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For several decades, auditory neuroscientists have used spectro-temporal encoding models to under-
stand how neurons in the auditory system represent sound. Derived from early applications of systems
identification tools to the auditory periphery, the spectro-temporal receptive field (STRF) and more so-
phisticated variants have emerged as an efficient means of characterizing representation throughout the
auditory system. Most of these encoding models describe neurons as static sensory filters. However,
auditory neural coding is not static. Sensory context, reflecting the acoustic environment, and behavioral
context, reflecting the internal state of the listener, can both influence sound-evoked activity, particularly
in central auditory areas. This review explores recent efforts to integrate context into spectro-temporal
encoding models. It begins with a brief tutorial on the basics of estimating and interpreting STRFs. Then it
describes three recent studies that have characterized contextual effects on STRFs, emerging over a range
of timescales, from many minutes to tens of milliseconds. An important theme of this work is not simply
that context influences auditory coding, but also that contextual effects span a large continuum of in-
ternal states. The added complexity of these context-dependent models introduces new experimental
and theoretical challenges that must be addressed in order to be used effectively. Several new meth-
odological advances promise to address these limitations and allow the development of more compre-
hensive context-dependent models in the future.

© 2017 The Author. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The spectro-temporal receptive field (STRF) has proven to be
valuable tool for understanding how information about sound is
represented and transformed as it passes through the network of
auditory areas from brainstem to cortex (Aertsen and Johannesma,
1981; De Boer and Kuyper, 1968; deCharms et al., 1998; Kowalski
et al., 1996). The STRF describes neural function as a filter, in that
the response to any arbitrary stimulus at a point in time can be
predicted as a weighted sum of the stimulus spectrogram in the
immediately preceding time window. Stimuli matched to the STRF
will evoke large responses, and less-well matched stimuli will
produce weaker or no response. Each neuron is characterized by a
different STRF, and the population of neurons constituting a brain
area provides a bank of filters, each reporting the occurrence of a
distinct sound feature. The model of auditory cortex as a spectro-
temporal filterbank remains a dominant paradigm for central
auditory representation (Chi et al., 2005; Singh and Theunissen,
2003; Yang et al., 1992). This filterbank model has inspired and
continues to inspire algorithms for sound processing and signal
processing more generally (Hermansky, 1998; Mesgarani and
Shamma, 2005).

While sensory coding models have provided valuable insight
into how the auditory system extracts useful information from
sound, most models do not account for changes in internal
behavioral state. Instead, they describe auditory responses exclu-
sively as a function of the incoming stimulus. It has long been
known that extensive anatomical projections from central cortical
and neuromodulatory centers are situated to provide top-down
control of processing in ascending auditory areas. Moreover,
numerous studies have shown that changes in behavioral state
(task engagement, selective attention, arousal, e.g., Fritz et al.,
2003; Kuchibhotla et al., 2016; McGinley et al., 2015; Rodgers and
DeWeese, 2014) and, more broadly, the behavioral context
(including relatively slow changes in the acoustic environment, e.g.,
Dean et al., 2005; Rabinowitz et al., 2011; Ulanovsky et al., 2003)
can influence sound-evoked activity. A new challenge facing the
field of auditory research is to develop encoding models that
integrate the influence of sensory and behavioral context. If
ignored, these changes in response properties will simply appear to
be noise in the auditory response. Conversely, a model that can
explain these context-related effects will provide new insight into
the computational strategy and neural circuitry bywhich top-down
feedback controls auditory processing.

For the current review, the term “context” spans a wide range of
timescales, falling roughly into two categories. Sensory context ef-
fects reflect relatively rapid adaptation to statistics of the acoustic
environment, including regularities (Ulanovsky et al., 2004) and the
dynamic range of noise (Dean et al., 2005; Mesgarani et al., 2014;
Rabinowitz et al., 2012). Behavioral context effects reflect slower
changes following engagement in a behavioral task (Fritz et al.,
2003; Mesgarani and Chang, 2012), learning of new representa-
tions (Ohl et al., 2001; Polley et al., 2006), and, even on the
developmental timescale, following peripheral hearing loss (Buran
et al., 2014; Chambers et al., 2016; Nore~na et al., 2003). While
Please cite this article in press as: David, S.V., Incorporating behavioral and
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sensory and behavioral context clearly reflect different neuro-
physiological processes, ranging from automatic adaptation to the
complex goal-directed behavior, they both have the net effect of
changing the way neurons encode sound. Thus, for the purposes of
this review, these effects can be viewed as similar modulatory
processes that occur over a large continuum of timescales.

The idea of integrating contextual variables into encoding
models, while appealing, introduces substantial combinatorial
complexity to the problem. Measuring the response to many
stimuli across many contexts drastically increases the amount of
data and experimental control required to accurately estimate a
complete set of model parameters. Thus, while context is impor-
tant, there are practical experimental controls and model archi-
tecture designs that make studying this problem tractable.

This review begins with an overview of context effects known to
influence activity in the auditory system. It then provides a tutorial
on basic methods for computing the linear STRF and a brief survey
of nonlinear models that build on the linear STRF. Next, it presents
several studies that illustrate the full range of contextual factors
that can be incorporated into encoding models. Finally, it discusses
the very real technical and conceptual challenges posed by context-
dependent models and new analytical and experimental ap-
proaches that promise to address these problems in the future.

A Python software library for fitting and comparing perfor-
mance of context-dependent encoding models is available online:
https://bitbucket.org/lbhb/nems/.

2. Sources of contextual effects in auditory processing

Exploration of context-dependent auditory encoding models
has begun only relatively recently, but numerous processes are
known to modulate sound-evoked activity in auditory brain areas,
particularly in auditory cortex. Classically, behavioral studies
emphasize discrete changes in context that reflect switching be-
tween task conditions. In contrast, studies of sensory context often
emphasize graded changes in state that reflect continuous, smooth
contextual variables. These distinct analytical approaches have
implicated different circuit mechanisms for contextual effects.
However, a comprehensive model of auditory processing should
encompass both sensory and behavioral context. This section re-
views findings from both lines of research, with the goal of estab-
lishing amore general framework for contextual effects on auditory
encoding.

2.1. Sensory context

In studies of sensory context, a dominant idea has been that the
auditory system adapts to ongoing, and presumably irrelevant,
regularities in the acoustic environment in order to enhance re-
sponses to novel and potentially important sounds. This phenom-
enon is illustrated most simply with oddball tone stimuli. When a
standard tone of fixed frequency is presented repeatedly, it is
typically perceived as less salient over time. Then, when an oddball
tone with a different frequency occurs at a random time in the
sequence, it pops out perceptually, and neural responses are
sensory context into spectro-temporal models of auditory encoding,
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correspondingly large. In human electrophysiological field re-
cordings, an enhanced oddball response is observed in the
mismatch negativity (MMN, N€a€at€anen et al., 2007). In single-unit
physiology recordings, a similar phenomenon is described as
stimulus-specific adaptation (SSA, P�erez-Gonz�alez and Malmierca,
2014; Ulanovsky et al., 2003), although a direct correspondence
between MMN and SSA is still debated. In addition to frequency,
many other sound features (bandwidth, temporal modulations,
phoneme identity) can be used to generate oddball responses, and
the salience of the pop-out indicates what sound features the brain
considers to be expected or unexpected in the context established
by the standard stimulus. These oddball effects are believed to arise
from a combination of feedforward adaptation and local cortical
inhibition (Ayala and Malmierca, 2012; Natan et al., 2015) and may
be related to mechanisms for gain control (Rabinowitz et al., 2011).

The idea of adaptation to regular, predictable inputs has moti-
vated research on natural sound encoding. Several studies have
demonstrated that encoding models estimated using natural
sounds show distinct properties from models fit using traditional
synthetic noise and tonal stimuli (David et al., 2009; Nagel and
Doupe, 2008; Theunissen et al., 2000; Woolley et al., 2005). The
idea that the auditory system adapts to statistical regularities in
natural sounds generalizes to real-world problems, such as noise-
invariant encoding of speech and other natural sounds. A series
of studies recently measured single unit activity in the auditory
midbrain and cortex during presentation of speech and other vo-
calizations in a noisy background (Mesgarani et al., 2014; Moore
et al., 2013; Rabinowitz et al., 2013). A consistent observation was
that neural responses were partially invariant to the noise, i.e., that
they encoded more information about the foreground signal rela-
tive to the background noise. The properties of an encoding model
that can produce this noise-invariant response are still debated, but
developing such a model could provide a valuable tool for devel-
opment of automated speech processing systems that are robust to
noise.

A different line of research has focused on a sensory context
from a different angle. Rather than focusing on the segmentation of
foreground versus background, this work asks how the brain learns
the statistical regularities in the environment in order to encode all
sounds more accurately. When sounds are presented within a
limited dynamic range, neurons across the auditory system adapt
their response properties, in a way that is consistent with optimal
encoding of sounds within that range. This phenomenon was first
demonstrated with adaptation to sound level in the inferior colli-
culus (Dean et al., 2005), but a similar pattern of adaptation
adaption has been reported for spatial tuning, suggesting that it
may be a general coding strategy used by the auditory system
(Dahmen et al., 2010). Dynamic adaptation to sound level has also
been demonstrated in cortex (Watkins and Barbour, 2008) and in
the auditory nerve (Zilany and Carney, 2010); thus it occurs at
multiple levels of processing and is not an entirely central mech-
anism. At face value, the idea of improved codingwithin the current
contextual space seems useful. Conceptually, however, it opposes
the idea of a degraded representation of the background stimulus
observed in studies of SSA and speech in noise. Encoding models
that account for these phenomena in a more general framework
may help link these apparently contradictory theories of sensory
context.

In addition to contextual signals from the acoustic environment,
signals from other sensory modalities can also modulate auditory-
evoked activity. These signals may serve to prime the auditory
system to detect signals with spatio-temporally correlated cross-
modal features (e.g, a flash that predicts occurrence of a tone;
Brosch et al., 2005; Schroeder and Foxe, 2005; Wallace et al., 1992).
As the system adapts to different sensory contexts, these cross-
Please cite this article in press as: David, S.V., Incorporating behavioral and
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modal signals may also support optimal integration of cues, as in-
formation from one modality becomes more or less reliable than
information from another (Fetsch et al., 2013).

2.2. Behavioral context

Top-down signals reflecting behavioral state also influence
auditory representations. Sound-evoked activity changes following
a transition between passive listening and behavior (Fritz et al.,
2003; Niwa et al., 2012; Otazu et al., 2009; Ryan and Miller,
1977), as well as a switch between tasks (Fritz et al., 2005;
Rodgers and DeWeese, 2014). These contextual effects can be
specific to different sound featuresdspectral (Fritz et al., 2003),
temporal (Jaramillo and Zador, 2011), or spatial (Lee and
Middlebrooks, 2011). They can reflect distinct aspects of the task,
including effort (Atiani et al., 2009), selective attention (Downer
et al., 2017; Hocherman et al., 1976; Schwartz and David, 2018),
or reward contingencies (David et al., 2012). More generally,
changes in state that are not directly related to a task can also in-
fluence auditory activity, e.g., arousal (McGinley et al., 2015), sleep
(Edeline et al., 2000; Issa and Wang, 2011), and anesthesia (Gaese
and Ostwald, 2001; Massaux and Edeline, 2003). Finally, a large
literature has demonstrated long-term changes in auditory repre-
sentations over the course of training (e.g., Ohl et al., 2001; Polley
et al., 2006) and following hearing loss (e.g., Aizawa and
Eggermont, 2007; Chambers et al., 2016).

2.3. Mechanisms of contextual effects

The diversity of sensory and behavioral context effects suggest
that multiple modulatory signals influence auditory coding. Many
possible sources of contextual signals have been proposed. Some
adaptation effects may arise from local inhibitory circuits (Guo
et al., 2017; Moore and Wehr, 2013; Natan et al., 2015). Lateral
connections between cortical areas may mediate multisensory and
motor signals (Schneider et al., 2014; Wallace et al., 1992). Neuro-
modulatory systems have been implicated in relatively rapid
changes in auditory activity, most prominently the cholinergic and
noradrenergic systems (Bakin and Weinberger, 1996; Edeline,
2003; Kilgard and Merzenich, 1998). They are also believed to
mediate long-term changes in coding (e.g., dopamine, Happel et al.,
2014; oxytocin, Marlin et al., 2015). The source of top-down signals
that guide effects of behavioral context is uncertain, but the pre-
frontal cortex has been implicated, either through direct feedback
to auditory cortex (Winkowski et al., 2013) or acting through
neuromodulatory systems (Fritz et al., 2007a).

3. The nuts and bolts of spectro-temporal encoding models

The earliest encoding models applied to the auditory system
used spike-triggered averaging, also known as reverse correlation,
to determine the average sound pressure waveform that evoked a
neuronal spike (De Boer, 1968; Marmarelis and Marmarelis, 1978).
While useful in peripheral areas, this model fails to account for
sound-evoked activity that is not locked to the phase of the stim-
ulus waveform, which is true in most central auditory areas. A
critical advance came with the development of the spectro-
temporal receptive field (STRF), in which reverse correlation is
applied to the sound spectrogram, rather than the raw sound
waveform (Aertsen and Johannesma, 1981; Eggermont, 1993). The
STRF has been used to study coding across the auditory system,
from brainstem to cortex (deCharms et al., 1998; Klein et al., 2000;
Miller et al., 2001; Reiss et al., 2007). This general approach for
studying neural encoding, developed in the auditory system, has
since been applied to other sensory modalities (DiCarlo and
sensory context into spectro-temporal models of auditory encoding,
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Johnson, 2000; Jones and Palmer, 1987; Nagel and Wilson, 2011;
Ramirez et al., 2014).

The vast majority of work on encoding models has focused
exclusively on the sensory-evoked component of neural activity.
Neural data are often averaged across repeated stimulus pre-
sentations, effectively removing variability due to changes in in-
ternal behavioral state. Only relatively recently have these static,
context-independent models been extended to account for the
internal behavioral factors that produce variability independent of
the stimulus. The following subsections describe the basic formu-
lation of context-independent models and then how they can be
extended to account for contextual influences.

3.1. Context-independent spectro-temporal encoding models

An encodingmodel is a mathematical function, H, that describes
how a time-varying stimulus, s(x,t), produces an increase or
decrease in neural activity, r(t) (Fig. 1a),

rðtÞ ¼ H½sðx; tÞ� þ εðtÞ (1)

For single-unit recordings, r(t) is typically the peri-stimulus time
histogram (PSTH) response averaged across repeated presentations
of the stimulus. In addition to the predicted response, there re-
mains a residual, ε(t), which reflects activity that cannot be
explained by the model. The residual is a combination of stimulus-
evoked activity that the model fails to predict and variability in the
neural response independent of the stimulus. The basic problem of
encoding models is to find the optimal H that minimizes the frac-
tion of neural activity that cannot be predicted and thus is left in the
residual.

Typically for auditory encodingmodels, the input stimulus is the
spectrogram, s(x,t), which describes the time-varying energy at
each frequency, x, over time. In the classic formulation of a spec-
trogram, which is used in a wide range of signal processing appli-
cations outside of neuroscience, frequency channels are linearly
spaced (Gill et al., 2006). However, frequency tuning in the
mammalian cochlea and auditory nerve is approximately log-
spaced, and a “cochleogram,” with logarithmically-spaced fre-
quency channels is often used for a more accurate model of the
sensory periphery (see (Aertsen and Johannesma, 1981; Katsiamis
et al., 2007) and Fig. 2).

Most studies of auditory encoding models have focused on
single-unit spiking data. However, the same approach can be
applied to a variety of neural signals. Encoding models have been
used to characterize selectivity of single-unit membrane potential
(Machens et al., 2004), multiunit activity (Eggermont, 1998), local
field potentials (Eggermont et al., 2011; Hullett et al., 2016), mag-
netoencephalographic (MEG) signals (Ding and Simon, 2012), fMRI
BOLD signals (Boumans et al., 2008; Moerel et al., 2012), and even
psychophysical behavior (Varnet et al., 2013). While the basic
encoding model framework can apply to any neural signal, details
of the best implementation can depend on the signal under scru-
tiny. For example, signals reflecting large neural populations, such
as MEG and BOLD, may require a different formulation of the static
nonlinearity or noise model than single-unit spike recordings (see
below).

The current review focuses on a particular encoding model, the
linear-nonlinear spectro-temporal receptive field (LN STRF), which
is widely used in studies of peripheral and central processing
(Fig. 1b and Calabrese et al., 2011; David et al., 2009; Holdgraf et al.,
2016; Rabinowitz et al., 2012). This model consists of two stages.
First a linear filter, the STRF, computes a weighted sum of the
stimulus spectrogram over frequency and the preceding time to
produce a linear prediction of the time-varying spike rate, rlin(t),
Please cite this article in press as: David, S.V., Incorporating behavioral and
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rlinðtÞ ¼
XX

x¼1

XU

u¼0

hðx;uÞsðx; t � uÞ (2)

The weights, h(x,u), indicate the gain applied to the stimulus fre-
quency channel x at time lag u. Positive values indicate components
of the stimulus correlated with increased neural response, and
negative values indicate components correlated with decreased
response.

The linear filter provides a basic picture of the spectral tuning
and latency of evoked responses, and many studies focus only on
the properties of this filter (David et al., 2012; Fritz et al., 2003;
Miller et al., 2002; Reiss et al., 2007). However, a purely linear
model does not account for some basic nonlinear properties of
neurons, namely that they have a threshold activation for spiking
and their responses saturate for very strong stimuli. Thus in a
second stage of the LN model, the output of the linear filter passes
through a static nonlinearity to predict the spike rate response:

rLNðtÞ ¼ f ½rlinðtÞ� (3)

The nonlinear function f typically has a sigmoid shape, which can
be specified with a number of different forms (Thorson et al., 2015).
A nonlinearity used commonly in the generalized linear model
framework is a logistic sigmoid,

f ½rlinðtÞ� ¼ aþ b
1þ exp½ � ðrlinðtÞ � cÞ=d� (4)

for which the terms a, b, c, and d are free parameters that define the
threshold, amplitude and slope of the nonlinearity (Rabinowitz
et al., 2012).

In addition to providing a description of the stimulus patterns
that evoke neural activity, the LN STRF and other encoding models
have the ability to predict the neural response to an arbitrary novel
stimulus, even if it was not used to fit the model itself. For the LN
STRF, prediction amounts to applying the stimulus spectrogram as
input to Equations (1) and (2). The accuracy of the model can then
be assessed quantitatively by comparing the predicted response
and actual response to that stimulus. In theory, a perfect model
should predict the time-varying response exactly, leaving zero re-
sidual (i.e., ε(t)¼ 0 in Eq. (1)).

More practically, measures of prediction accuracy can be used to
compare the relative performance of two alternative encoding
models. For example, the benefit of a specific formulation of the
static nonlinearity or a constraint on the weights in the linear filter
can be assessed by whether incorporating them into a model pro-
duces an improvement in prediction accuracy (Thorson et al., 2015).
Prediction can also be used to assess a model's generalizability. For
example, a model can be fit using a synthetic noise stimulus and its
accuracy tested with a natural sound (Theunissen et al., 2000).
Finally, relevant to the current review, prediction accuracy can also
be used to determine howwell a model generalizes across different
behavioral contexts (Holdgraf et al., 2016; Rabinowitz et al., 2012;
Schwartz and David, 2018).

Several different metrics have been used to measure prediction
accuracy, including the correlation coefficient (Pearson's R), mean-
squared error, Poisson log-likelihood, and mutual information
(Atencio et al., 2008; Calabrese et al., 2011; Eggermont et al., 1983;
Sahani and Linden, 2003). Implicit in each of these metrics are
different assumptions about noise in neural activity that cannot be
predicted from the stimulus (i.e., the residual, ε(t) in Eq. (1)). This is
a nuanced statistical issue, but the choice of metric can bias com-
parisons of model performance. Both the correlation coefficient and
mean-squared error assume that the residual is Gaussian noise, a
sensory context into spectro-temporal models of auditory encoding,



Fig. 1. Framework for context-dependent auditory encoding models. a. Information from an input sound stimulus (acoustic waveform at left, spectrogram at top right) is repre-
sented by the output time-varying spike rate of a neuron (right). However, spiking activity also reflects the effects of internal brain state, or context (red), which can modulate
sound-evoked activity. Thus evoked activity can differ between context A (blue) and B (brown). Averaging neural activity across repeated presentations of the same sound produces
a peristimulus-time histogram (PSTH) response, which in this example shows a clear difference in amplitude between behavioral contexts. The goal of the encoding model is to
predict the PSTH in each context (bottom right). b. Traditional spectro-temporal models are context-independent and predict the same sound-evoked activity regardless of context.
The LN STRF models the neural response as a linear weighted sum of the stimulus spectrogram followed by an output nonlinearity to account for spike threshold and saturation. c. A
fully context-dependent model assumes that the encoding can change arbitrarily between contexts, and thus a separate set of model parameters are fit for each context. d. A
partially context-dependent model assumes that just a subset of parameters is context-dependent while the remaining parameters are fixed across contexts. In this example, linear
filter weights are fixed while the parameters of the output nonlinearity are context-dependent. e. A continuous context-dependent model allows context to change smoothly among
many states. This contrasts with the more typical approaches in c and d, where context represents a discrete change in brain state between a small number of conditions. In this LN
STRF example, a continuous context variable modulates the amplitude of the linear filter output.
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very general assumption that lends itself to straightforward anal-
ysis. However, because variability in neuronal spiking can be
described as a Poisson process, Poisson log-likelihood has been
proposed as a better model of noise in spiking neurons (Calabrese
et al., 2011; Paninski et al., 2004). At a further extreme, informa-
tion theoretic measures such as mutual information make even
fewer assumptions about neural noise and represent, in theory,
Please cite this article in press as: David, S.V., Incorporating behavioral and
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unbiased assessment of the portion of the neural activity that can
be predicted by the model. However, accurate measures of infor-
mation are themselves prone to bias and require careful imple-
mentation (Treves and Panzeri, 1995). While different prediction
metrics vary in their details, they all provide a means of deter-
mining the best model fit and comparing model performance.
Moreover, they tend to all produce roughly similar results,
sensory context into spectro-temporal models of auditory encoding,



Fig. 2. STRF estimation by linear regression. a. Top row shows the log spectrogram of three temporally orthogonal ripple combination (TORC) stimuli, noise-like stimuli that
efficiently sample spectro-temporal stimulus space for reverse correlation. Middle row shows the raster plot of spike events recorded from a neuron in A1 during repeated pre-
sentation of each TORC. Bottom row shows the PSTH response (black), computed as the average spike rate at each time. The STRF identifies which stimulus spectro-temporal
features correlate with increases or decreases in the response. Gray shading delineates time periods preceding relatively large evoked spike rates. Blue curves overlaid in the
bottom panel show the PSTH predicted by the STRF. b. Each scatter plot compares the response against the stimulus spectrogram at a different frequency and time lag preceding the
response (stimulus amplitude normalized between �1 and 1). Individual points indicate average response after binning by stimulus amplitude. The STRF is estimated by computing
the correlation between the stimulus and response, averaged over time (Eq. (9)). The slope of a line fit to each scatter plot indicates the corresponding weight in the STRF. Positive
slopes indicate stimulus components correlated with increased spike rate (red box), and negative slopes indicate components correlated with a decrease in spike rate (blue box).
The weights are plotted in a heat map (right, interpolated to facilitate visualization). Gray box indicates the subset of weight calculations illustrated in the scatter plots. c. Example
STRF calculation for a second A1 neuron, plotted as in B. This neuron shows excitatory tuning over a wider range of frequencies and inhibition at a later time lag than excitation.
Several correlation plots also indicate nonlinear stimulus-response relationships (e.g., black box) that are not fit well by a line. These deviations reflect a nonlinear stimulus-
response relationship that cannot be explained by a linear STRF. (Data reanalyzed from (David et al., 2012).).
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especially in the domain of relatively simple models, such as the LN
STRF (Thorson et al., 2015).
3.2. Incorporating behavioral context into the STRF

Equation (1) describes a model in which neural activity is
determined entirely by the stimulus. However, central sensory ac-
tivity is not static, and depends on the state of the brain prior to
sensory input. Thus, a more general encoding model describes
neural activity as a function of both the stimulus and time-varying
context, c(t),
Please cite this article in press as: David, S.V., Incorporating behavioral and
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rðtÞ ¼ H½sðx; tÞ; cðtÞ� (5)

This context variable can reflect a wide range of factors indepen-
dent of the immediate stimulus. Individual studies typically focus
on a single aspect of context, ranging from recent acoustic experi-
ence (e.g., David and Shamma, 2013; Holdgraf et al., 2016;
Rabinowitz et al., 2012), changes in task engagement or attention
(e.g., Da Costa et al., 2013; David et al., 2012; Ding and Simon, 2012;
Fritz et al., 2003; Nourski et al., 2016), and long-term effects of
hearing loss (e.g., Nore~na et al., 2003).

Practical model architectures for studying context-dependence
sensory context into spectro-temporal models of auditory encoding,
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of sound encoding are illustrated for a simple LN STRF in Fig. 1bee.
A static, context-independent model provides a baseline assessment
of sound encoding, assuming that encoding model parameters do
not change with behavioral context (Fig. 1b). In the LN STRF
framework, this means that neural activity in any behavior condi-
tion is predicted by the model defined in Eqs. (2) and (3). In most
behavioral studies, animals are trained to switch discretely be-
tween two behavioral states (e.g., active versus passive, Fritz et al.,
2003; or attend location versus frequency, Rodgers and DeWeese,
2014). A discrete fully context-dependent model fits the entire
model separately for each attention condition (Fig. 1c),

rðtÞ ¼ Hc½sðx; tÞ�; c2fA;Bg (6)

If the effects of context can be isolated to a subset of changes in
sound-evoked activity, the model can be constrained so that only
some parameters are context-dependent. A discrete partially
context-dependent model, is an encoding model in which only a
subset of the parameters is fit separately for each behavior state. For
the example in Fig. 1d, the linear filter, and thus its output, are the
same for both behavior conditions, but the parameters of the static
nonlinearity are fit separately for each behavior condition,

rðtÞ ¼ fc½rlinðtÞ�; c2fA;Bg (7)

This example would account for a context-dependent change in the
overall excitability, or gain, of a neuron without a change in its
spectro-temporal selectivity.

While manipulation of context through behavioral control
provides a convenient and tractable discretization of context, it
does not fully capture the variability of internal states. Several as-
pects of behavioral context, such as arousal (e.g., McGinley et al.,
2015), motor control (Schneider et al., 2014), attention
(Rabinowitz et al., 2015), and motor planning (Runyan et al., 2017),
can change smoothly among many different values. If a continuous
contextual variable can be quantified, then it can be incorporated
directly into a continuous context-dependent model (Fig. 1e). For the
example in the figure, the context variable scales the output of the
linear filter prior to the output nonlinearity,

rðtÞ ¼ f ½cðtÞrlinðtÞ� (8)

The continuous context variable could, in theory, be incorporated
into the linear STRF itself, but this more complex model would
require a large dataset for accurate estimation.

These alternative model architectures vary in their complexity
and thus the required amount of data for accurate fitting. The
optimal fit algorithm may also depend on model architecture. Thus
a robust method for comparing model performance is necessary to
determine if the additional contextual terms benefit model per-
formance (Wu et al., 2006). Cross-validation tests with held-out
data provide a general framework for evaluating model perfor-
mance, and significant improvements in performance can be
measured against the context-independent model. However care-
ful selection of validation data that samples adequately across
different contexts, as well as sensory conditions, is required to
assess performance robustly. A software library for fitting and
comparing performance of different context-dependent encoding
models is available online: https://bitbucket.org/lbhb/nems/.

3.3. STRF estimation by reverse correlation

Reverse correlation is the canonical method for STRF estimation,
providing the best mean-squared error estimate of the STRF in the
case when the stimulus is white noise (i.e., has no statistical reg-
ularities that produce first-order correlations in frequency or time,
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Aertsen and Johannesma, 1981; Eggermont, 1993; Klein et al.,
2000). Natural stimuli, as well as other stimuli with spectral and
temporal correlations, require additional steps to obtain an accu-
rate STRF (see below and Theunissen et al., 2001). A key analytical
requirement for reverse correlation is that neural activity is recor-
ded during presentation of a wide variety of spectro-temporal
patterns. Gaussian white noise is a useful stimulus for studies in
the periphery (Aertsen and Johannesma, 1981). However, it tends
not to evoke strong responses in primary auditory cortex (A1) and
other central areas. Several alternative types of stimuli have been
developed, including random chords (Pienkowski et al., 2009;
Sahani and Linden, 2003) and ripples (Klein et al., 2000; Miller
et al., 2001). These stimuli contain harmonic and temporally
modulated sound features that tend to evoke much stronger re-
sponses in central areas. They also are constructed to maintain
noise-like statistical properties, permitting straightforward reverse
correlation analysis.

Fig. 2a shows the spectrogram from three segments of tempo-
rally orthogonal ripple combinations (TORCs), noise stimuli
designed to efficiently sample the diversity of stimuli required for
reverse correlation (Klein et al., 2000). Neural activity recorded
during repeated sound presentation (middle, Fig. 2a) is averaged to
produce a PSTH response (bottom, Fig. 2a), which fluctuates over
time. Large values in the PSTH indicate segments of the TORC
stimuli that evoke strong neural responses (vertical gray bars).

The STRF in Eq. (2) requires a coefficient, or gain, for each
spectral channel, x, and time lag, u. Reverse correlation can be
thought of as multiple regression, where a line is fit to a scatter plot
of the stimulus at a particular time lag, s (x,t-u), and the corre-
sponding response, r(t) (Fig. 2b). The slope of each line indicates the
weight of the respective STRF coefficient. In the case of white noise
stimuli, the slope can be estimated directly from the correlation
between stimulus and response,

hðx;uÞ ¼ 1
T

XT

t¼1

rðtÞsðx; t � uÞ (9)

For visualizing the STRF, the slope of the line fit to each scatter plot
is represented in a heat map (Fig. 2bec). Here, positive slopes are
colored red, indicating frequencies and time lags associated with
increased neural activity, and negative slopes are colored blue,
associated with decreased activity.

The first example (Fig. 2b) shows data from an A1 neuronwhose
response toTORCs can be described fairly well by a linear STRF. Data
from the same neuron are plotted in Fig. 2a. The scatter plots are
well-fit by regression lines. The slopes of the lines are near zero in
most cases, indicating that tuning is confined to a small range of
frequencies and time lags. A best frequency is apparent between 6
and 8 kHz, where the regression line has a steep positive slope, and
an inhibitory sideband is apparent in the adjacent frequency band.
The ability of this STRF to predict sound-evoked activity is clear in
the relatively close match between the actual and predicted PSTHs
in Fig. 2a.

A second example (Fig. 2c) shows data for another A1 neuron
with strong evoked responses to TORCs, but which exhibits clear
nonlinear properties that are not well described by the STRF. As in
the previous example, excitatory and inhibitory tuning are clearly
observable in the scatter plots. However, the scatter plots show
curvature that is not captured by the regression line. U-shaped
responses are visible for some frequencies and time lags (black
box), indicating an excitatory response to both loud and quiet
sounds that cannot be captured by a linear model.

For non-white noise stimuli, such as natural sounds, additional
computations are required to remove bias introduced by correlated
sensory context into spectro-temporal models of auditory encoding,
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structure. Several different methods can be used in this case,
including normalized reverse correlation (Theunissen et al., 2001),
ridge regression (Machens et al., 2004), and gradient-based tech-
niques (Atencio et al., 2008; Calabrese et al., 2011; David et al.,
2007; Meyer et al., 2014). Each requires specification of a small
number of “hyperparameters” for tuning the STRF estimate.
Methods for choosing these hyperparameters are relatively
straightforward but are more nuanced than reverse correlation.
Gradient-based methods are the most powerful and flexible of
these approaches. They are also the most computationally inten-
sive, a limitation which has become less severe with ongoing im-
provements in computer power. These estimation methods are not
detailed here, but are described elsewhere (Machens et al., 2004;
Paninski et al., 2004; Theunissen et al., 2001).

4. Context-dependent encoding models for top-down
changes in behavioral state

Although it has long been established that internal behavioral
state can influence sensory coding (Hocherman et al., 1976; Ryan
and Miller, 1977), it is only relatively recently that behavioral
context has been integrated into neural sensory encoding models.
Early studies of behavior-dependent coding were completed in the
visual system, following the demonstration of selective attention
effects in visual cortex (Moran and Desimone, 1985). Researchers
mapped spatial receptive fields in visual cortical area V4 and found
that they shifted to represent the retinotopic area at the locus of
attention (Connor et al., 1997). Studies of spatial attention also
considered the possibility of effects on feature selectivity. McAdams
and Maunsell measured orientation tuning curves in V4 during
changes in spatial attention (McAdams and Maunsell, 1999). They
observed that the baseline firing rate and gain of evoked responses
could change, but orientation tuning remained largely stable.
Studies in area MT, which is associated with coding of visual mo-
tion, extended this idea into the domain of feature selectivity. An-
imals were trained to attend to the direction of motion in a dot
pattern and direction selectivity could be measured during task
performance (Treue and Martinez-Trujillo, 1999). Subsequent
studies of feature attention in V4 have argued that shifts can occur
in visual selectivity following changes in feature-based attention
(David et al., 2008).

Early studies of changes in feature selectivity in the auditory
system focused on long-term changes following learning and
pharmacological manipulation. Studies pairing cholinergic modu-
lation with pure tone presentation during recording from auditory
cortex identified changes in neuronal frequency tuning that re-
flected the frequency of the paired tone (Bakin and Weinberger,
1996). Ohl and colleagues measured changes in spectro-temporal
selectivity of LFP activity in gerbils as they learned acoustic dis-
criminations (Ohl et al., 2001; Ohl and Scheich,1997). Generally, the
long-term changes in auditory tuning following these manipula-
tions reflected behaviorally important sound features, supporting
the idea that the auditory system is able to engage a matched filter
mechanism to enhance discriminability between task-relevant
features.

Subsequent work by Fritz et al. (2003) explored changes on a
shorter timescale, “rapid plasticity” that occurred during engage-
ment in a task and that reversed to a baseline tuning in a subse-
quent passive condition. These effects occurred in the same
temporal regime as the effects of selective attention in the visual
system. Their task required animals to detect a target tone with
fixed frequency at a random position in a sequence of TORC stimuli
(Fig. 3a, Klein et al., 2000). Thus, STRFs could be estimated by
reverse correlation from activity during behavior and compared to
STRFs in a passive condition. The use of identical stimuli in both
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behavioral contexts controlled for any possible bias from the use of
different stimuli to measure STRFs in the different conditions.
When aversive conditioning was used for behavior (animals were
required to cease licking a water spout to avoid a mild tail shock)
the STRFs showed a selective enhancement of responses to the
target frequency. Subsequent experiments measured the effects of
more complex targets consisting of tone chords and of including
tones of different frequency in the reference period (Fritz et al.,
2007b, 2005). Across all of these experiments a consistent
pattern was observed: during behavior, STRFs underwent plasticity
that produced enhanced responses to target sound features and
decreased responses to features in the reference stimuli. As in the
case of long-term effects of learning (Ohl et al., 2001; Ohl and
Scheich, 1997) and effects of attention in the visual system (David
et al., 2008; Treue and Martinez-Trujillo, 1999), these changes are
consistent with a matched filter for perceptual enhancement.
Changes in the STRF reflect enhanced discriminability between
neural responses to the different task categories. These effects
represent an optimal strategy for enhancing discriminability, under
the constraint of maintaining an overall constant level of sound-
evoked activity across the entire system (Mesgarani et al., 2010).

Since the initial demonstration of task-related plasticity, sub-
sequent studies have shown that several aspects of the task other
than the relevant sound features can influence rapid plasticity in
auditory cortex. Changing task difficulty by varying the signal-to-
noise ratio (SNR) of a tone embedded in noise changed the over-
all excitability of A1 neurons (Atiani et al., 2009). In a study using a
task that required detection of a spatially localized target, the au-
thors observed narrowing of spatial receptive fields upon task
engagement (Lee and Middlebrooks, 2011). Finally, reversing the
valance of the target in the tone detection task (using an approach
paradigm inwhich animals were rewarded for responding to target
tones rather than being punished for missing) had the unexpected
effect of producing an opposite pattern of plasticity (David et al.,
2012). STRFs showed a selective decrease in response at the
target tone frequency (Fig. 3c). Although the sign of STRF plasticity
was oppositewhen target valancewas reversed, the relative change
between target and non-target frequencies remained consistent
with a matched filter model (Mesgarani et al., 2010): in both the
approach and avoidance data, the plasticity enhanced the neural
response to one of the task categories (target during avoidance,
noise during approach). This relative enhancement permits a
downstream area from A1 to decode stimulus identity better than
in the baseline, passive condition (David et al., 2012). Together,
these diverse results reveal that, while the task-relevant acoustic
features are critical for shaping spectro-temporal tuning plasticity,
other aspects of the task, including difficulty, reward value and/or
motor responses, determine the sign of the modulation and overall
changes in excitability.

The studies in A1 gave rise to new questions about the mecha-
nisms that produce task-related plasticity and about the possibility
of behavioral context in subcortical auditory areas. Slee & David
(Slee and David, 2015) used an approach behavior identical to the
one used in A1 (David et al., 2012) tomeasure possible effects in the
ferret inferior colliculus (IC). They observed the same pattern of
suppression of the STRF at target frequency as in A1. However, in
many cases, changes in the STRF in IC could be described by an
overall change in excitability rather than a shift in turning (Fig. 3b).
A change in gain can be described by a model with only partial
dependence on behavioral context (Fig. 1d). The linear STRF can be
fit the same in both passive and active conditions and the change in
gain can be captured by allowing just the parameters of the static
nonlinearity to change.

Data from the studies in A1 and IC (David et al., 2012; Slee and
David, 2015) were reanalyzed to test for systematic differences in
sensory context into spectro-temporal models of auditory encoding,



Fig. 3. Partial versus full context-dependence of LN STRFs during auditory behavior. a. Go/no-go tone detection task in ferret. Left, head-fixed animal responds to target sounds by
licking a water spout. Right, spectrogram of example trial. A random number of TORC stimuli are presented followed by a pure tone target, with fixed frequency across a set of
behavioral trials. A lick prior to target onset results in punishment with a time-out. A lick following target onset results in a liquid reward. Identical TORC stimuli were also presented
during passive listening before and/or after behavior. b. Comparison of STRFs measured from responses of an IC neuron to the TORCs during passive listening and behavior. The
passive STRF shows best frequency at 10 kHz, matched to the frequency of the target tone (dashed line, panel 1). During behavior, the STRF weights are lower (panel 2), reflecting
decreased response gain (blue region in active-passive difference, panel 3). Rescaling the active STRF by the global decrease in response gain accounts for most of the behavior-
dependent change (panels 4e5). Such a global gain change can be captured in a partially context-dependent model, in which the STRF is fixed across behavior conditions but
the output nonlinearity is fit separately (Fig. 1d). c. Comparison of STRFs for an A1 neuron, plotted as in B. This neuron also shows a decrease in the STRF at the target frequency.
However, normalizing for the slight increase in global gain does not account for most of the behavior-dependent change. d. Comparison of median LN STRF prediction correlation for
a set of IC neurons across passive and active conditions, fit using three different models of context dependence. Error bars indicate one standard error. The model with a context-
dependent static nonlinearity shows an increase in performance over the behavior-independent model (**p < .001, permutation test). The fully context-dependent model shows
only slightly greater prediction accuracy (*p< .05), indicating that the majority of behavioral effects can be explained by the changes to the static nonlinearity. e. Comparison of the
same models for a set of A1 neurons collected under the same behavioral conditions. Here, the fully context-dependent model is required to explain most of the behavior-dependent
changes in the LN STRF. (Data reanalyzed from (David et al., 2012; Slee and David, 2015).).
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local versus global effects of plasticity in the two areas. Prediction
accuracy was compared between three LN STRF architectures that
either ignore behavior context (context-independent model) or
incorporate different forms of context-dependence. For the fully
context-dependent model, separate STRF and output nonlinearity
parameters were estimated for the passive and active task condi-
tions (Eq. (6), Fig. 1c). For the partially context-dependent model, a
single STRFwas estimated for both conditions, and only parameters
of the output nonlinearity were estimated separately per behavior
condition (Eq. (7), Fig. 1d). As suggested by the example in Fig. 3b,
fitting the output nonlinearity separately between passive and
active conditions resulted in improved prediction accuracy over the
context-independent model. The fully context-dependent model,
in which the entire STRF was estimated separately, provided only a
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slight additional increase in prediction accuracy. A different pattern
of model performance was revealed for the A1 data. The partially
context-dependent model showed a relatively small increase over
the behavioral independent model, while the fully context-
dependent model provided a larger increase. Thus, the partially
context-dependent model explains a larger portion of behavior
effects in IC than in A1.

This pattern of model performance suggests a hierarchical
model of the mechanism producing selectivity changes in A1.
Neurons in the midbrain IC undergo task-dependent changes in
excitability that can be captured largely in the static nonlinearity.
Neurons in A1 integrate inputs from many IC neurons, each of
which might undergo different changes in excitability. These dif-
ferential changes in input strength lead to a shift in the selectivity
sensory context into spectro-temporal models of auditory encoding,
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in A1 that requires a model in which the STRF is also context-
dependent. Thus by identifying the encoding model parameters
that depend on behavioral context, it is possible to make inferences
about how internal behavioral state interfaces with incoming
auditory signals. Information traveling from IC to A1 passes through
neurons in the medial geniculate body (MGB) of the thalamus.
Studies of behavior-dependent coding in the MGB during the same
behavior could reveal further insight into howauditory information
is transformed as it passes through this network.

5. Context-dependent models for bottom-up effects of
experience and learning

In addition to exerting top-down control on sound processing,
the auditory system also exhibits the ability to adapt to changing
environments in order to encode relevant sound features more
effectively. A classic example of this process is hearing loss, where
damage to the auditory periphery degrades sound information that
reaches the brain, and central auditory areas undergo plasticity,
possibly adaptive or pathological, to compensate for the reduced
sensory drive (Bajo et al., 2010; Chambers et al., 2016; Nore~na et al.,
2003).

On a shorter timescale, normal-hearing individuals are also able
to learn statistical regularities in highly distorted sounds and
extract behaviorally relevant information. A classic example of this
process is sine-wave speech, where signals are synthesized from
dynamic chords tracking the formants of speech recordings
(Dorman et al., 1997; Mcauly and Quatieri, 1986). Initially, the sig-
nals are perceived as tonal noise. After hearing the original speech
signal, subjects are able to recognize the sine-wave speech, and
after exposure to several examples, they are able to generalize the
percept, so that they can recognize sine-wave speech without ever
having heard the original signal. Similarly, noise-vocoders are used
to simulate the input provided by cochlear implants (Shannon et al.,
1995). Subjects presented with noise-vocoded speech initially have
trouble perceiving the speech sound, but performance improves
after training with lexical feedback (Hervais-Adelman et al., 2008).

Studies using recordings from single neurons in A1 to recon-
struct sound spectrograms suggest that the encoding properties of
cortical neurons serve to enhance natural signals over distorting
noise (Mesgarani et al., 2014; Rabinowitz et al., 2013). Spectrograms
reconstructed from neural responses to a noisy speech stimulus
produced a clean stimulus spectrogram, in which the representa-
tion of the distorting noise diminished. Similarly, studies of selec-
tive attention during field potential recordings from humans have
shown enhanced representation of the attended over non-attended
speech stream in the neural signal (Ding and Simon, 2012;
Mesgarani and Chang, 2012). While decoding analysis has
demonstrated an enhanced representation of behaviorally relevant
and attended signals, the encoding properties of neurons that
support this enhancement have not been characterized.

To explore the neural encoding properties that support encod-
ing of signals in noise, a recent study explored changes in encoding
properties in human auditory cortex as subjects learned to perceive
highly distorted speech (Holdgraf et al., 2016). Electrocortico-
graphic (ECoG) recordings measured local field potential (LFP) in
the superior temporal gyrus (STG) of patients implanted with
subdural electrode arrays during monitoring for treatment of
intractable epilepsy. The time-varying energy in the high-
frequency broadband signal (HFB, 70e150Hz), also referred to as
high gamma LFP, was used tomeasure sound evoked neural activity
at each recording site. Although the exact composition of the HFB
remains unclear, it is believed to reflect multi-unit activity near the
recording site (Steinschneider et al., 2008). Thus the HFB signal can
be treated as a time-varying multi-unit response and used to
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measure the STRF using the same methods as for single-neuron
data (Hullett et al., 2016; Mesgarani and Chang, 2012; Pasley
et al., 2012).

By comparing HFB activity during presentation of the distorted
speech sounds before and after exposure to the clean speech,
Holdgraf et al. (2016) were able to measure changes in neural ac-
tivity that reflected improved representation of the speech signal.
The STG is believed to be an area equivalent to parabelt auditory
cortex, which represents highly processed auditory information.
Thus, the STRFs measured in the STG are fairly complex and can be
difficult to interpret by standard tuning measures such as best
frequency and tuning bandwidth (Hullett et al., 2016; example in
Fig. 4b). However, they can be used to predict the HFB response in
the different behavioral contexts. To test the effects of learning from
exposure to the clean speech signal, the STRFmeasured in the clean
speech conditionwas used to predict responses to the noisy signals
pre- and post-exposure. Evoked activity had much greater ampli-
tude post-exposure, and the STRF predicted the stronger post-
exposure response. More importantly, the STRF more accurately
predicted the response in the post-exposure period, indicating that
the underlying spectro-temporal filters were able to selectively
amplify the speech sounds relative to the competing noise (Fig. 4b).
This dynamic enhancement did not occur if subjects were pre-
sented irrelevant noise signals during the intervening period rather
than the clean speech.

Analysis of the modulation power spectra of STRFs measured in
the noisy conditions before and after exposure to the clean signal
revealed a possible strategy used by the brain to enhance the
relevant signals. For the temporal distortions, STRFs in the post-
exposure period attenuated tuning to high frequency temporal
modulations which contained greater power than the speech signal
itself. Conversely, in the case of spectral noise, the STRFs shifted to
attenuate narrowband spectral signals. Thus the rapid, dynamic
changes in STRFs revealed that the brain operates as a matched
filtered, identifying stimulus bands with the greatest signal-to-
noise ratio over just a few seconds of clean speech exposure and
adapting filter properties to enhance those bands.

6. Modeling effects of continuously changing context

While the majority of behavioral studies seek to control changes
in behavior state so that neural activity is characterized in a small
number (2e4) of distinct, discrete states, the underlying neural
processes that influence auditory processing may in fact be
continuously varying. Studies of pupil-indexed arousal have shown
that neuromodulatory effects on cortical activity can indeed vary
smoothly and even non-monotonically (McGinley et al., 2015).
Other studies have observed modulatory effects of motor activity
on sensory responses that may fluctuate smoothly with the amount
of activity in motor cortex (Rummell et al., 2016; Schneider et al.,
2014). More broadly, evidence from pharmacological studies in-
dicates that sensory cortical function can be modulated smoothly
and continuously by variations in neuromodulatory tone (Bakin
and Weinberger, 1996; Salgado et al., 2011). Thus, an alternative
to the typical approach of modeling discrete changes in context is to
introduce a continuous variable reflecting behavioral state into the
encoding model (Fig. 1e).

While no study has yet integrated a continuous task-related
variable into auditory encoding models, this concept has been
used to study the effects of changing stimulus context. In this
approach, an LN STRF is used tomodel encoding of complex sounds,
but a second filter is used to extract contrast information from the
stimulus, which is applied as a scaling term to the output of the
STRF (Rabinowitz et al., 2012; Williamson et al., 2016). While one
could consider this definition of sensory context simply to be a
sensory context into spectro-temporal models of auditory encoding,



Fig. 4. Rapid changes in spectro-temporal tuning following adaptation to noisy stimulus statistics. a. Human subjects were asked to recognize speech that was severely degraded by
temporally or spectrally modulated noise. Upon initially hearing the noisy speech, they were not able to report its content accurately. They were then presented the same sentence
in quiet, followed again by the degraded speech, at which point they reported that they were able to perceive the speech in the degraded conditions. b. Electricorticographic (ECoG)
activity was recorded from the surface of patients undergoing monitoring for epilepsy treatment during presentation of the speech stimuli. High-frequency band (HFB) activity
recorded from electrodes positioned on the superior temporal gyrus (STG) showed a modest response during presentation of the first distorted speech stimulus (red curve, top
right). Stronger responses were observed for the same stimulus following exposure to the speech in quiet (bottom right). HFB activity was used to estimate the ensemble STRF
(eSTRF) from responses to the speech in quiet. This eSTRF was used to predict the response in the pre- and post-exposure periods (gray curves). c. The accuracy with which eSTRFs
predicted HFB activity was greater during the post-exposure period than the pre-exposure period, consistent with more accurate encoding of the speech signal after exposure to the
undistorted speech. This improved prediction accuracy was consistent with a decrease in eSTRF weights for channels with large distortions, suggesting that the auditory system
dynamically forms a matched filter to extract the most reliable speech features available in the current noisy context. (Figures modified and reprinted by permission from (Holdgraf
et al., 2016).).
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more complex nonlinear model of sensory encoding, it represents a
more general strategy for modeling the effect of internal behavioral
state (reflecting stimulus history) on sound-evoked activity.

Discrete context-dependent models (Fig. 1ced) have been used
in numerous studies to characterize contextual effects of changing
stimulus statistics. This includes a comparison of tuning to natural
versus synthetic noise stimuli (David et al., 2009; Theunissen et al.,
2000), variable spectral density (Norena et al., 2008; Schneider and
Woolley, 2011), variable stimulus contrast (Rabinowitz et al., 2011)
and variable sound level (Nagel and Doupe, 2008). As in the
behavioral studies described above, these models implicitly assume
the system shifts discretely between static “modes” of activation for
different categories of stimuli. In reality, the changes between
stimulus conditions reflect the output of dynamic filters that adapt
to the distinct statistical properties of the stimuli. Thus, modeling
the effects of stimulus context as a continuous state variable that
modulates sound-evoked activity represents an alternative
approach to this well-known problem. Future studies that identify
behavioral context variables will build on this approach in more
refined models that integrate smooth, continuous changes in
behavioral state into encoding models.

A recent study developed a context-dependent encoding model
to account for contrast normalization in the magnitude of sound-
evoked activity in auditory cortex (Rabinowitz et al., 2012). The
authors had previously reported that changing the spectral contrast
of stimuli within a narrow band around a neuron's best frequency
modulates the gain of sound evoked responses (Rabinowitz et al.,
2011). This process is similar to adaptive gain control reported for
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sound level in the auditory midbrain (Dean et al., 2008, 2005), but
the current model is able to capture the dynamics of the adaptation
and can generalize to stimuli that fluctuate between the different
regimes, rather than simply being fit discretely within isolated
stimulus regimes.

Single-unit recordings for fitting the context-dependent model
were acquired from A1 of awake and anesthetized ferrets during
acoustic stimulation. The stimulus was a sequence of dynamic
random chords (DRC) composed of tones at 23 different frequencies
ranging from 0.5 to 22.6 kHz. The entire sequence was 360 s in
duration. Every 3 s the contrast in each frequency band switched
randomly between high (92%) and low (33%), with a constant
overall sound level. The stimulus could be used to estimate a
standard linear STRF using methods similar to those described
above (kft, Fig. 5a). The authors then considered several alternative
models in which an additional contextual signal was defined based
on the current contrast in each spectral channel. A separate linear
filter was fit to the contrast signal (kft, Fig. 5a), and its output was
scaled to produce two time-varying spectral contrast signals, ct and
dt. These time-varying signals then replaced what are typically
modeled using static coefficients in the nonlinearity applied to the
output of the linear filter,

f ðxÞ ¼ aþ b
1þ exp½ � ðx� ctÞ=dt � (10)

Rather than being static, as it is in context-independent models,
the output nonlinearity changed dynamically with local contrast.
sensory context into spectro-temporal models of auditory encoding,



Fig. 5. Incorporating nonlinear gain control into auditory encoding models to account for local stimulus context. a. Activity of A1 neurons was recorded during presentation of
random chord stimuli in which each frequency channel fluctuated between high and low contrast every few seconds (top). The stimulus spectrogram could be used to estimate a
standard STRF (kfh). Stimulus context was defined as the contrast level in each frequency band (bottom), which was used to estimate a second, contrast filter (kðcdÞfh ), the output of
which was used to scale the output of the linear STRF. b. Example linear filters (left) and contrast filters (right) for two neurons. The contrast filters tended to have slightly broader
spectral tuning than the linear filter. c. Comparison of percent signal power explained (%SPE) for different models. The model incorporating a full spectro-temporal contrast filter
performed more accurately than a model with a contrast filter that measured only instantaneous contrast (kf), but both context-dependent models performed better than the LN
STRF and the STRF alone (i.e., with no static nonlinearity). %SPE provides an alternative measure of prediction accuracy, similar to prediction correlation but accounting for noise in
the PSTH of the neural activity being predicted (Sahani and Linden, 2003). (Figures modified and reprinted by permission from (Rabinowitz et al., 2012).).
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This dynamic gain term accounted for gain control previously
observed in auditory cortex (Rabinowitz et al., 2011), but it also
identified the spectral and temporal extent of its influence, which
varied substantially across A1 neurons. Generally, the linear filter
and contrast filter shared similar tuning, but they showed impor-
tant differences, particularly in their temporal extent (Fig. 5b).
Contrast filters typically had longer integration times, up to 500ms
or longer. Linear STRFs typically show integration times of less than
100ms. Importantly, allowing an independent contrast filter
improved model prediction accuracy over a model with a static
nonlinearity (Fig. 5c). Thus, a model that incorporates a continu-
ously varying context-dependent term is able to account for A1
activity better than a static LN STRF model.

7. Looking ahead: bigger data and better behavior

7.1. Overcoming data limitations

Robust and reliable control of animal behavior is challenging.
Animals, of course, can be trained to perform operant behaviors
that require a specific and sometimes difficult auditory discrimi-
nation (Osmanski et al., 2013). However, maintaining good per-
formance while obtaining enough data from a stable single-neuron
recording to estimate encoding model parameters requires precise
experimental design, substantial patience, and a certain amount of
luck on the part of the experimenter. Evenwhen animals perform a
task, it is difficult to fully control behavioral state. The behavioral
strategy and degree of effort can vary over the timecourse of a
single experiment (Lakatos et al., 2016; McGinley et al., 2015). Thus
there is a persistent sense that more data from a single experiment
and data sampling a variety of behavioral contexts is needed to
form a more complete understanding of the interaction of context
and auditory encoding (Fritz et al., 2007a). Given the minutes and
maybe hours of recording time permitted by traditional neuro-
physiological recordings from awake, behaving animals, it may
seem impossible to reach this goal.

Because of these limitations, studies incorporating behavioral
context into encoding models have thus far been limited to the
relatively simple LN STRF. More comprehensive nonlinear encoding
models have been proposed, but their complexity makes it difficult
to incorporate into behavioral studies, where data are often
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critically limited. One approach that may allow the integration of
behavior into more sophisticated models is dimensionality reduc-
tion, in which encoding models are constrained to the minimum
number of parameters required for accurate prediction (Thorson
et al., 2015). Second-order nonlinear models can require a
squaring of the number of parameters, but many of those param-
eters are not actually required. Subspace projections and targeted
nonlinearities provide a means of reducing dimensionality while
providing greater explanatory power than linear models (Atencio
and Sharpee, 2017; David and Shamma, 2013). These strategies
may provide the best direction toward more comprehensive
context-dependent encoding models.

New experimental technologies also promise to address the
data limitation problem.

In traditional electrophysiological experiments, maintaining
stable recordings for many minutes or hours is challenging, espe-
cially in behaving animals. Techniques for chronic electrophysio-
logical recording from implanted electrode arrays (Cohen and
Maunsell, 2009) and calcium imaging through cranial windows
(Kuchibhotla et al., 2016; Runyan et al., 2017) have matured in
recent years. Experiments using these methods have the potential
to study the same neurons during presentation of large stimulus
sets and under multiple behavioral conditions, thus supporting
estimation of more comprehensive encoding models.

However, each of these new methods does suffer from its own
limitations. Tissue growth can inhibit the recording quality of
chronically implanted electrodes, and the resulting yield of long-
term single unit recordings can be low, even for large multi-
channel arrays (Polikov et al., 2005). Calcium imaging can be per-
formed stably over many days, but temporal precision of calcium
signals cannot be resolved to precise spike times (Vogelstein et al.,
2010). Addressing these limitations is an active area of research,
and these methods will become increasingly useful for encoding
models as the associated technologies improve.

The development of high-quality subdural ECoG recordings
from human patients is particularly exciting, having opened up
access to subjects who can perform multiple sophisticated behav-
iors while recording multiunit and even occasionally single unit
activity (Mesgarani and Chang, 2012; Nourski et al., 2016). Human
ECoG studies promise new insight, especially into high-level
auditory processing, but this approach does have limitations.
sensory context into spectro-temporal models of auditory encoding,
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Access to single-unit data is limited, and most studies are restricted
to high frequency band LFP activity, which approximates multiunit
recordings from superficial cortical areas. Electrode placement is
also difficult to control between subjects, and access to subjects is
limited to a relatively small number of institutions. Finally,
although these recordings are available outside the focus of
epileptic activity, it should also be noted that these patients may
show abnormal brain oscillations, even in unaffected areas (Engel
and da Silva, 2012). Thus, human ECoG recordings, while valu-
able, may not become a widely used experimental resource.

Finally, technologies for identification and targeted manipula-
tion of neural circuits promise an additional avenue for developing
more comprehensive encoding models. Optogenetic tools can be
used to tag neural subpopulations according to distinguishing
molecular markers and their position in neural circuits. This
approach has been used to compare tuning properties between
populations (Guo et al., 2017; Moore and Wehr, 2013) and to
compare behavior-dependent effects between populations
(Kuchibhotla et al., 2016). Optogenetic tools can also be used to
reversibly activate or inactivate specific neural populations during
acoustic stimulation. This approach has been used to characterize
the role of different neural populations in cortex in coding of
sounds and sensory context (Natan et al., 2015; Phillips and
Hasenstaub, 2016). These tools are currently limited mostly to
studies in mice. However, ongoing efforts are underway to develop
them for use in other species, including non-human primates
(Macdougall et al., 2016).

7.2. Expanding the definition of behavioral context

On a more theoretical level, recent studies have identified non-
auditory signals that influence the activity of auditory neurons,
even if they are not explicitly controlled by a behavioral task. These
include arousal (McGinley et al., 2015), anesthesia state (Stringer
et al., 2016), motor activity (Brosch et al., 2005; Fritz et al., 2010;
Schneider et al., 2014), stimulus reward value (Baruni et al., 2015;
David et al., 2012), and behavioral choice (Bizley et al., 2013;
Runyan et al., 2017). Simultaneous recordings from large neural
populations also allow the analysis of large-scale population ac-
tivity, which itself reflects changes in internal state (Okun et al.,
2015; Pillow et al., 2008; Runyan et al., 2017; Stevenson et al.,
2012). These signals can be incorporated into context-dependent
models, along with variables reflecting task conditions controlled
by the experimenter.

While these additional modulatory signals do not necessarily
reflect strategies for optimal auditory signal processing or
discrimination, they represent essential components of the larger
neural system that supports auditory processing. Hearing exists
fundamentally to serve behavior. Encodingmodels that incorporate
these contextual variables will provide new insight into the
transformation of auditory signals into decision variables and mo-
tor responses. Incorporating multiple contextual variables into a
single model will also reveal how the underlying modulatory
processes emerge and interact in auditory pathways.

7.3. Alternatives to the linear STRF

As theories of auditory coding have developed, the STRF has
been identified as a special case of a much broader class of sensory
encoding models (Eggermont, 1993; Wu et al., 2006). Encoding
models represent any solution to the general problem of charac-
terizing the functional relationship between sensory stimuli and
neural responses. The STRF is fundamentally limited in its ability to
describe sensory coding because it is a linear approximation of the
relationship between stimulus spectrogram and evoked neural
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spike response. It is well-established that linear models fail to
describe a substantial portion of central neural responses to natural
sounds (David et al., 2009; Machens et al., 2004; Willmore et al.,
2016). Linear models have classically been appealing because
their estimation is computationally tractable. However, the
ongoing increase in computational power available in the lab has
made model complexity less of a constraint.

The LN STRF as described by Eqs. (2) and (3) is not constrained to
apply a specific formulation of the stimulus spectrogram or of the
static nonlinearity applied to the linear filter output. In addition to
the standard linear spectrogram (Aertsen and Johannesma, 1981;
Theunissen et al., 2001), several different methods have been
developed for generating cochleograms from raw stimulus wave-
forms, which simulate the filter properties of the cochlea and thus
model the signals arriving from the auditory nerve more accurately
(Chi et al., 2005; Gill et al., 2006; Katsiamis et al., 2007). Impor-
tantly, the best model of the periphery varies between species. In
birds, the cochlea is better approximated by a spectrogram with
linear-spaced frequency channels, while in mammals, log-spaced
channels are more widely used. Similarly, the formulation of the
output nonlinearity can vary from a simple hard threshold to a
sigmoid with independent curvature near threshold and saturation
(Calabrese et al., 2011; Rabinowitz et al., 2011; Thorson et al., 2015).
Varying the formulations of these model elements can impact
model prediction accuracy, though they rarely impact the basic
pattern of selectivity observed in the linear STRF (Gill et al., 2006;
Thorson et al., 2015).

A more critical limitation of the LN STRF is the linear filter itself.
The example in Fig. 2c illustrates one nonlinear response property
that cannot be captured by the linear STRF. Several stimulus-
response scatter plots show U-shaped relationships (e.g., black
box at 25ms time lag, bottom row). A line fit to these data is not
able to capture the increased response for large and small stimuli.
Instead the fit has nearly zero slope and the linear STRF indicates
zero gain at that frequency and time lag.

Several model architectures have been proposed to capture
nonlinear encoding properties. The linear STRF can be conceived as
the first-order Volterra series expansion of a nonlinear stimulus-
response function (Aertsen and Johannesma, 1981; Eggermont,
1993). Some nonlinear models incorporate second-order non-
linearities, in which the response is the linear weighted sum of the
stimulus spectrogram plus a weighted sum of the product of values
in the spectrogram (Atencio et al., 2008; Atencio and Sharpee,
2017). These approaches have been integrated with probability
theory-based models of neural coding and neural network models
from machine learning (Atencio et al., 2008; Calabrese et al., 2011;
Pillow et al., 2008).

Other architectures incorporate elements that model specific
biologically motivated computations that cannot be captured by
the linear model. For example, neural responses might integrate
over the output of two ormore LN STRFs fit in parallel (Harper et al.,
2016; Kozlov and Gentner, 2016; Schinkel-Bielefeld et al., 2012),
neuronal inputs might undergo short-term synaptic depression
and/or facilitation prior to filtering (David and Shamma, 2013), or
inputs might undergo a more complex transformation that mimics
nonlinear processing at an earlier processing stage (Willmore et al.,
2016). Finally, models like the one described above (Fig. 5) that
incorporate information about stimulus contrast or background
noise in a gain control term are able to account for some nonlinear
responses by casting them as components of the local stimulus
context (Rabinowitz et al., 2012; Williamson et al., 2016).

Although it is well established that the LN STRF fails to predict a
large portion of sound evoked activity, no single encoding model
has yet taken the place of the STRF as the “standard model” for
auditory coding. The domain of possible sounds to test is so large
sensory context into spectro-temporal models of auditory encoding,
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and the variety of possible nonlinear model is so vast that finding a
definitive replacement that consistently performs better is difficult.
Generally, the more comprehensive nonlinear models require more
free parameters than simpler linear models, and thus they require
more data for accurate estimation. Because data are typically
limited in behavioral studies, these more complex models have not
yet been used to study the effects of behavioral context on coding,
and the majority of this work has instead focused on the linear
STRF. As technologies for chronic recording from behaving animals
improve, incorporating context into these models will become
more feasible. Until then, the best way to describe auditory neural
encoding comprehensively remains an open question.

8. Conclusions

In their essence, all spectro-temporal encoding models reduce
to the same basic concept: a function that predicts a time-varying
neural signal based on the dynamic pattern of sensory stimula-
tion. The parameters of the model fit to a neural signal provide
information about the spectro-temporal features of stimuli enco-
ded by that signal. In addition, the accuracy with which the model
predicts neural activity provides an objective, quantitative measure
of how well it describes the stimulus-response relationship (Wu
et al., 2006).

As neuroscientists have come to appreciate the role of behav-
ioral context on processing in the auditory and other sensory sys-
tems, the need for incorporating internal behavioral state into
encoding models of sensory processing has become clear (Fritz
et al., 2007a). Studies incorporating behavior have shown that
attention to relevant task features can cause shifts in the selectivity
of auditory neurons to emphasize the contrast between features
important for performing the behavioral task (Fritz et al., 2003;
Holdgraf et al., 2016; Mesgarani et al., 2010).

Contextual influences on auditory processing reflect a large
number of behavioral factors and vary over a wide range of time-
scales. A single model that can account for all of these contextual
influences remains a theoretical concept and is not practical with
current experimental data, especially for mammals and other large
animals. However, the idea of exhaustively tracking behavior and
modeling its relationship with neural activity is being applied in
smaller species (Kato et al., 2015; Robie et al., 2017). This review
argues that the problem of contextual influence can be studied
from a foundation of static, context-independent sensory encoding
models. Encoding models can incorporate multiple discrete and
continuous behavioral state variables, both experimentally
controlled and passively observed. As behavioral state is monitored
more closely and more powerful methods for data acquisition are
developed, encoding models will grow increasingly
comprehensive.

Encodingmodels that predict context-dependent neural activity
more accurately will provide new insight into the neural circuits
that support auditory behavior. When contextual signals arrive via
specific neural pathways, context-dependent models can be con-
strained so that only parameters reflecting activity in those path-
ways vary with context. Thus, encoding models can be used to infer
the neural circuit elements that modulate auditory processing.
These inferences can subsequently be used to identify computa-
tional strategies used by the brain for sensory processing during
real-world behavior.
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