50%, that is, Hr1: ω < .5, where ω is 
the mode of the Beta distribution for the group-level 
accuracy rate. This hypothesis was tested against the 
encompassing hypothesis He, which lets ω vary freely, 
that is, He: ω ~ Beta(1,1). The Bayes factor in favor for the 
encompassing hypothesis, BFer1, was computed using the 
encompassing-prior approach (Klugkist, Kato, & Hoijtink, 
2005). The evidence for the encompassing hypothesis 
was estimated to approach infinity, which means that the 
data passed the quality check.6

Difference in prediction performance between con-
ditions.  In our preregistered confirmatory analyses, we 
first investigated whether there was a difference between 
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the two study conditions. Specifically, we evaluated whether 
or not the inclusion of the Bayes factor for the original 
effect increased prediction performance as measured by 
individual Brier scores (Brier, 1950). The Brier score takes 

into account both the accuracy and the indicated certainty 
(or uncertainty) of the prediction; highly certain correct 
predictions are rewarded, and highly certain incorrect pre-
dictions are punished, relative to uncertain predictions. 

Gervais & Norenzayan (2012)

S. W. S. Lee & Schwarz (2010)

Shah et al. (2012)

Alter et al. (2007)

Shafir (1993)

Kidd & Castano (2013)

Critcher & Gilovich (2008)

Zaval et al. (2014)

Risen & Gilovich (2008)

Tversky & Gati (1978)

Morewedge et al. (2010)

Zhong & Liljenquist (2006)

Kovacs et al. (2010)

Sparrow et al. (2011)

Giessner & Schubert (2007)

Balafoutas & Sutter (2012)

Nishi et al. (2015)

Bauer et al. (2012)

Duncan et al. (2012)

Anderson et al. (2012)

Derex et al. (2013)

Pyc & Rawson (2010)

Karpicke & Blunt (2011)

T. D. Wilson et al. (2014)

Gneezy et al. (2014)

Hauser et al. (2014)

Aviezer et al. (2012)

Confidence Rating
−100 −50 0 50 100

Fig. 1.  Distribution of participants’ confidence ratings for each of the 27 studies, aggregated over the 
two experimental conditions. The studies are ordered according to their average confidence ratings. 
Light-gray shading indicates that a study was successfully replicated, and dark-gray shading indicates 
that a study was not successfully replicated. Negative values indicate a prediction of replication failure, 
and positive values indicate a prediction of replication success.
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Individual Brier scores were log-transformed to account for 
skewness in the distribution of Brier scores.

We conducted a Bayesian independent-samples t 
test with the log Brier score as the dependent variable 
and the condition assignment as the grouping variable. 
The hypothesis of interest was that the Brier scores of 
participants in the description-plus-evidence condition 
would be lower than the Brier scores of participants 
in the description-only condition, as lower scores indi-
cate better prediction performance. This one-sided 
default alternative hypothesis was specified as the 

effect size, δ, for the difference being smaller than 
zero, that is, H−: δ < 0. The hypothesis was tested 
against the null hypothesis, H0, that the effect size is 
exactly zero, that is, H0: δ = 0. The results revealed 
overwhelming evidence that participants in the 
description-plus-evidence condition outperformed 
those in the description-only condition, BF−0 = 1.0 × 
1010. The median of the effect size distribution was 
−0.96, 95% CI = [−1.23,−0.68] (see Fig. 5 for a boxplot 
of the data, as well as the prior and posterior distribu-
tions of δ).

S. W. S. Lee & Schwarz (2010)
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Tversky & Gati (1978)

Sparrow et al. (2011)

Alter et al. (2007)
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Morewedge et al. (2010)

Bauer et al. (2012)
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Derex et al. (2013)

Risen & Gilovich (2008)

Critcher & Gilovich (2008)

Shafir (1993)

Zaval et al. (2014)

Nishi et al. (2015)

Balafoutas & Sutter (2012)

Kovacs et al. (2010)

Duncan et al. (2012)

Anderson et al. (2012)

T. D. Wilson et al. (2014)

Giessner & Schubert (2007)

Karpicke & Blunt (2011)

Hauser et al. (2014)

Aviezer et al. (2012)

Gneezy et al. (2014)

Pyc & Rawson (2010)

a

−100 −50 0 50 100
Confidence Rating

Fig. 2. (continued on next page)
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Group accuracy in each condition.  To investigate 
whether laypeople can adequately predict replication out-
comes, we tested whether the group-level accuracy rates7 
were above chance level, that is, higher than 50%. We con-
sidered only the accuracy of predictions regardless of par-
ticipants’ confidence. We applied a Bayesian hierarchical 

model to analyze the accuracy data. For each condition 
separately, we then tested the restricted hypotheses that 
the accuracy rate, ω (i.e., the mode of the group-level 
distribution), was above chance in the description-only 
condition (Hr2), and in the description-plus-evidence con-
dition (Hr3): Hr2,Hr3: ω > .5. The hypotheses Hr2 and Hr3 

−100 −50 0 50 100
Confidence Rating

Gervais & Norenzayan (2012)

Shah et al. (2012)

Alter et al. (2007)

Shafir (1993)

S. W. S. Lee & Schwarz (2010)

Zaval et al. (2014)

Critcher & Gilovich (2008)

Kovacs et al. (2010)

Risen & Gilovich (2008)

Kidd & Castano (2013)

Giessner & Schubert (2007)

Zhong & Liljenquist (2006)

Morewedge et al. (2010)

Tversky & Gati (1978)

Balafoutas & Sutter (2012)

Nishi et al. (2015)

Pyc & Rawson (2010)

Sparrow et al. (2011)

Duncan et al. (2012)

Anderson et al. (2012)

Gneezy et al. (2014)

Bauer et al. (2012)

Karpicke & Blunt (2011)

Derex et al. (2013)

T. D. Wilson et al. (2014)

Hauser et al. (2014)

Aviezer et al. (2012)

b

Fig. 2.  Distribution of participants’ confidence ratings for each of the 27 studies, separately for (a) the 
description-only condition and (b) the description-plus-evidence condition. The studies are ordered 
according to their average confidence ratings. Light shading indicates that a study was successfully 
replicated, and dark shading indicates that a study was not successfully replicated. Negative values indi-
cate a prediction of replication failure, and positive values indicate a prediction of replication success.
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Gneezy et al. (2014)
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Fig. 3.  Histograms (and rug plots) of confidence ratings for three selected studies, one 
for which participants were nearly unanimous in their belief that the study would be 
replicated successfully (top panel), one for which there was considerable disagreement 
(middle panel), and one for which participants were nearly unanimous in their belief that 
the study would not be replicated successfully (bottom panel). Negative values indicate 
a prediction of replication failure, and positive values indicate a prediction of replication 
success. The vertical dashed lines show the average confidence ratings for the studies 
(i.e., group prediction).

were tested against the null hypothesis stating that ω is 
exactly equal to .5, which would indicate chance-level 
performance: H0: ω = .5.

The data provide extreme support for the restricted 
hypothesis that participants in the description-only con-
dition performed better than chance, BFr20 = 4.4 × 107. 
The median value for ω was .59, 95% CI = [.57, .60], 
which implies a 59% accuracy rate for participants in 

the description-only condition at the group level. The data 
also provide extreme support for the restricted hypothesis 
that participants in the description-plus-evidence condi-
tion performed above chance level, BFr30 = 5.6 × 1022. 
The median value of ω was .67, 95% CI = [.65, .69], 
which implies a 67% accuracy rate for participants in 
the description-plus-evidence condition at the group 
level. The nonoverlapping credible intervals of the two 



10	 Hoogeveen et al.

conditions corroborate the results from the independent-
samples t test on the Brier scores; accuracy was higher 
in the description-plus-evidence condition than in the 
description-only condition. The distributions of the 
accuracy rates in both conditions are displayed in Fig-
ure 6.

Correlation between laypeople’s confidence and rep-
lication effect size.  In addition to analyzing participants’ 
binary predictions of replicability, we assessed whether 
the confidence with which they made their decisions was 
indicative of the size of the effect observed in the replica-
tion studies (cf. Camerer et al., 2018). In other words, we 
tested whether participants were more certain about their 
decisions if the replication effect size was large, and became 
less certain (i.e., more certain about nonreplicability) as the 
underlying replication effect size approached zero. The 
replication effect sizes were retrieved from Camerer et al. 
(2018) and Klein et al. (2018). The data are plotted in Fig-
ure 7, separately for each condition.

We used a Bayesian Spearman correlation (van 
Doorn, Ly, Marsman, & Wagenmakers, 2017) to test the 
null hypothesis (i.e., H0: ρ = 0) against the one-sided 
restricted hypotheses that the correlation was positive 
in both the description-only condition (i.e., Hr4: ρ > 0) 
and the description-plus-evidence condition (i.e., Hr5: 
ρ > 0). The data provide extreme evidence for both 
restricted hypotheses, BFr40 = 523 and BFr50 = 14,295. 
For the description-only condition, the median Spear-
man correlation coefficient was .61, 95% CI = [.34, .77]. 
For the description-plus-evidence condition, the median 
coefficient was .77, 95% CI = [.57, .87]. Note that for 
studies that failed to be replicated successfully, the 
effect sizes—by definition—clustered around zero. 
Although the Spearman correlation coefficient is a rank-
based measure, the correlation should still be inter-
preted with caution.

Exploratory analyses

Disentangling discriminability and response bias.  
According to signal detection theory (SDT; Green & 
Swets, 1966; Tanner & Swets, 1954), binary decisions are 
driven by two main components: the ability to distin-
guish between the response options (discriminability) 
and the a priori tendency to prefer one option over the 
other (response bias). In an exploratory analysis, we 
applied SDT to decompose participants’ predictions into 
discriminability and bias. Here, discriminability relates to 
the degree to which replicable and unreplicable studies 
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were distinguishable, which was influenced by character-
istics of the stimuli (i.e., information provided about the 
studies) and by participants’ underlying ability (i.e., indi-
vidual prediction skills). Bias reflects participants’ overall 
tendency toward either predicting that a given study 
would be replicated successfully or predicting that it 
would not be replicated successfully, regardless of the 
information about the study. These parameters were esti-
mated by applying a Bayesian hierarchical equal-variance 
Gaussian SDT model (Lee & Wagenmakers, 2013, p. 164).

Figure 8 shows the group-level posterior distribu-
tions of the discriminability and bias parameters, sepa-
rately for the two conditions. Larger values for 
discriminability indicate greater ability to distinguish 
replicable from unreplicable findings. Results are 

consistent with the Brier-score analysis reported earlier, 
as the discriminability parameter clearly differed 
between conditions; people in the description-plus-
evidence condition were better at separating replicable 
studies from unreplicable studies than were people in 
the description-only condition. The enhanced discrim-
inability for the description-plus-evidence condition is 
also illustrated in Figure 9a, which shows that the sepa-
ration between the distributions for replicable and 
unreplicable studies was larger for the description-plus-
evidence condition than for the description-only condi-
tion. For the bias parameter, the difference between 
conditions was less pronounced; the negative values 
for bias (Fig. 8) indicate that all the laypeople in our 
sample tended to overestimate replicability (i.e., they 
displayed a bias toward saying that the study would be 
replicated successfully). This bias is also depicted in 
Figure 9a, in which for both conditions, the adopted 
criterion is located to the left of the optimal criterion.

The receiver-operating characteristic (ROC) curve is 
often used to interpret the parameter values of SDT. 
This curve reflects the proportion of hits (in this case, 
studies that were deemed replicable and were repli-
cated successfully) and false alarms (studies that were 
deemed replicable but were not replicated successfully) 
across all possible levels of bias, given the estimated 
discriminability. The further the curve moves away from 
the diagonal (i.e., chance level), the better the classifi-
cation performance. The derived area under the curve 
(AUC) metric is used to quantify the information cap-
tured by the ROC curve; it reflects the probability that 
a given stimulus (in this case, study) is correctly clas-
sified (as replicable or unreplicable). We created ROC 
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curves for participants’ prediction performance in both 
conditions as derived from the estimated discriminabil-
ity (disregarding the estimated bias). The ROC curves 
in Figure 9b show that the ratio of hits to false alarms 
was better for people in the description-plus-evidence 
condition compared with people in the description-only 
condition. This difference is also quantified by the asso-
ciated AUC metric; its median value was 0.62, 95%  
CI = [0.60, 0.65] for the description-only condition and 
0.74, 95% CI = [0.72, 0.77] for the description-plus-
evidence condition.

Taken together, the results of the SDT model indicate 
that access to the statistical evidence predominantly 
affected discriminability rather than bias. This suggests 
that the evidence (i.e., the Bayes factors) provided 
information that enhanced participants’ ability to cor-
rectly distinguish between replicable and unreplicable 
studies, rather than making them simply more skeptical 
across the board. Note that we did not conduct any 
statistical tests, but solely estimated the discriminability 
and bias parameters for each condition, as well as the 
associated AUC metrics.

Estimating the prediction accuracy of experts.  In a 
second exploratory analysis, we applied a Bayesian hier-
archical model to generate the posterior distributions of 
the accuracy rates for the experts’ predictions that were 

obtained by Camerer et al. (2018) and Forsell et al. (2018) 
in the SSRP and ML2 project, respectively. Experts in the 
SSRP showed the higher accuracy rate; they were able to 
correctly predict the replicability of almost three quarters 
of the studies, achieving an accuracy rate of .72, 95%  
CI = [.69, .74]. The median accuracy rate of the experts in 
the ML2 project was .65, 95% CI = [.62, .68]. Both these 
experts’ distributions and the distributions for the nonex-
perts in our study (expressed as percentages) are pre-
sented in Figure 10. The figure suggests that the prediction 
accuracy of laypeople provided with a description of the 
original study and a Bayes factor for the evidence 
obtained can be at least as good as, if not better than, the 
prediction accuracy of the experts who anticipated the 
outcomes of the ML2 project (and who were also pro-
vided with statistics from the original studies).

It is important to note, however, that the perfor-
mance of these experts and of the laypeople in our 
study may not be completely comparable, as the studies 
included in our stimuli only partly overlapped with the 
SSRP and ML2 sets (participants in the our study rated 
17 studies from the SSRP and 10 from ML2). Of the 17 
studies we drew from the SSRP, 12 were replicated suc-
cessfully, whereas of the 10 studies we drew from ML2, 
only 2 were replicated successfully. Because of these 
unintentionally unequal proportions, which are also 
not representative of the respective projects, we 
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greater ability to distinguish replicable from unreplicable findings.
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estimated the accuracy rate for the full set of studies 
rated by the experts in each project, rather than only 
the subset that we presented to our lay participants.

Discussion

This study showed that laypeople without a professional 
background in the social sciences are able to predict 
the replicability of social-science studies with above-
chance accuracy, even when provided solely with 
descriptions of the studies. Because the predictions in 
the description-only condition were generated by 

nonexperts on the basis of nothing more than simple 
verbal study descriptions, we take these predictions to 
reflect intuitions of plausibility. Thus, our results suggest 
that intuitions about the plausibility of targeted effects 
carry information about the likelihood of successful rep-
lication outcomes. Prediction accuracy further increased 
with access to the statistical evidence (i.e., the Bayes 
factors) obtained in the original studies. In addition, 
participants’ confidence in their replicability judgments 
was associated with the effect sizes obtained in replica-
tion studies. This may indicate that participants were 
able to derive a sense of the magnitude of the targeted 
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effects from the descriptions. Inclusion of information 
on the original evidence amplified the relation between 
confidence ratings and replication effect sizes.

The notion that the intuitive plausibility of scientific 
effects may be indicative of their replicability is not 
novel (or counterintuitive). The previous results of the 
Replication Project: Psychology (Open Science Collabo-
ration, 2015), for instance, already suggested that non-
surprising studies are more replicable than highly 
surprising ones. B. M. Wilson and Wixted (2018) built 
on the data from that replication project and found that 
lower prior odds for the crucial effects explained the 
difference between replicability rates in social and cog-
nitive psychology; social-psychological studies con-
tained more risky but potentially groundbreaking 
effects compared with cognitive-psychological studies. 
The authors suggested that the key factor influencing 
prior odds of an effect is “established knowledge, 
acquired either from scientific research or from com-
mon experience (e.g., going without sleep makes a 
person tired)” (B. M. Wilson & Wixted, 2018, p. 191). 
By asking laypeople about their intuitions regarding 
the replicability of social-science studies, we sought to 
shed light on these prior odds of effects derived from 
common sense, which we call “intuitive plausibility.” 
Although we did not assess the plausibility of the stud-
ies directly, we believe that laypeople’s intuitions 
regarding the studies’ replicability can serve as a close 
approximation. Our results provide empirical support 
for the suggestion that intuitive (i.e., nonsurprising) 
effects are more replicable than highly surprising ones, 
as replicable studies were in fact deemed more 

replicable than nonreplicable studies by a naive group 
of laypeople.

In principle, we expect our results to generalize to 
most people, provided that the instructions, explanation 
of replicability, and study descriptions are written in 
plain language, avoiding technical terms. It is possible 
that prediction accuracy may rise with increased exper-
tise; for instance, graduate students may, on average, 
outperform people without any expertise in social sci-
ences. However, previous prediction studies showed 
that weighting experts’ predictions according to their 
self-reported topical expertise did not improve their 
average prediction accuracy, which suggests that at 
least knowledge about a particular study’s topic may 
be irrelevant (Dreber et al., 2015; Forsell et al., 2018).

An obvious limitation on the generality of our results 
is that if predictions are solicited from laypeople, this 
narrows the pool of studies that are suited for inclusion; 
complex psychophysics experiments or functional MRI 
studies may not be comprehensible for laypeople and 
may be better evaluated by experts. However, for the 
majority of studies in social science (e.g., psychology 
and economics), targeting laypeople rather than experts 
may be advantageous in terms of availability, accessibil-
ity, and the possibility of including previously pub-
lished studies (the results of which experts may already 
be familiar with or may simply look up). A further 
prerequisite is that the evaluated replication studies 
should be of high quality (e.g., preregistered, high-
powered studies featuring manipulation checks) to 
ensure that the replication outcomes are reliable and 
can thus serve as a reliable criterion against which to 
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compare participants’ predictions. We have no reason 
to believe that our results depend on other character-
istics of the participants, materials, or context.

A final side note on the generalizability of our find-
ings concerns the wider implications and scope of the 
results. Although participants in our study strongly 
overestimated overall replicability, they still believed 
that approximately 20% of the studies would not be 
replicated successfully. This does not necessarily imply, 
however, that they will distrust the results of 1 in 5 
studies they encounter in the media.

The presentation of Bayes factors in the description-
plus-evidence condition could be interpreted as a 
demand characteristic; these quantitative markers and 
their verbal labels may have steered participants’ judg-
ments toward the correct conclusions. It may be practi-
cally and theoretically difficult to distinguish between 
demand characteristics and information given to partici-
pants in our paradigm. We do not deny that participants 
may have developed strategies to derive their predic-
tions directly from the value of the Bayes factors. In fact, 
we assume that they did so. Although one may argue 
that this setup creates a confound, one can also view it 
as a demonstration of the benefits of Bayes factors: They 
constitute a simple metric that can effectively convey 
information about a study’s evidential value. This is not 
a direct argument for Bayes factors over frequentist  
p values or effect sizes per se; in fact, we expect that 
the inclusion of frequentist statistics may similarly 
enhance laypeople’s prediction performance.

We acknowledge that replication outcomes cannot 
be equated with the truth. Although the SSRP (Camerer 
et al., 2018) and Many Labs 2 (Klein et al., 2018) were 
high-powered projects and followed detailed preregis-
tration protocols, the replication outcomes are not 
definitive or irrefutable. Moreover, there currently exists 
no consensus on which decision rule is superior for 
determining replication success (Cumming, 2008; Open 
Science Collaboration, 2015; Simonsohn, 2015; Verhagen 
& Wagenmakers, 2014). We categorized studies as suc-
cessfully replicated and not successfully replicated fol-
lowing the SSRP’s and ML2’s primary replication 
criteria, which were based on whether the replication 
study found a significant effect in the same direction 
as the original study. However, it should be noted that 
Klein et al. (2018) and Camerer et al. (2018) reported 
that applying additional indicators in evaluating repli-
cability resulted in slightly different categorizations of 
replication success. The replication outcomes should 
thus be regarded not as reflective of the absolute truth, 
but rather as reflective of the current, tentative state of 
knowledge.

Along the same lines, laypeople’s predictions should 
also not be equated with the truth. Although clearly 

above chance level, the prediction accuracy rates of 
59% and 67% in the description-only and the description-
plus-evidence conditions, respectively, are far from 
perfect. One reason for this moderate prediction suc-
cess may be participants’ tendency to overestimate the 
replicability of empirical findings; in the context of the 
bleak reality of the current replication rate in psycho-
logical science, laypeople are optimists. This pattern is 
evident in Figure 1 and is corroborated by the signal 
detection analysis indicating that our participants had 
a bias toward saying that a given study would be rep-
licated successfully. Notably, the optimistic perspective 
does not seem to be unique to laypeople; experts simi-
larly overestimated replicability in investigations by 
Dreber et al. (2015), Camerer et al. (2016), and Forsell 
et  al. (2018), though not the one by Camerer et  al. 
(2018). This biased responding may allow for boosting 
prediction accuracy; the AUC metric in our project indi-
cates that if laypeople adopted the optimal unbiased 
criterion, that is, if they were more conservative, then 
their accuracy might be enhanced to 62% for predic-
tions based on verbal descriptions only and 74% for 
predictions based on descriptions plus evidence from 
the original study. This suggestion is speculative, but it 
could be tested in future research, for instance, by 
manipulating expectations of baseline replicability 
rates.

Nevertheless, we believe that laypeople’s predictions 
provide more information than is captured by the esti-
mated accuracy rates. For example, consider the predic-
tion pattern displayed in Figure 1. Participants as a 
collective were divided for a group of studies (i.e., 
those in the middle rows, with symmetrical bimodal 
distributions) and were in agreement for another group 
(i.e., those in the top and bottom rows of the figure). 
For those studies for which participants were nearly 
unanimous, the predictions were highly accurate. More-
over, as the figure shows, when participants as a group 
predicted that a particular effect would fail to be rep-
licated, it indeed failed to be replicated.

These results indicate that the scientific culture of 
striving for newsworthy, extreme, and sexy findings is 
indeed problematic, as counterintuitive findings are the 
least likely to be replicated successfully. Our results 
also relate to the aphorism that “extraordinary (i.e., 
intuitively implausible) claims require extraordinary 
evidence.” Many studies included in our sample were 
considered implausible and thus would have required 
highly compelling evidence for the effects to be estab-
lished. However, the pattern of Bayes factors in Figure 
4 shows that many of the original studies obtained 
weak evidence of an effect; of the included studies, 
37% (10 studies) yielded a Bayes factor lower than 3, 
evidence that is “not worth more than a bare comment” 
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according to Jeffreys (1939, p. 357). The combination 
of low intuitive plausibility and weak initial evidence 
is remarkable and arguably worrisome, especially in 
light of the low replication rates in social science. To 
account for the extraordinary nature of a claim, 
researchers should adjust the prior probability of the 
alternative hypothesis and the null hypothesis. In the 
Bayesian framework, this means that a higher Bayes 
factor would be necessary to conclude that the effect 
is present; in the frequentist framework, a lower p value 
would be is necessary to reject the null hypothesis (cf. 
Benjamin et al., 2018).

The notion of prediction surveys and markets as a 
valuable component of replication research seems to be 
gaining momentum. The Replication Markets platform 
(https://www.replicationmarkets.com), for instance, 
invites researchers as well as the general public to pre-
dict and bet on 3,000 studies associated with the Sys-
tematizing Confidence in Open Research and Evidence 
(SCORE) project (Root, n.d.). Although these predictions 
yield valuable insights, we naturally do not advocate 
replacing replication studies with judgments of the gen-
eral public—or with those of experts. Rather, laypeople’s 
predictions may be used to provide a quick snapshot 
of expected replicability. This can facilitate the replica-
tion process by informing the selection of to-be-
replicated studies. Whether laypeople’s replication 
predictions are distributed unimodally or bimodally 
may, for instance, steer researchers’ confidence in evalu-
ating which predictions are more or less reliable. Addi-
tionally, the relative ordering of laypeople’s confidence 
in the replicability of a given set of studies may provide 
estimations of the relative probabilities of replication 
success. If the goal is to purge the literature of unreli-
able effects, one may start by conducting replications 
of the studies for which replication failure is predicted 
by naive forecasters. Alternatively, if the goal is to clarify 
the reliability of studies for which replication outcomes 
are most uncertain, one could select studies for which 
the distribution of the expected replicability is bimodal. 
Thus, prediction surveys may serve as decision surveys, 
instrumental in the selection stage of replication research 
(cf. Dreber et al., 2015). These informed decisions not 
only could benefit the researchers attempting replica-
tions, but also could optimize the distribution of funds 
and resources for replication projects. In addition, the 
application of prediction surveys to systematically assess 
effects’ prior plausibility can easily be extended to novel 
hypotheses. The Social Science Prediction Platform 
(https://socialscienceprediction.org/), for instance, 
allows researchers to submit an untested hypothesis and 
collect forecasts from both experts and nonexperts. An 
interesting application would be to use these assess-
ments in conjunction with large collaborative research 

efforts such as the Psychological Science Accelerator 
(Moshontz et al., 2018), so that laypeople’s predictions 
may not only contribute to replication research, but also 
inform the prior plausibility of novel studies.
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Notes

1. For some studies, the original articles reported F values 
derived from analyses of variance, but as the crucial compari-
son was between only two groups, we converted these F val-
ues to t values, which were then entered in the Summary Stats 
module in JASP.
2. Unfortunately, this explanation fell prey to a prevalent mis-
interpretation of Bayes rule (e.g., Wagenmakers, Etz, Gronau, 
& Dablander, 2018); the example describes the posterior odds 

(i.e., 
p H

p H

( )

( )
1

0

|
|
data

data
) rather than the Bayes factor (i.e., 

p H

p H

( )

( )

data

data

|
|

1

0

).  

When prior odds are assumed to be equal for the alternative 
hypothesis and the null hypothesis—as is often assumed (e.g., 
Jeffreys, 1961)—the posterior odds equal the Bayes factor.
3. Because of a programming error, the study descriptions were 
not randomized for the 12 participants who were recruited from 
social media and selected to take the survey in Dutch.
4. This discrepancy had no discernible influence on our con-
clusions; subsequent exploratory analyses suggested that the 
results did not change when we excluded participants who 
were recruited via Amazon Mechanical Turk or social-media 
platforms and who reported having studied psychology (at any 
level).
5. In the notation for Bayes factors (BFs), the subscripts refer to 
the hypotheses being compared. In this case, the first subscript 
refers to the one-sided hypothesis of interest (δ > 0), and the 
second refers to the null hypothesis (δ = 0).
6. When using the encompassing-prior approach, one can 
obtain a Bayes factor estimated to be infinite if no posterior 
samples are in accordance with the restricted hypothesis.
7. Note that group-level accuracy refers to the accuracy of the 
average individual, which is estimated in a hierarchical model. 
A hierarchical model has the benefit that it shrinks individual 
estimates toward the group-level mean, thereby reducing the 
influence of extreme cases. Note, however, that the estimated 
group-level accuracy differs from the accuracy of the group as a 
collective (the latter being simply the aggregate across people).
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