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Abstract

Large-scale collaborative projects recently demonstrated that several key findings from the social-science literature
could not be replicated successfully. Here, we assess the extent to which a finding’s replication success relates to
its intuitive plausibility. Each of 27 high-profile social-science findings was evaluated by 233 people without a Ph.D.
in psychology. Results showed that these laypeople predicted replication success with above-chance accuracy (.e.,
59%). In addition, when participants were informed about the strength of evidence from the original studies, this
boosted their prediction performance to 67%. We discuss the prediction patterns and apply signal detection theory
to disentangle detection ability from response bias. Our study suggests that laypeople’s predictions contain useful

information for assessing the probability that a given finding will be replicated successfully.
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Recent work has suggested that the replicability of
social-science research may be disturbingly low (Baker,
2016). For instance, several systematic high-powered
replication projects have demonstrated successful rep-
lication rates ranging from 36% (Open Science Collabo-
ration, 2015) to 50% (Klein et al., 2018), 62% (Camerer
et al., 2018), and 85% (Klein et al., 2014). These low
replication rates have been explained by several factors
that operate at different levels. At the level of the sci-
entific field as a whole, problems include publication
bias (Francis, 2013) and perverse incentive structures
(Giner-Sorolla, 2012). At the level of individual studies,
problems concern low statistical power (Button et al.,
2013; Ioannidis, 2005) and questionable research prac-
tices, such as data-driven flexibility in statistical analysis
(i.e., significance seeking; John, Loewenstein, & Prelec,
2012; Simmons, Nelson, & Simonsohn, 2011; Wagenmakers,
Wetzels, Borsboom, & van der Maas, 2011). Here we
focus on yet another problem that has recently been
associated with poor replicability: the a priori implau-
sibility of the research hypothesis (Benjamin et al., 2018;
Toannidis, 2005).

If the a priori implausibility of the research hypoth-
esis is indicative of replication success, then replication
outcomes can be reliably predicted from a brief descrip-
tion of the hypothesis at hand. Indeed, results from
recent surveys and prediction markets demonstrated
that researchers (i.e., experts) in psychology and related
social sciences can anticipate replication outcomes with
above-chance accuracy. As a group, experts correctly
predicted the replication outcomes for 58%, 67%, and
86% of the studies included in the Reproducibility Proj-
ect: Psychology (Dreber et al., 2015), the Many Labs 2
project (ML2; Forsell et al., 2018), and the Social Sci-
ences Replication Project (SSRP; Camerer et al., 2018),
respectively. These surveys and prediction markets
involved forecasters with a Ph.D. in the social sciences
(e.g., psychology, economics). In addition, the forecast-
ers in the studies by Forsell et al. and Camerer et al.
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had been provided with statistical information from the
original studies, including p values, effect sizes, and/or
sample sizes. These findings raise two key questions
about anticipated replicability: First, do forecasters need
to be social-science experts to predict replication out-
comes with above-chance accuracy? Second, are fore-
casters’ predictions driven by intuitions about empirical
plausibility alone or also influenced by statistical infor-
mation about the original effect?

In this study, our primary aim was to investigate
whether and to what extent accurate predictions of
replicability can be generated by people without a
Ph.D. in psychology or other professional background
in the social sciences (i.e., laypeople) and without
access to the statistical evidence obtained in the original
study. Laypeople may be able to reliably evaluate the
plausibility of research hypotheses (and hence reliably
predict replication outcomes), even without access to
relevant statistical information or in-depth knowledge
of the literature. After all, social science concerns itself
with constructs that are often accessible and interesting
to a lay audience (Milkman & Berger, 2014). Conse-
quently, when presented with a nontechnical descrip-
tion of a study’s topic, operationalization, and result,
laypeople may well be able to produce accurate repli-
cability forecasts. For example, consider the nontechni-
cal description of Kidd and Castano’s (2013) research
hypothesis that we presented to participants in our
study:

Can reading literary fiction improve people’s
understanding of other people’s emotions?
Participants read a short text passage. In one
group, the text passage was literary fiction. In the
other group, the text passage was non-fiction.
Afterwards, participants had to identify people’s
expressed emotion (e.g., happy, angry) based on
images of the eyes only. Participants were better
at correctly recognizing the emotion after reading
literary fiction.

A general understanding of the concepts (e.g., literary
fiction, emotions) and proposed relation between those
concepts (e.g., reading literary fiction improves emo-
tion recognition) may suffice to form intuitions about
plausibility that match the (eventual) empirical evi-
dence. The accuracy of such intuitions can be gauged
by comparing laypeople’s predictions with the empiri-
cal outcome. Hence, to test the accuracy of laypeople’s
intuitions about the plausibility of research hypotheses,
we selected 27 high-profile findings that have recently
been submitted to high-powered replication attempts
(Camerer et al., 2018; Klein et al., 2018).

If laypeople can indeed make accurate predictions
about replicability, these predictions may supplement
theoretical considerations concerning the selection of
candidate studies for replication projects. Given limited
resources, laypeople’s predictions concerning replica-
bility could be used to define the subset of studies for
which one can expect to learn the most from the data.
In other words, researchers could use laypeople’s pre-
dictions as input to assess information gain in a quan-
titative decision-making framework for replication
(Hardwicke, Tessler, Peloquin, & Frank, 2018; MacKay,
1992). This framework follows the intuition that—for
original studies with surprising effects (i.e., low plau-
sibility) or small sample sizes (i.e., little evidence)—
replications can bring about considerable informational
gain.

More generally, if even laypeople can to a large
extent correctly pick out unreplicable findings, this sug-
gests that researchers should be cautious when making
bold claims on the basis of studies with risky and coun-
terintuitive hypotheses. Laypeople’s adequate predic-
tions of replicability may thus provide empirical support
for a culture change that emphasizes robustness and
“truth” over novelty and “sexiness” (Dovidio, 2016;
Giner-Sorolla, 2012; Nosek, Spies, & Motyl, 2012). When
extended to novel hypotheses, laypeople’s skepticism
may even serve as a red flag, prompting researchers to
go the extra mile to convince their audience—laypeo-
ple and peers alike—of the plausibility of their research
claim (e.g., by using larger samples, engaging in Reg-
istered Reports, or setting a higher bar for evidence;
see Benjamin et al., 2018; Chambers, 2013).

The secondary aim of the current study was to assess
the extent to which the inclusion of information about
the strength of the evidence obtained in an original
study improves laypeople’s prediction of replication
outcomes. In contrast to the investigations of experts’
prediction accuracy by Camerer et al. (2018) and Forsell
et al. (2018), we used Bayes factors rather than p values
and effect sizes to quantify the evidence in the original
studies (Jeffreys, 1961; Kass & Raftery, 1995).

We preregistered the following hypotheses: First, we
hypothesized that, on the basis of assessments of the
a priori plausibility of the research hypotheses at hand,
(a) laypeople can predict replication success with
above-chance accuracy, and (b) their confidence is
associated with the magnitude of the observed effects
of interest in the replication studies. The former hypoth-
esis would be supported by prediction accuracy above
50% and the latter by a positive correlation between
people’s confidence in replicability and the effect size
in the replication. In addition, we hypothesized that the
inclusion of information on the strength of the original
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evidence (i.e., the Bayes factor) would improve predic-
tion performance.

Disclosures

Preregistration

The current study was preregistered on the Open Sci-
ence Framework. The preregistration documents are
available at https://osf.io/wg9s3/.

Data, materials, and online resources

Readers can access all materials, reanalyses of the origi-
nal studies, the anonymized raw and processed data
(including relevant documentation for the data of ML2
and SSRP), and the R code to conduct all our confirma-
tory and exploratory analyses (and for all figures cre-
ated in R) in our Open Science Framework project at
https://osf.io/wg9s3. In the Supplemental Material
(http://journals.sagepub.com/doi/10.1177/2515
245920919667), we provide additional details on the
methods and additional exploratory analyses. Specifi-
cally, the online supplement presents details on the
Bayesian reanalyses of the original studies, the sam-
pling plan, and the statistical models and prior speci-
fications; includes tables with the descriptions (in
English and Dutch) of all the original studies as pre-
sented to the participants; and reports two additional
exploratory analyses. The first of these analyses con-
cerns the accuracy of predictions derived from the
Bayes factors alone, without human evaluation, and the
second analysis is a Bayesian logistic regression model
that includes random effects for both participants and
studies.

Reporting

We report how we determined our sample size, all data
exclusions, all manipulations, and all measures in the
study.

Ethical approval

The study was approved by the local ethics board of the
University of Amsterdam, and all participants were
treated in accordance with the Declaration of Helsinki.

Method

Participants

In total, we obtained data from 257 participants, who
were recruited from the online platform Amazon
Mechanical Turk (MTurk; 7 = 83), the online participant
pool of first-year psychology students at the University

of Amsterdam (n = 138), and social-media platforms
such as Facebook (7 = 306). Participants from MTurk
received financial compensation, University of Amster-
dam students received research credits, and participants
from social media were given the opportunity to enter
a raffle for a voucher from a Dutch Web shop. After
exclusions (discussed later in this section), the final
sample consisted of 233 participants, 123 in the descrip-
tion-only condition and 110 in the description-plus-
evidence condition.

Sampling Plan

We determined that we would need a minimum of 103
observations per condition to achieve an 80% probabil-
ity of obtaining strong evidence (i.e., a Bayes factor >
10) in favor of our experimental hypothesis, assuming
a medium effect size (& = 0.5), a default Cauchy prior
with a scale parameter of » = .707, and a study design
comparing two independent groups (i.e., a t test). As
preregistered, data collection continued after the mini-
mum number of participants was reached (i.e., 103 in
each condition), until the preestablished data-collection
termination date of April 22, 2019.

Materials

Participants were presented with 27 studies, a subset
of the studies included in the SSRP (Camerer et al.,
2018) and the ML2 project (Klein et al., 2018).

Study selection. In the description-plus-evidence con-
dition, participants were provided with study descrip-
tions accompanied by Bayes factors indicating the
strength of the original evidence. Therefore, one of the
main criteria for inclusion in the set of studies was that
the original analysis allowed for a Bayesian reanalysis
using the Summary Stats module in JASP (JASP Team,
2019); that is, the main analysis had to have been con-
ducted using a paired-samples or independent-samples #
test, a correlation test, or a binomial test.! Details about
the reanalyses are provided in the Supplemental Material.
We subsequently checked whether the percentage of
successful replications in our subset was similar to the
percentages in ML2 and the SSRP (i.e., 50% and 62%).
This was the case; our subset included 14 successful and
13 unsuccessful replications (i.e., 52% successful).

Presentation of studies. The materials for each study
included a short description of the research question, its
operationalization, and the key finding. These descriptions
were inspired by those provided in the SSRP and ML2, but
were rephrased to be comprehensible by laypeople. In the
description-only condition, solely these descriptive texts
were provided; in the description-plus-evidence condition,
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the Bayes factor and its verbal interpretation (e.g., “moder-
ate evidence”) were added to the description of each
study. The verbal interpretations were based on a classifi-
cation scheme proposed by Jeffreys (1939) and adjusted
by M. D. Lee and Wagenmakers (2013, p. 105). These ver-
bal labels were added to help participants interpret the
Bayes factors, because the concept of evidence ratios
might be difficult or ambiguous for laypeople (Etz,
Bartlema, Vanpaemel, Wagenmakers, & Morey, 2019). To
prevent participants from reading about the replication
outcomes of the original studies during the survey itself,
we ensured that the descriptions did not contain identify-
ing information, such as the names of the authors, the
study titles, or any direct quotes. In addition to the 27
study descriptions, the survey included one bogus item as
an attention check. In the description of this study, partici-
pants were instructed to answer “no” to the question of
whether the study would be replicated and to indicate a
confidence of 75% in this prediction. Participants from The
Netherlands could choose to read the study descriptions in
English or Dutch. The translation of the descriptions from
English into Dutch was assisted by the online translation
software DeepL (https://www.deepl.com/en/translator).

Procedure

The survey was generated using the online survey soft-
ware Qualtrics (https://www.qualtrics.com). Partici-
pants were randomly assigned to the description-only
or the description-plus-evidence condition. First, they
read an explanation of the term replication and its
relevance in science: “You will be asked whether you
think that the described study will replicate. This means:
if an independent lab will do this study again with a
large number of participants, using the same materials,
will they find convincing evidence for the same effect?
If the effect really exists, it should be found by a dif-
ferent lab. However, it seems that not all studies can
be replicated, because some results are based on coin-
cidence, or poorly designed or executed studies.” Par-
ticipants in the description-plus-evidence condition
additionally received a short explanation of the Bayes
factor and the commonly used verbal categories for
interpreting the strength of evidence they indicate (Lee
& Wagenmakers, 2013, p. 105). The explanation of the
Bayes factor was as follows: “A Bayes factor (BF) is the
degree to which evidence is found for the existence of
the effect, based on the data at hand. For instance, if
BF = 2, the data suggest that it is 2 times more likely
that the effect is present, than that there is no effect.”?

After the instructions, participants were presented
with the 27 studies plus the bogus attention-check
study. Each study was presented and rated on a sepa-
rate page. After reading the study description (and the

Bayes factor plus verbal interpretation in the description-
plus-evidence condition), participants could select a
tick box to indicate that they did not understand the
description. Next, participants indicated whether they
believed that the study would be replicated successfully
(yes/no) and expressed their confidence in their deci-
sion on a sliding scale ranging from 0 to 100. The order
in which the studies were presented was randomized
across participants.® Finally, at the end of the survey,
participants were asked whether they were already
familiar with the ML2 project or the SSRP.

Data exclusions

Following our preregistered plan, we excluded partici-
pants (a) if they had a Ph.D. in psychology (i.e., they
qualified as experts rather than laypeople), (b) if they
indicated that they did not understand more than 50%
of the descriptions, (¢) if they did not read the descrip-
tions carefully (i.e., they failed the included attention
check), or (d) if they were already familiar with either
of the replication projects from which the studies were
drawn. We applied a more stringent definition of experts
than did previous survey studies of prediction accuracy
(i.e., Camerer et al., 2018; Dreber et al., 2015; Forsell
et al., 2018); whereas the previous studies defined
experts as researchers in psychology, ranging from
graduate students to full professors, we defined experts
as people with a Ph.D. degree in psychology and hence
classified graduate students as laypeople.* Participants
who indicated that they had a Ph.D. in psychology were
immediately redirected to the end of the survey and
could not complete the study. As specified in our pre-
registration, participants passed the attention check if
they answered as explicitly instructed, that is, if they
selected “no” as their answer to the dichotomous rep-
lication question and rated their confidence in the inter-
val between 70% and 80%. We excluded 3 participants
because they indicated that they were familiar with the
replication projects and 22 participants because they
failed the attention check. No participants indicated
that they understood less than 50% of the study descrip-
tions. In total, we excluded 1.6% (i.e., 99) of all predic-
tions because participants indicated that they did not
understand the study description. Seventy-two percent
of participants (i.e., 167) understood all the study
descriptions.

Statistical models

We constructed Bayesian (hierarchical) models to esti-
mate and test the parameters of interest for our hypoth-
eses. For all analyses, the outcome measures were chosen
according to what was most relevant and informative for
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answering the research questions. For the primary analy-
sis, we estimated accuracy rates (0-1), as these afford the
most intuitive and simple interpretation of prediction
performance and are directly comparable with the mea-
sures used in previous prediction survey studies. The
experimental effect of condition (description only vs.
description plus evidence) was evaluated by means of
Brier scores, because in this case the unit of interest was
the individual’s prediction performance, which takes into
account accuracy and confidence and is the most sensi-
tive measure for comparing people’s performance across
conditions. In the correlation analysis, the unit of interest
was the study rather than the participant; hence, we
looked at the confidence ratings per study (aggregated
across participants). All models and priors are described
in detail in the Supplemental Material.

Results

Descriptive pattern

Figure 1 displays participants’ confidence ratings for
their predictions of the replicability of each of the 27
included studies, in order of the average rating. Positive
ratings reflect confidence in replicability, and negative
ratings reflect confidence in nonreplicability; —100
denotes extreme confidence that the effect would fail
to be replicated. Note that these data were aggregated
across the description-only and the description-plus-
evidence conditions. The studies in the top 10 rows are
studies for which participants showed relatively high
agreement in predicting replication success. Out of
these 10 studies, 9 were replicated successfully and
only 1 was not (i.e., the study by Anderson, Kraus,
Galinsky, & Keltner, 2012). The studies in the bottom
4 rows are studies for which participants showed rela-
tively high agreement in predicting replication failure.
In fact, none of these 4 studies were replicated success-
fully. For the remaining 13 studies in the middle rows,
the group response was relatively ambiguous, as
reflected by bimodal densities that were roughly equally
distributed between the negative and positive ends of
the scale. Out of these 13 studies, 5 were replicated suc-
cessfully, and 8 failed to be replicated successfully. Over-
all, Figure 1 provides a compelling demonstration that
laypeople are able to predict whether or not high-profile
social-science findings will be replicated successfully. In
Figure 2, participants’ predictions are displayed sepa-
rately for the description-only and the description-plus-
evidence conditions.

Figure 3 provides a more detailed account of the
data for three selected studies. Most participants cor-
rectly predicted that the effect found in the study in the
top panel (i.e., Gneezy, Keenan, & Gneezy, 2014) would

be successfully replicated. For the study in the middle
panel (i.e., Tversky & Gati, 1978), participants showed
considerable disagreement; slightly more than half
incorrectly predicted that the study would be replicated
successfully. Finally, most participants correctly pre-
dicted that the effect found in the study in the bottom
panel (i.e., Shah, Mullainathan, & Shafir, 2012) would
fail to be replicated.

Before conducting our preregistered confirmatory
analyses, we conducted an exploratory analysis inves-
tigating the relation between the Bayes factors of the
original studies and the effect sizes of the replication
studies. To a large extent, our study was based on the
assumption that the Bayes factors of the original studies
carry relevant information about replicability. To verify
this claim, we computed a Spearman correlation coef-
ficient between the log-transformed Bayes factors of the
original studies and the standardized effect sizes of the
replication studies expressed as Pearson correlation
coefficients. The data provided overwhelming evidence
in favor of a positive correlation (BF,, = 162).> The
median value of p was .62, 95% credible interval (CD) =
[.33, .78]. Thus, the Bayes factors of the original studies
indeed conveyed useful information (see Fig. 4).

Preregistered analyses

Quality check. Following our preregistered plan, we
implemented a quality check on the data, which served
as a prerequisite for our confirmatory analyses. We had
decided to consider the data inappropriate for subse-
quent analyses if the data provided strong evidence for
the hypothesis that overall laypeople perform worse than
chance level when predicting the replicability of empiri-
cal studies. An accuracy rate worse than chance level
(i.e., less than 50%) would indicate that participants did
not understand or follow the instructions correctly or
misinterpreted the presented information (.e., the
description of the study and the Bayes factor). We tested
the restricted hypothesis /,; that the overall accuracy of
laypeople is below 50%, that is, H,;: ® < .5, where o is
the mode of the Beta distribution for the group-level
accuracy rate. This hypothesis was tested against the
encompassing hypothesis H,, which lets o vary freely,
that is, H.: ® ~ Beta(1,1). The Bayes factor in favor for the
encompassing hypothesis, BF,,, was computed using the
encompassing-prior approach (Klugkist, Kato, & Hoijtink,
2005). The evidence for the encompassing hypothesis
was estimated to approach infinity, which means that the
data passed the quality check.®

Difference in prediction performance between con-
ditions. In our preregistered confirmatory analyses, we
first investigated whether there was a difference between
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Aviezer et al. (2012)
Hauser et al. (2014)
Gneezy et al. (2014)

T. D. Wilson et al. (2014) -
Karpicke & Blunt (2011) -
Pyc & Rawson (2010)
Derex et al. (2013)
Anderson et al. (2012)
Duncan et al. (2012) -

Bauer et al. (2012) -

Nishi et al. (2015)
Balafoutas & Sutter (2012) -
Giessner & Schubert (2007)
Sparrow et al. (2011)
Kovacs et al. (2010) -

Zhong & Liljenquist (2006) -
Morewedge et al. (2010)
Tversky & Gati (1978) -
Risen & Gilovich (2008)
Zaval et al. (2014) +

Critcher & Gilovich (2008) -
Kidd & Castano (2013)
Shafir (1993) -

Alter et al. (2007)
Shah et al. (2012) -

S. W. S. Lee & Schwarz (2010)
Gervais & Norenzayan (2012) -

I T I T 1
-100 -50 0 50 100
Confidence Rating

Fig. 1. Distribution of participants’ confidence ratings for each of the 27 studies, aggregated over the
two experimental conditions. The studies are ordered according to their average confidence ratings.
Light-gray shading indicates that a study was successfully replicated, and dark-gray shading indicates
that a study was not successfully replicated. Negative values indicate a prediction of replication failure,
and positive values indicate a prediction of replication success.

the two study conditions. Specifically, we evaluated whether ~ into account both the accuracy and the indicated certainty
or not the inclusion of the Bayes factor for the original (or uncertainty) of the prediction; highly certain correct
effect increased prediction performance as measured by  predictions are rewarded, and highly certain incorrect pre-
individual Brier scores (Brier, 1950). The Brier score takes  dictions are punished, relative to uncertain predictions.
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Individual Brier scores were log-transformed to account for
skewness in the distribution of Brier scores.

We conducted a Bayesian independent-samples ¢
test with the log Brier score as the dependent variable
and the condition assignment as the grouping variable.
The hypothesis of interest was that the Brier scores of
participants in the description-plus-evidence condition
would be lower than the Brier scores of participants
in the description-only condition, as lower scores indi-
cate better prediction performance. This one-sided
default alternative hypothesis was specified as the

d

effect size, 8, for the difference being smaller than
zero, that is, H_: & < 0. The hypothesis was tested
against the null hypothesis, H,, that the effect size is
exactly zero, that is, Hy: 8 = 0. The results revealed
overwhelming evidence that participants in the
description-plus-evidence condition outperformed
those in the description-only condition, BF_; = 1.0 x
10'%. The median of the effect size distribution was
—0.96, 95% CI = [-1.23,-0.68] (see Fig. 5 for a boxplot
of the data, as well as the prior and posterior distribu-
tions of d).

Pyc & Rawson (2010)
Gneezy et al. (2014) -
2012)
2014)

Aviezer et al.
Hauser et al.
Karpicke & Blunt (2011)
Giessner & Schubert (2007)
T. D. Wilson et al. (2014)
2012)
2012)
2010)

(2010)
(2014)
(2012)
(2014)
(2017)
(2007)
(2014)
Anderson et al. ( )
Duncan et al. ( )
Kovacs et al. ( )

Balafoutas & Sutter (2012)

Nishi et al. (2015)

Zaval et al. (2014)

Shafir (1993) +

Critcher & Gilovich (2008) -

Risen & Gilovich (2008) -

Derex et al. (2013)

Zhong & Liljenquist (2006)

(2012)

Morewedge et al. (2010) -

Kidd & Castano (2013)

Alter et al. (2007)

Sparrow et al. (2011)

Tversky & Gati (1978) -

Shah et al. (2012)

Gervais & Norenzayan (2012) -
S. W. S. Lee & Schwarz (2010) -

Bauer et al.

-100

-50 0 50 100
Confidence Rating

Fig. 2. (continued on next page)
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Aviezer et al. (2012

Hauser et al. (2014

T. D. Wilson et al. (2014

Derex et al. (2013

Karpicke & Blunt (2011

Bauer et al. (2012
Gneezy et al. (2014
2012

2012

(2012) 4
(2014) +
(2014) +
(2013) +
(2011) +
(2012) +
(2014) 1
Anderson et al. ( )
Duncan et al. ( )
Sparrow et al. (2011)

Pyc & Rawson (2010) -

Nishi et al. (2015)
Balafoutas & Sutter (2012) -
Tversky & Gati (1978) -
Morewedge et al. (2010) -
Zhong & Liljenquist (2006)
Giessner & Schubert (2007) -
Kidd & Castano (2013) -
Risen & Gilovich (2008) -
Kovacs et al. (2010) -
Critcher & Gilovich (2008)
Zaval et al. (2014) -
S.W. S. Lee & Schwarz (2010) -
Shafir (1993)

Alter et al. (2007)
Shah et al. (2012) -
Gervais & Norenzayan (2012) -

-100

-50 0 50 100

Confidence Rating

Fig. 2. Distribution of participants’ confidence ratings for each of the 27 studies, separately for (a) the
description-only condition and (b) the description-plus-evidence condition. The studies are ordered
according to their average confidence ratings. Light shading indicates that a study was successfully
replicated, and dark shading indicates that a study was not successfully replicated. Negative values indi-
cate a prediction of replication failure, and positive values indicate a prediction of replication success.

Group accuracy in each condition. To investigate
whether laypeople can adequately predict replication out-
comes, we tested whether the group-level accuracy rates’
were above chance level, that is, higher than 50%. We con-
sidered only the accuracy of predictions regardless of par-
ticipants’ confidence. We applied a Bayesian hierarchical

model to analyze the accuracy data. For each condition
separately, we then tested the restricted hypotheses that
the accuracy rate, ® (i.e., the mode of the group-level
distribution), was above chance in the description-only
condition (#,,), and in the description-plus-evidence con-
dition (H,5): H,,H,;: ® > .5. The hypotheses H,, and H,,
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Gneezy et al. (2014)
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Fig. 3. Histograms (and rug plots) of confidence ratings for three selected studies, one
for which participants were nearly unanimous in their belief that the study would be
replicated successfully (top panel), one for which there was considerable disagreement
(middle panel), and one for which participants were nearly unanimous in their belief that
the study would not be replicated successfully (bottom panel). Negative values indicate
a prediction of replication failure, and positive values indicate a prediction of replication
success. The vertical dashed lines show the average confidence ratings for the studies

(i.e., group prediction).

were tested against the null hypothesis stating that ® is
exactly equal to .5, which would indicate chance-level
performance: Hy: o = .5.

The data provide extreme support for the restricted
hypothesis that participants in the description-only con-
dition performed better than chance, BF,,, = 4.4 x 10.
The median value for ® was .59, 95% CI = [.57, .60],
which implies a 59% accuracy rate for participants in

the description-only condition at the group level. The data
also provide extreme support for the restricted hypothesis
that participants in the description-plus-evidence condi-
tion performed above chance level, BF,,, = 5.6 x 10%
The median value of ® was .67, 95% CI = [.65, .69],
which implies a 67% accuracy rate for participants in
the description-plus-evidence condition at the group
level. The nonoverlapping credible intervals of the two
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Fig. 4. Association between the evidence of the original studies
(quantified by Bayes factors) and the effect sizes of the replication
studies. Studies that were successfully replicated are indicated by
light-gray shading, and studies that were not successfully replicated
are indicated by dark-gray shading.

conditions corroborate the results from the independent-
samples / test on the Brier scores; accuracy was higher
in the description-plus-evidence condition than in the
description-only condition. The distributions of the
accuracy rates in both conditions are displayed in Fig-
ure 6.

Correlation between laypeople’s confidence and rep-
lication effect size. In addition to analyzing participants’
binary predictions of replicability, we assessed whether
the confidence with which they made their decisions was
indicative of the size of the effect observed in the replica-
tion studies (cf. Camerer et al., 2018). In other words, we
tested whether participants were more certain about their
decisions if the replication effect size was large, and became
less certain (i.e., more certain about nonreplicability) as the
underlying replication effect size approached zero. The
replication effect sizes were retrieved from Camerer et al.
(2018) and Klein et al. (2018). The data are plotted in Fig-
ure 7, separately for each condition.

We used a Bayesian Spearman correlation (van
Doorn, Ly, Marsman, & Wagenmakers, 2017) to test the
null hypothesis (i.e., H;: p = 0) against the one-sided
restricted hypotheses that the correlation was positive
in both the description-only condition (i.e., H,: p > 0)
and the description-plus-evidence condition (i.e., H,s:
p > 0). The data provide extreme evidence for both
restricted hypotheses, BF,,, = 523 and BF,, = 14,295.
For the description-only condition, the median Spear-
man correlation coefficient was .61, 95% CI = [.34, .77].
For the description-plus-evidence condition, the median
coefficient was .77, 95% CI = [.57, .87]. Note that for
studies that failed to be replicated successfully, the
effect sizes—by definition—clustered around zero.
Although the Spearman correlation coefficient is a rank-
based measure, the correlation should still be inter-
preted with caution.

Exploratory analyses

Disentangling discriminability and response bias.
According to signal detection theory (SDT; Green &
Swets, 1966; Tanner & Swets, 1954), binary decisions are
driven by two main components: the ability to distin-
guish between the response options (discriminability)
and the a priori tendency to prefer one option over the
other (response bias). In an exploratory analysis, we
applied SDT to decompose participants’ predictions into
discriminability and bias. Here, discriminability relates to
the degree to which replicable and unreplicable studies
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Fig. 5. Analysis of the difference in performance between conditions.
In (), individual log-transformed Brier scores are plotted separately
for the description-only and description-plus-evidence conditions.
The shaded boxes indicate the interquartile ranges (IQRs), the thick
horizontal lines indicate the median values, and the whiskers indicate
the minima and maxima not exceeding 1.5 * IQR. Individual jittered
data points are displayed in the graph. The graph in (b) shows the
prior and posterior distributions of the effect size (3). The horizontal
bar indicates the 95% credible interval of the posterior distribution.
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Fig. 6. Posterior distributions of the group-level accuracy rates of
participants in both conditions.

were distinguishable, which was influenced by character-
istics of the stimuli (i.e., information provided about the
studies) and by participants’ underlying ability (i.e., indi-
vidual prediction skills). Bias reflects participants’ overall
tendency toward either predicting that a given study
would be replicated successfully or predicting that it
would not be replicated successfully, regardless of the
information about the study. These parameters were esti-
mated by applying a Bayesian hierarchical equal-variance
Gaussian SDT model (Lee & Wagenmakers, 2013, p. 164).

Figure 8 shows the group-level posterior distribu-
tions of the discriminability and bias parameters, sepa-
rately for the two conditions. Larger values for
discriminability indicate greater ability to distinguish
replicable from unreplicable findings. Results are

d

10 -
S 8- o
I
PN 6 o0
2
2 Lo
4 -
E e °
g 27 g © o
=3 @
& 07 oo ®a@gee®
_2- !

-0.5

T
0.0 0.5 1.0

Confidence Rating

|
N
o

consistent with the Brier-score analysis reported earlier,
as the discriminability parameter clearly differed
between conditions; people in the description-plus-
evidence condition were better at separating replicable
studies from unreplicable studies than were people in
the description-only condition. The enhanced discrim-
inability for the description-plus-evidence condition is
also illustrated in Figure 9a, which shows that the sepa-
ration between the distributions for replicable and
unreplicable studies was larger for the description-plus-
evidence condition than for the description-only condi-
tion. For the bias parameter, the difference between
conditions was less pronounced; the negative values
for bias (Fig. 8) indicate that all the laypeople in our
sample tended to overestimate replicability (i.e., they
displayed a bias toward saying that the study would be
replicated successfully). This bias is also depicted in
Figure 9a, in which for both conditions, the adopted
criterion is located to the left of the optimal criterion.

The receiver-operating characteristic (ROC) curve is
often used to interpret the parameter values of SDT.
This curve reflects the proportion of hits (in this case,
studies that were deemed replicable and were repli-
cated successfully) and false alarms (studies that were
deemed replicable but were not replicated successfully)
across all possible levels of bias, given the estimated
discriminability. The further the curve moves away from
the diagonal (i.e., chance level), the better the classifi-
cation performance. The derived area under the curve
(AUC) metric is used to quantify the information cap-
tured by the ROC curve; it reflects the probability that
a given stimulus (in this case, study) is correctly clas-
sified (as replicable or unreplicable). We created ROC
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Fig. 7. Relationship between the average confidence rating in each study and the size of the effect observed in the corresponding
replication study. Results are shown separately for (a) the description-only condition and (b) the description-plus-evidence condition.
The dashed lines represent the cutoff between confidence in successful replication (i.e., positive confidence ratings) and confidence
in failed replication (i.e., negative confidence ratings). Light shading indicates that the study’s effect was successfully replicated, and
dark shading indicates that the study’s effect was not successfully replicated.
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Fig. 8. Posterior distributions of the bias and discriminability parameters in the description-
plus-evidence condition and the description-only condition. Negative values for bias indi-
cate a tendency to overestimate replicability, and larger values for discriminability indicate
greater ability to distinguish replicable from unreplicable findings.

curves for participants’ prediction performance in both
conditions as derived from the estimated discriminabil-
ity (disregarding the estimated bias). The ROC curves
in Figure 9b show that the ratio of hits to false alarms
was better for people in the description-plus-evidence
condition compared with people in the description-only
condition. This difference is also quantified by the asso-
ciated AUC metric; its median value was 0.62, 95%
CI = [0.60, 0.65] for the description-only condition and
0.74, 95% CI = [0.72, 0.77] for the description-plus-
evidence condition.

Taken together, the results of the SDT model indicate
that access to the statistical evidence predominantly
affected discriminability rather than bias. This suggests
that the evidence (i.e., the Bayes factors) provided
information that enhanced participants’ ability to cor-
rectly distinguish between replicable and unreplicable
studies, rather than making them simply more skeptical
across the board. Note that we did not conduct any
statistical tests, but solely estimated the discriminability
and bias parameters for each condition, as well as the
associated AUC metrics.

Estimating the prediction accuracy of experts. In a
second exploratory analysis, we applied a Bayesian hier-
archical model to generate the posterior distributions of
the accuracy rates for the experts’ predictions that were

obtained by Camerer et al. (2018) and Forsell et al. (2018)
in the SSRP and ML2 project, respectively. Experts in the
SSRP showed the higher accuracy rate; they were able to
correctly predict the replicability of almost three quarters
of the studies, achieving an accuracy rate of .72, 95%
CI =[.69, .74). The median accuracy rate of the experts in
the ML2 project was .65, 95% CI = [.62, .68]. Both these
experts’ distributions and the distributions for the nonex-
perts in our study (expressed as percentages) are pre-
sented in Figure 10. The figure suggests that the prediction
accuracy of laypeople provided with a description of the
original study and a Bayes factor for the evidence
obtained can be at least as good as, if not better than, the
prediction accuracy of the experts who anticipated the
outcomes of the ML2 project (and who were also pro-
vided with statistics from the original studies).

It is important to note, however, that the perfor-
mance of these experts and of the laypeople in our
study may not be completely comparable, as the studies
included in our stimuli only partly overlapped with the
SSRP and ML2 sets (participants in the our study rated
17 studies from the SSRP and 10 from ML2). Of the 17
studies we drew from the SSRP, 12 were replicated suc-
cessfully, whereas of the 10 studies we drew from ML2,
only 2 were replicated successfully. Because of these
unintentionally unequal proportions, which are also
not representative of the respective projects, we
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Fig. 9. Results from the signal detection theory analyses. The graphs in (a) show the noise distributions (white) and signal distributions
(colored) for the description-plus-evidence condition (right) and the description-only condition (left). The dashed lines indicate the
criteria adopted by the participants and the optimal criteria. The graphs in (b) show hit rate as a function of false alarm rate (i.e., the
receiver-operating characteristic curve) in the description-plus-evidence condition (right) and the description-only condition (left). The
shaded bands depict the 95% credible intervals, and the dashed lines indicate chance-level performance. The insets show the posterior
distributions of the area under the curve (AUC). This figure is based on Figure 9 in Selker, van den Bergh, Criss, and Wagenmakers (2019).

estimated the accuracy rate for the full set of studies
rated by the experts in each project, rather than only
the subset that we presented to our lay participants.

Discussion

This study showed that laypeople without a professional
background in the social sciences are able to predict
the replicability of social-science studies with above-
chance accuracy, even when provided solely with
descriptions of the studies. Because the predictions in
the description-only condition were generated by

nonexperts on the basis of nothing more than simple
verbal study descriptions, we take these predictions to
reflect intuitions of plausibility. Thus, our results suggest
that intuitions about the plausibility of targeted effects
carry information about the likelihood of successful rep-
lication outcomes. Prediction accuracy further increased
with access to the statistical evidence (i.e., the Bayes
factors) obtained in the original studies. In addition,
participants’ confidence in their replicability judgments
was associated with the effect sizes obtained in replica-
tion studies. This may indicate that participants were
able to derive a sense of the magnitude of the targeted
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Fig. 10. Comparison of the accuracy of laypeople and experts in predicting replication
success. The graph shows the posterior distributions of the group-level accuracy rates for
participants in our description-only and description-plus-evidence conditions and for experts
in the Many Labs 2 (ML2) project and in the Social Sciences Replication Project (SSRP).

effects from the descriptions. Inclusion of information
on the original evidence amplified the relation between
confidence ratings and replication effect sizes.

The notion that the intuitive plausibility of scientific
effects may be indicative of their replicability is not
novel (or counterintuitive). The previous results of the
Replication Project: Psychology (Open Science Collabo-
ration, 2015), for instance, already suggested that non-
surprising studies are more replicable than highly
surprising ones. B. M. Wilson and Wixted (2018) built
on the data from that replication project and found that
lower prior odds for the crucial effects explained the
difference between replicability rates in social and cog-
nitive psychology; social-psychological studies con-
tained more risky but potentially groundbreaking
effects compared with cognitive-psychological studies.
The authors suggested that the key factor influencing
prior odds of an effect is “established knowledge,
acquired either from scientific research or from com-
mon experience (e.g., going without sleep makes a
person tired)” (B. M. Wilson & Wixted, 2018, p. 191).
By asking laypeople about their intuitions regarding
the replicability of social-science studies, we sought to
shed light on these prior odds of effects derived from
common sense, which we call “intuitive plausibility.”
Although we did not assess the plausibility of the stud-
ies directly, we believe that laypeople’s intuitions
regarding the studies’ replicability can serve as a close
approximation. Our results provide empirical support
for the suggestion that intuitive (i.e., nonsurprising)
effects are more replicable than highly surprising ones,
as replicable studies were in fact deemed more

replicable than nonreplicable studies by a naive group
of laypeople.

In principle, we expect our results to generalize to
most people, provided that the instructions, explanation
of replicability, and study descriptions are written in
plain language, avoiding technical terms. It is possible
that prediction accuracy may rise with increased exper-
tise; for instance, graduate students may, on average,
outperform people without any expertise in social sci-
ences. However, previous prediction studies showed
that weighting experts’ predictions according to their
self-reported topical expertise did not improve their
average prediction accuracy, which suggests that at
least knowledge about a particular study’s topic may
be irrelevant (Dreber et al., 2015; Forsell et al., 2018).

An obvious limitation on the generality of our results
is that if predictions are solicited from laypeople, this
narrows the pool of studies that are suited for inclusion;
complex psychophysics experiments or functional MRI
studies may not be comprehensible for laypeople and
may be better evaluated by experts. However, for the
majority of studies in social science (e.g., psychology
and economics), targeting laypeople rather than experts
may be advantageous in terms of availability, accessibil-
ity, and the possibility of including previously pub-
lished studies (the results of which experts may already
be familiar with or may simply look up). A further
prerequisite is that the evaluated replication studies
should be of high quality (e.g., preregistered, high-
powered studies featuring manipulation checks) to
ensure that the replication outcomes are reliable and
can thus serve as a reliable criterion against which to
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compare participants’ predictions. We have no reason
to believe that our results depend on other character-
istics of the participants, materials, or context.

A final side note on the generalizability of our find-
ings concerns the wider implications and scope of the
results. Although participants in our study strongly
overestimated overall replicability, they still believed
that approximately 20% of the studies would not be
replicated successfully. This does not necessarily imply,
however, that they will distrust the results of 1 in 5
studies they encounter in the media.

The presentation of Bayes factors in the description-
plus-evidence condition could be interpreted as a
demand characteristic; these quantitative markers and
their verbal labels may have steered participants’ judg-
ments toward the correct conclusions. It may be practi-
cally and theoretically difficult to distinguish between
demand characteristics and information given to partici-
pants in our paradigm. We do not deny that participants
may have developed strategies to derive their predic-
tions directly from the value of the Bayes factors. In fact,
we assume that they did so. Although one may argue
that this setup creates a confound, one can also view it
as a demonstration of the benefits of Bayes factors: They
constitute a simple metric that can effectively convey
information about a study’s evidential value. This is not
a direct argument for Bayes factors over frequentist
p values or effect sizes per se; in fact, we expect that
the inclusion of frequentist statistics may similarly
enhance laypeople’s prediction performance.

We acknowledge that replication outcomes cannot
be equated with the truth. Although the SSRP (Camerer
et al., 2018) and Many Labs 2 (Klein et al., 2018) were
high-powered projects and followed detailed preregis-
tration protocols, the replication outcomes are not
definitive or irrefutable. Moreover, there currently exists
no consensus on which decision rule is superior for
determining replication success (Cumming, 2008; Open
Science Collaboration, 2015; Simonsohn, 2015; Verhagen
& Wagenmakers, 2014). We categorized studies as suc-
cessfully replicated and not successfully replicated fol-
lowing the SSRP’s and ML2’s primary replication
criteria, which were based on whether the replication
study found a significant effect in the same direction
as the original study. However, it should be noted that
Klein et al. (2018) and Camerer et al. (2018) reported
that applying additional indicators in evaluating repli-
cability resulted in slightly different categorizations of
replication success. The replication outcomes should
thus be regarded not as reflective of the absolute truth,
but rather as reflective of the current, tentative state of
knowledge.

Along the same lines, laypeople’s predictions should
also not be equated with the truth. Although clearly

above chance level, the prediction accuracy rates of
59% and 67% in the description-only and the description-
plus-evidence conditions, respectively, are far from
perfect. One reason for this moderate prediction suc-
cess may be participants’ tendency to overestimate the
replicability of empirical findings; in the context of the
bleak reality of the current replication rate in psycho-
logical science, laypeople are optimists. This pattern is
evident in Figure 1 and is corroborated by the signal
detection analysis indicating that our participants had
a bias toward saying that a given study would be rep-
licated successfully. Notably, the optimistic perspective
does not seem to be unique to laypeople; experts simi-
larly overestimated replicability in investigations by
Dreber et al. (2015), Camerer et al. (2016), and Forsell
et al. (2018), though not the one by Camerer et al.
(2018). This biased responding may allow for boosting
prediction accuracy; the AUC metric in our project indi-
cates that if laypeople adopted the optimal unbiased
criterion, that is, if they were more conservative, then
their accuracy might be enhanced to 62% for predic-
tions based on verbal descriptions only and 74% for
predictions based on descriptions plus evidence from
the original study. This suggestion is speculative, but it
could be tested in future research, for instance, by
manipulating expectations of baseline replicability
rates.

Nevertheless, we believe that laypeople’s predictions
provide more information than is captured by the esti-
mated accuracy rates. For example, consider the predic-
tion pattern displayed in Figure 1. Participants as a
collective were divided for a group of studies (i.e.,
those in the middle rows, with symmetrical bimodal
distributions) and were in agreement for another group
(i.e., those in the top and bottom rows of the figure).
For those studies for which participants were nearly
unanimous, the predictions were highly accurate. More-
over, as the figure shows, when participants as a group
predicted that a particular effect would fail to be rep-
licated, it indeed failed to be replicated.

These results indicate that the scientific culture of
striving for newsworthy, extreme, and sexy findings is
indeed problematic, as counterintuitive findings are the
least likely to be replicated successfully. Our results
also relate to the aphorism that “extraordinary (i.e.,
intuitively implausible) claims require extraordinary
evidence.” Many studies included in our sample were
considered implausible and thus would have required
highly compelling evidence for the effects to be estab-
lished. However, the pattern of Bayes factors in Figure
4 shows that many of the original studies obtained
weak evidence of an effect; of the included studies,
37% (10 studies) yielded a Bayes factor lower than 3,
evidence that is “not worth more than a bare comment”
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according to Jeffreys (1939, p. 357). The combination
of low intuitive plausibility and weak initial evidence
is remarkable and arguably worrisome, especially in
light of the low replication rates in social science. To
account for the extraordinary nature of a claim,
researchers should adjust the prior probability of the
alternative hypothesis and the null hypothesis. In the
Bayesian framework, this means that a higher Bayes
factor would be necessary to conclude that the effect
is present; in the frequentist framework, a lower p value
would be is necessary to reject the null hypothesis (cf.
Benjamin et al., 2018).

The notion of prediction surveys and markets as a
valuable component of replication research seems to be
gaining momentum. The Replication Markets platform
(https://www.replicationmarkets.com), for instance,
invites researchers as well as the general public to pre-
dict and bet on 3,000 studies associated with the Sys-
tematizing Confidence in Open Research and Evidence
(SCORE) project (Root, n.d.). Although these predictions
yield valuable insights, we naturally do not advocate
replacing replication studies with judgments of the gen-
eral public—or with those of experts. Rather, laypeople’s
predictions may be used to provide a quick snapshot
of expected replicability. This can facilitate the replica-
tion process by informing the selection of to-be-
replicated studies. Whether laypeople’s replication
predictions are distributed unimodally or bimodally
may, for instance, steer researchers’ confidence in evalu-
ating which predictions are more or less reliable. Addi-
tionally, the relative ordering of laypeople’s confidence
in the replicability of a given set of studies may provide
estimations of the relative probabilities of replication
success. If the goal is to purge the literature of unreli-
able effects, one may start by conducting replications
of the studies for which replication failure is predicted
by naive forecasters. Alternatively, if the goal is to clarify
the reliability of studies for which replication outcomes
are most uncertain, one could select studies for which
the distribution of the expected replicability is bimodal.
Thus, prediction surveys may serve as decision surveys,
instrumental in the selection stage of replication research
(cf. Dreber et al., 2015). These informed decisions not
only could benefit the researchers attempting replica-
tions, but also could optimize the distribution of funds
and resources for replication projects. In addition, the
application of prediction surveys to systematically assess
effects’ prior plausibility can easily be extended to novel
hypotheses. The Social Science Prediction Platform
(https://socialscienceprediction.org/), for instance,
allows researchers to submit an untested hypothesis and
collect forecasts from both experts and nonexperts. An
interesting application would be to use these assess-
ments in conjunction with large collaborative research

efforts such as the Psychological Science Accelerator
(Moshontz et al., 2018), so that laypeople’s predictions
may not only contribute to replication research, but also
inform the prior plausibility of novel studies.
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Notes

1. For some studies, the original articles reported F values
derived from analyses of variance, but as the crucial compari-
son was between only two groups, we converted these F val-
ues to ¢ values, which were then entered in the Summary Stats
module in JASP.
2. Unfortunately, this explanation fell prey to a prevalent mis-
interpretation of Bayes rule (e.g., Wagenmakers, Etz, Gronau,
& Dablander, 2018); the example describes the posterior odds
(i.e., P |data) |data)) rather than the Bayes factor (i.e., pldata] H,) )
p(H,|data) p(data|H,)
When prior odds are assumed to be equal for the alternative
hypothesis and the null hypothesis—as is often assumed (e.g.,
Jeffreys, 1961)—the posterior odds equal the Bayes factor.
3. Because of a programming error, the study descriptions were
not randomized for the 12 participants who were recruited from
social media and selected to take the survey in Dutch.
4. This discrepancy had no discernible influence on our con-
clusions; subsequent exploratory analyses suggested that the
results did not change when we excluded participants who
were recruited via Amazon Mechanical Turk or social-media
platforms and who reported having studied psychology (at any
level).
5. In the notation for Bayes factors (BFs), the subscripts refer to
the hypotheses being compared. In this case, the first subscript
refers to the one-sided hypothesis of interest (8 > 0), and the
second refers to the null hypothesis (& = 0).
6. When using the encompassing-prior approach, one can
obtain a Bayes factor estimated to be infinite if no posterior
samples are in accordance with the restricted hypothesis.
7. Note that group-level accuracy refers to the accuracy of the
average individual, which is estimated in a hierarchical model.
A hierarchical model has the benefit that it shrinks individual
estimates toward the group-level mean, thereby reducing the
influence of extreme cases. Note, however, that the estimated
group-level accuracy differs from the accuracy of the group as a
collective (the latter being simply the aggregate across people).
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