

Extensive weight loss can reduce immune age by altering

IgG N-glycosylation

Valentina L Greto, PhD^{1*}, Ana Cvetko, MSc^{2*}, Tamara Štambuk, PhD^{2,3*}, Niall J Dempster, MD⁴, Domagoj Kifer, MSc², Helena Deriš, MSc³, Ana Cindrić, MSc³, Frano Vučković, PhD³, Mario Falchi, PhD⁵, Richard S Gillies, MD⁶, Jeremy W Tomlinson, PhD⁴, Olga Gornik, PhD^{2,3}, Bruno Sgromo, MD⁶, Tim D Spector, PhD⁵, Cristina Menni, PhD^{5*}, Alessandra Geremia, PhD^{1*}, Carolina V Arancibia-Cárcamo, PhD^{1*}, Gordan Lauc, PhD^{2,3*}

¹Translational Gastroenterology Unit and NIHR Oxford Biomedical Research Centre, Nuffield Department of Medicine, University of Oxford, United Kingdom

²Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia

³Genos Glycoscience Research Laboratory, Zagreb, Croatia

⁴Oxford Centre for Diabetes and NIHR Oxford Biomedical Research Centre, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, United Kingdom

⁵The Department of Twin Research, King's College London, St Thomas' Hospital, London, United Kingdom

⁶Department of Upper GI Surgery, Oxford University Hospitals, United Kingdom

*The authors equally contributed to this work

Running title: Weight loss improves aging and IgG N-glycosylation

Corresponding author:

Gordan Lauc

glauc@pharma.hr

Faculty of Pharmacy and Biochemistry, University of Zagreb

A. Kovačića 1, 10 000 Zagreb, Croatia

1 **AUTHORS` DECLARATION OF INTEREST**

2 Tamara Štambuk Declaration of interest: Dr. Štambuk reports that she is an employee of
3 Genos Glycoscience Research Laboratory which offers commercial service of glycomics
4 analysis and has several patents in the field.

5 Helena Deriš Declaration of interest: Helena Deriš reports that she is an employee of
6 Genos Glycoscience Research Laboratory which offers commercial service of glycomics
7 analysis and has several patents in the field.

8 Ana Cindrić Declaration of interest: Ana Cindrić reports that she is an employee of Genos
9 Glycoscience Research Laboratory which offers commercial service of glycomics analysis
10 and has several patents in the field.

11 Frano Vučković Declaration of interest: Dr. Vučković reports that he is an employee of
12 Genos Glycoscience Research Laboratory which offers commercial service of glycomics
13 analysis and has several patents in the field.

14 Olga Gornik Declaration of interest: Dr. Gornik reports that she is an employee of Genos
15 Glycoscience Research Laboratory which offers commercial service of glycomics analysis
16 and has several patents in the field.

17 Alessandra Geremia Declaration of interest: Dr. Geremia reports grants from Wellcome
18 Trust, grants from NIHR research capability fund, during the conduct of the study; other
19 from UCB Pharma, outside the submitted work.

20 Gordan Lauc Declaration of interest: Dr. Lauc reports that he is founder and owner of
21 Genos LTD Zagreb; In addition, Dr. Lauc has a multiple patents in the field of glycoscience
22 pending or issued.

23 Valentina L Greto, Ana Cvetko, Niall J Dempster, Mario Falchi, Cristina Menni, Jeremy W
24 Tomlinson, Domagoj Kifer, Bruno Sgromo, Richard S Gillies, Tim Spector, Cristina Menni,
25 Carolina V Arancibia-Cárcamo Declarations of interest: none

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47 **ABSTRACT**

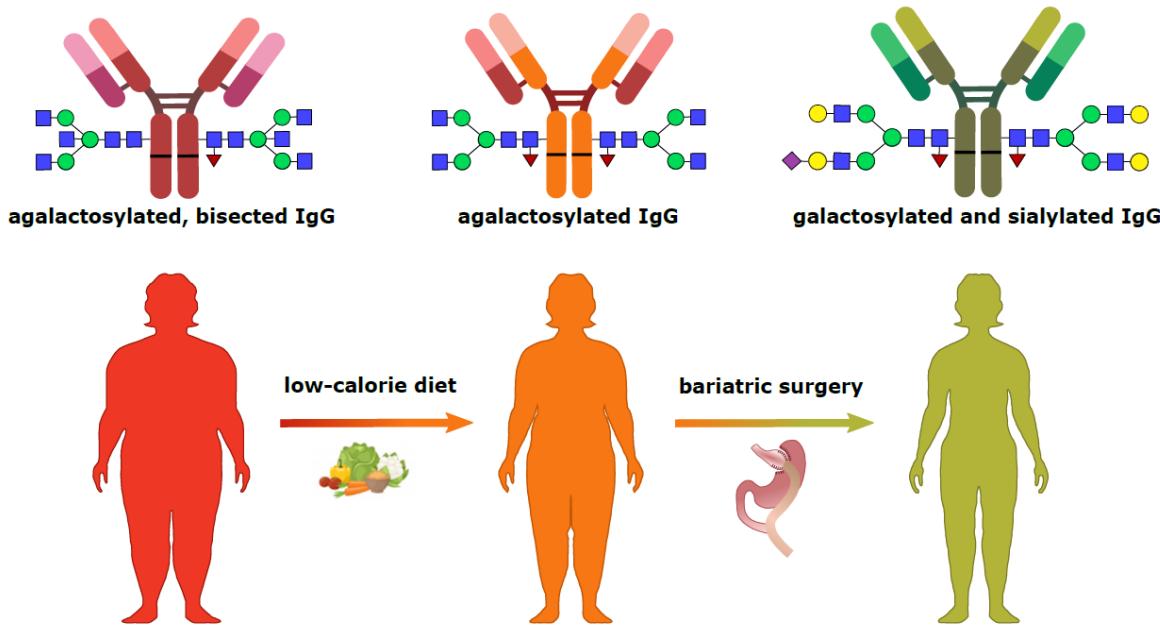
48 **Background**

49 Obesity is a major global health problem, and is associated with increased cardiometabolic
50 morbidity and mortality. Protein glycosylation is a frequent posttranslational modification,
51 highly responsive to numerous pathophysiological conditions and ageing. The prospect of
52 biological age reduction, by reverting glycosylation changes through metabolic intervention,
53 opens many possibilities. We have investigated whether weight loss interventions affect
54 inflammation- and ageing-associated IgG glycosylation changes, in a longitudinal cohort of
55 bariatric surgery patients. To support potential findings, BMI-related glycosylation changes
56 were monitored in a longitudinal twins cohort.

57 **Methods**

58 IgG N-glycans were chromatographically profiled in 37 obese patients, subjected to low-
59 calorie diet, followed by bariatric surgery, across multiple timepoints. Similarly, plasma-
60 derived IgG N-glycan traits were longitudinally monitored in 1,680 participants from the
61 TwinsUK cohort.

62 **Results**


63 Low-calorie diet induced a marked decrease in the levels of IgG N-glycans with bisecting
64 GlcNAc, whose higher levels are usually associated with ageing and inflammatory conditions.
65 Bariatric surgery resulted in extensive alterations of the IgG glycome that accompanied
66 progressive weight loss during one-year follow-up. We observed a significant increase in
67 digalactosylated and sialylated glycans, and a substantial decrease in agalactosylated and core
68 fucosylated IgG glycans. In general, this IgG glycan profile is associated with a younger
69 biological age and reflects an enhanced anti-inflammatory IgG potential. Loss of BMI over a

70 20 year period in the TwinsUK cohort validated a weight loss-associated agalactosylation
71 decrease and an increase in digalactosylation.

72 **Conclusions**

73 Altogether, these findings highlight that weight loss substantially affects IgG N-glycosylation,
74 resulting in reduced biological and immune age.

75 **GRAPHICAL ABSTRACT**

76
77 **HIGHLIGHTS**
78
79 • Obesity is associated to inflammation-related agalactosylated and bisected IgG
80 glycoforms
81
82 • IgG galactosylation and sialylation increase after bariatric surgery-induced weight loss
83
84 • Progressive decrease of BMI is associated to increased IgG galactosylation, implying a
85 reduction of biological age

86 **KEYWORDS**

87 N-glycosylation; bariatric surgery; weight loss; immunoglobulin G; biological age

88 **INTRODUCTION**

89 The global prevalence of obesity has risen dramatically in the past decades, and it is now
90 considered a pandemic [1]. According to the World Health Organization, over 650 million
91 individuals are obese, accounting for 13% of the world's adult population. Obesity confers a
92 risk for metabolic syndrome, contributing to type 2 diabetes and cardiovascular disease (CVD)
93 development [2]. Metabolic syndrome is linked to a chronic systemic low-grade inflammation,
94 which contributes to the aging of the immune system denoted as inflamming [3,4]. Obesity-
95 related inflamming results in impaired innate and adaptive immune function, and is
96 characterized by high serum levels of IL-6, TNF- α and CRP [5]. Altered protein N-glycosylation
97 is one of the hallmarks of inflamming [4,6]. The human circulating N-glycome represents
98 the entire set of glycans that are covalently attached to plasma proteins through a nitrogen
99 on an asparagine residue. N-glycans are essential for life and are involved in many
100 physiological processes [7], including signal transduction, protein trafficking and folding,
101 receptor regulation and cell adhesion. Glycosylation has a fundamental role in the innate and
102 adaptive immune responses, accentuated by the fact that all five classes of immunoglobulins
103 (Ig) bear N-glycans. In this regard, IgG is probably the most investigated glycoprotein, whose
104 effector functions are controlled by its Fc-bound glycans [8].

105 Inter-individual differences in the pace of biological ageing is an intriguing concept which may
106 contribute to why some people stay healthy until their late chronological age, while others
107 age faster and have shorter life expectancy. Progressive age-related changes of IgG
108 glycosylation have been extensively studied [7,9,10] and the GlycanAge model has been
109 proposed to express the difference between chronological and IgG glycome ageing [11]. The
110 age of the IgG glycome might be estimated through the levels of agalactosylated species,
111 which increase with ageing and are associated with enhanced immune activation [12]. The

112 opposite applies for digalactosylated IgG glycoforms, which are usually related to a younger
113 age. Besides age-related changes, specific IgG glycosylation patterns have been already
114 associated with CVD risk score and subclinical atherosclerosis in two large independent UK
115 cohorts [13]. Moreover, a prospective follow-up of the EPIC-Potsdam cohort confirmed that
116 changes in plasma N-glycome composition are predictive of future CVD events, with
117 comparable predictive power to the American Heart Association (AHA) score in men and even
118 better predictive power in women [14]. The link between a proinflammatory IgG N-glycome
119 and hypertension has also been extensively studied [15–17], and similar IgG glycosylation
120 patterns were associated with increased body mass index (BMI) and measures of central
121 adiposity [18,19].

122 Studies in mouse models further corroborate the importance of differential IgG glycoforms in
123 CVD pathogenesis. It has been shown that hyposialylated IgG (corresponding to an old-like IgG
124 glycome) can induce obesity-related hypertension and insulin resistance in B-cell-deficient
125 mice, through activation of the endothelial Fc γ RIIB [20,21]. These findings indicate that the
126 IgG N-glycome could represent more than a biomarker of inflammation and aging, since
127 distinctive IgG glycoforms act as effector molecules in certain pathologies. Furthermore,
128 supplementation with *N*-acetylmannosamine (ManNAc), a precursor of sialic acid, protects
129 obese mice from hypertension and insulin resistance induction by reverting an IgG N-glycome
130 associated with old age into an IgG N-glycome associated with young age [21,22]. However,
131 studies exploring the possibilities of converting an old-like into a young-like IgG glycome by
132 metabolic intervention in humans are limited. Of note, only one small study indicated that
133 high-intensity interval training can rejuvenate the IgG N-glycome [23].
134 Bariatric surgery is very effective for the treatment of severe obesity [24]. The resulting
135 weight loss impacts energy balance and metabolism, contributing to the increased insulin

136 response, improved glycaemic control and reduction of total body fat, leading to decreased
137 CVD risk and mortality [25].

138 In this study we aimed to determine whether weight loss affects glycan markers related to
139 inflammation and ageing, in a longitudinally-monitored cohort of obese individuals
140 undergoing low-calorie diet and then bariatric surgical interventions. We also investigated
141 BMI-related glycosylation changes in the longitudinal TwinsUK cohort, the largest cohort of
142 adult twins with the most detailed clinical database in the world.

143

144 **METHODS**

145 **Study populations**

146 Bariatric cohort. The cohort included 37 participants, recruited at Oxford University Hospitals
147 to the Gastrointestinal Illnesses study (Ref: 16/YH/0247). All patients were characterised by
148 metabolic status and medical history. Bariatric patients were considered eligible in accordance
149 to National Institute for Health and Care Excellence (NICE) and local guidelines.

150 Patients with a history of alcoholism and/or ongoing anticoagulant treatment were excluded.
151 Patients were also excluded in case of pregnancy, active substance abuse or uncontrolled
152 psychiatric condition including eating disorders. Participants were sampled at baseline and
153 subjected to 3-week low calorie carbohydrate-restricted diet (900 cal, maximum 100 g of
154 carbohydrates per day), followed by bariatric surgery. The sequential follow-up timepoints
155 included the day of the surgery (baseline), at 20% of weight loss after 6.54 ± 3.4 months (mean
156 \pm IQR) and 12.47 ± 6.55 months post-op. Characteristics of the bariatric cohort are shown in
157 Table 1.

158 TwinsUK cohort. We have analysed a total of 6,032 plasma samples from 2,146 participants of
159 the TwinsUK study, collected at multiple timepoints over a 20 year-period [26]. These included

160 1,865 individuals sampled at 3 timepoints, 156 individuals sampled at 2 timepoints and 125
161 individuals sampled only once. Following the plasma N-glycome analysis, glycan data
162 underwent quality control (see *Statistical analysis* section), which decreased the dataset to
163 5,889 samples (measurements). Out of these 5,889 measurements, we have proceeded with
164 statistical analysis on a subset of 3,742 samples (measurements) which had information on
165 BMI available. Description of the TwinsUK cohort is provided in Table 2.

166 **Ethical statement**

167 Ethical approval for the study was obtained by the National Research Ethics Committees of
168 the UK National Health Service (NHS) under the reference number 16/YH/0247. All individuals
169 participating in this study gave written informed consent. The TwinsUK study was approved
170 by NRES Committee London–Westminster, and all twins provided informed written consent.

171 **N-glycome analysis**

172 *Isolation of IgG from human plasma*

173 IgG was isolated from plasma samples by affinity chromatography as described previously
174 [27]. In brief, IgG was isolated in a high-throughput manner, using 96-well protein G
175 monolithic plates (BIA Separations, Slovenia), starting from 100 µl of plasma. Plasma was
176 diluted 7x with phosphate buffered saline (PBS; Merck, Germany) and applied to the protein
177 G plate. IgG was eluted with 1 ml of 0.1 M formic acid (Merck, Germany) and immediately
178 neutralized with 1 M ammonium bicarbonate (Acros Organics, USA).

179 *N-glycan release from IgG and total plasma proteins*

180 Isolated IgG samples were dried in a vacuum centrifuge. After drying, IgG was denatured with
181 the addition of 30 µl of 1.33% SDS (w/v) (Invitrogen, USA) and by incubation at 65 °C for 10
182 min. Plasma samples (10 µl) were denatured with the addition of 20 µl of 2% (w/v) SDS
183 (Invitrogen, USA) and by incubation at 65 °C for 10 min. From this point on, the procedure was

184 identical for both IgG and plasma samples. After denaturation, 10 µl of 4% (v/v) Igepal-CA630
185 (Sigma Aldrich, USA) was added to the samples, and the mixture was shaken 15 min on a plate
186 shaker (GFL, Germany). N-glycans were released with the addition of 1.2 U of PNGase F
187 (Promega, USA) and overnight incubation at 37 °C.

188 *Fluorescent labelling and HILIC SPE clean-up of released N glycans*

189 The released N-glycans were labelled with 2-aminobenzamide (2-AB). The labelling mixture
190 consisted of 2-AB (19.2 mg/ml; Sigma Aldrich, USA) and 2-picoline borane (44.8 mg/ml; Sigma
191 Aldrich, USA) in dimethyl sulfoxide (Sigma Aldrich, USA) and glacial acetic acid (Merck,
192 Germany) mixture (70:30 v/v). To each sample 25 µl of labelling mixture was added, followed
193 by 2 h incubation at 65 °C. Free label and reducing agent were removed from the samples
194 using hydrophilic interaction liquid chromatography solid-phase extraction (HILIC-SPE). After
195 incubation samples were brought to 96% of acetonitrile (ACN) by adding 700 µl of ACN (J.T.
196 Baker, USA) and applied to each well of a 0.2 µm GHP filter plate (Pall Corporation, USA).
197 Solvent was removed by application of vacuum using a vacuum manifold (Millipore
198 Corporation, USA). All wells were prewashed with 70% ethanol (Sigma-Aldrich, St. Louis, MO,
199 USA) and water, followed by equilibration with 96% ACN. Loaded samples were subsequently
200 washed 5x with 96% ACN. N-glycans were eluted with water and stored at – 20 °C until usage.

201 *Hydrophilic interaction liquid chromatography of N-glycans*

202 Fluorescently labelled N-glycans were separated by hydrophilic interaction liquid
203 chromatography (HILIC) on Acquity UPLC H-Class instrument (Waters, USA) consisting of a
204 quaternary solvent manager, sample manager and a fluorescence detector, set with excitation
205 and emission wavelengths of 250 and 428 nm, respectively. The instrument was under the
206 control of Empower 3 software, build 3471 (Waters, Milford, USA). Labelled N-glycans were
207 separated on a Waters BEH Glycan chromatography column, with 100 mM ammonium

208 formate, pH 4.4, as solvent A and ACN as solvent B. In the case of IgG N-glycans, separation
209 method used linear gradient of 75–62% acetonitrile at flow rate of 0.4 ml/min in a 27-min
210 analytical run. For plasma protein N-glycans separation method used linear gradient of 70–
211 53% acetonitrile at flow rate of 0.561 ml/min in a 25-min analytical run. The system was
212 calibrated using an external standard of hydrolysed and 2-AB labelled glucose oligomers from
213 which the retention times for the individual glycans were converted to glucose units (GU).
214 Data processing was performed using an automatic processing method with a traditional
215 integration algorithm after which each chromatogram was manually corrected to maintain
216 the same intervals of integration for all the samples. The chromatograms were all separated
217 in the same manner into 24 peaks (GP1– GP24) for IgG N-glycans and 39 peaks (GP1–GP39)
218 for plasma protein N-glycans and are depicted in Supplementary Figure 1 and Supplementary
219 Figure 2, respectively. Detailed description of glycan structures corresponding to each glycan
220 peak is presented in Supplementary Table 1. Glycan peaks were analysed based on their
221 elution positions and measured in glucose units, then compared to the reference values in the
222 “GlycoStore” database (available at: <https://glycostore.org/>) for structure assignment. The
223 amount of glycans in each peak was expressed as a percentage of the total integrated area.
224 For IgG glycans, in addition to 24 directly measured glycan traits, 8 derived traits were
225 calculated (Supplementary Table 2). In the case of TwinsUK cohort, IgG N-glycan traits were
226 calculated from plasma protein glycan profiles, based on known elution positions of
227 predominant IgG glycan structures (Supplementary Table 3). In general, derived glycan traits
228 average particular glycosylation features, such as galactosylation, fucosylation, bisecting
229 GlcNAc, and sialylation.

230

231

232 **Statistical analysis**

233 *Bariatric cohort.* In order to remove experimental variation from the measurements,
234 normalization and batch correction were performed on the UPLC glycan data. To make
235 measurements across samples comparable, normalization by total area was performed. Prior
236 to batch correction, normalized glycan measurements were log-transformed due to right-
237 skewness of their distributions and the multiplicative nature of batch effects. Batch correction
238 was performed on log-transformed measurements using the ComBat method (R package sva
239 [28], where the technical source of variation (which sample was analysed on which plate) was
240 modelled as batch covariate. To correct measurements for experimental noise, estimated
241 batch effects were subtracted from log-transformed measurements.

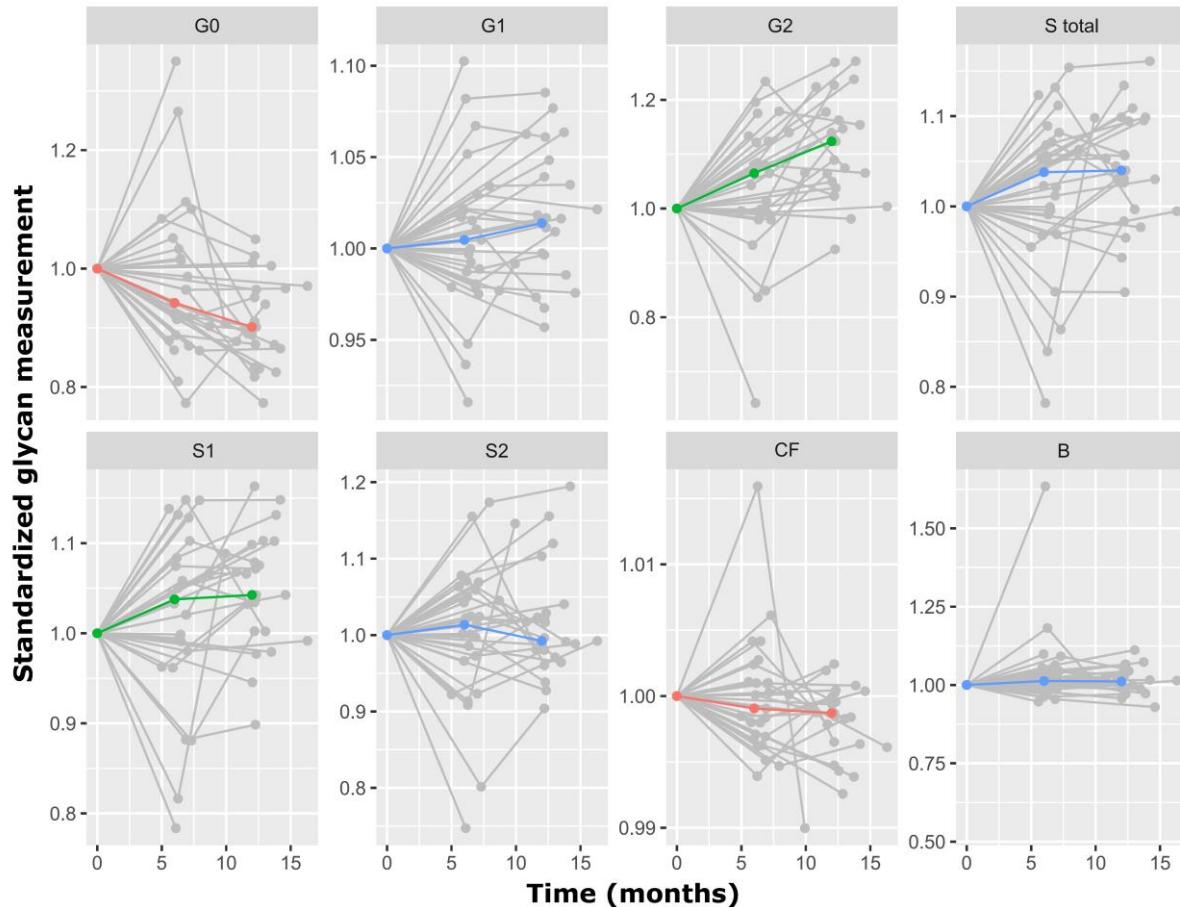
242 Longitudinal analysis of patient samples through their observation period was performed by
243 implementing a linear mixed effects model, where time was modelled as fixed effect, while
244 the individual ID was modelled as random effect. Prior to the analyses, glycan variables were
245 all transformed to standard Normal distribution by inverse transformation of ranks to
246 Normality (R package "GenABEL", function rntransform). Using rank transformed variables
247 makes estimated effects of different glycans comparable, as these will have the same
248 standardized variance. False discovery rate (FDR) was controlled by the Benjamini-Hochberg
249 procedure at the specified level of 0.05. Data was analysed and visualized using R
250 programming language (version 3.5.2)[29].

251 *TwinsUK cohort.* Normalization of peak intensities to the total chromatogram area was
252 performed for each measured sample separately. Calculated proportions were then batch
253 corrected using ComBat method (R package sva)[28]. After the batch correction the first 11
254 peaks, which predominantly originate from IgG [30], were used to calculate 6 derived glycan
255 traits – agalactosylation (G0), monogalactosylation (G1), digalactosylation (G2), bisecting

256 GlcNAc (B), core fucosylation (CF) and high mannose structures (HM). Mixed models were
257 fitted to estimate the effect of BMI change on IgG N-glycome (R package *lme4*)[31]. Directly
258 measured or derived glycan trait was used as a dependent variable in the mixed model. To
259 differentiate between BMI change and the absolute BMI value, the variable was separated to
260 BMI_{baseline} and $BMI_{\text{difference}}$ (calculated according to the following equation: $BMI_{\text{difference}} =$
261 $BMI_{\text{follow up age}} - BMI_{\text{baseline age}}$), and both were used in the model as a fixed effect. Since
262 IgG N-glycome is affected by aging, age was included both as a fixed effect and a random
263 slope. Finally, to meet the independency criteria, family ID and individual ID (nested within
264 family) were included in the model as a random intercept. Due to multiple model fitting (for
265 11 directly measured and 6 derived glycan traits) false discovery rate was controlled using
266 Benjamini-Hochberg method. All statistical analyses were performed using R programming
267 language (version 3.6.3)[29].

268

269 **RESULTS**

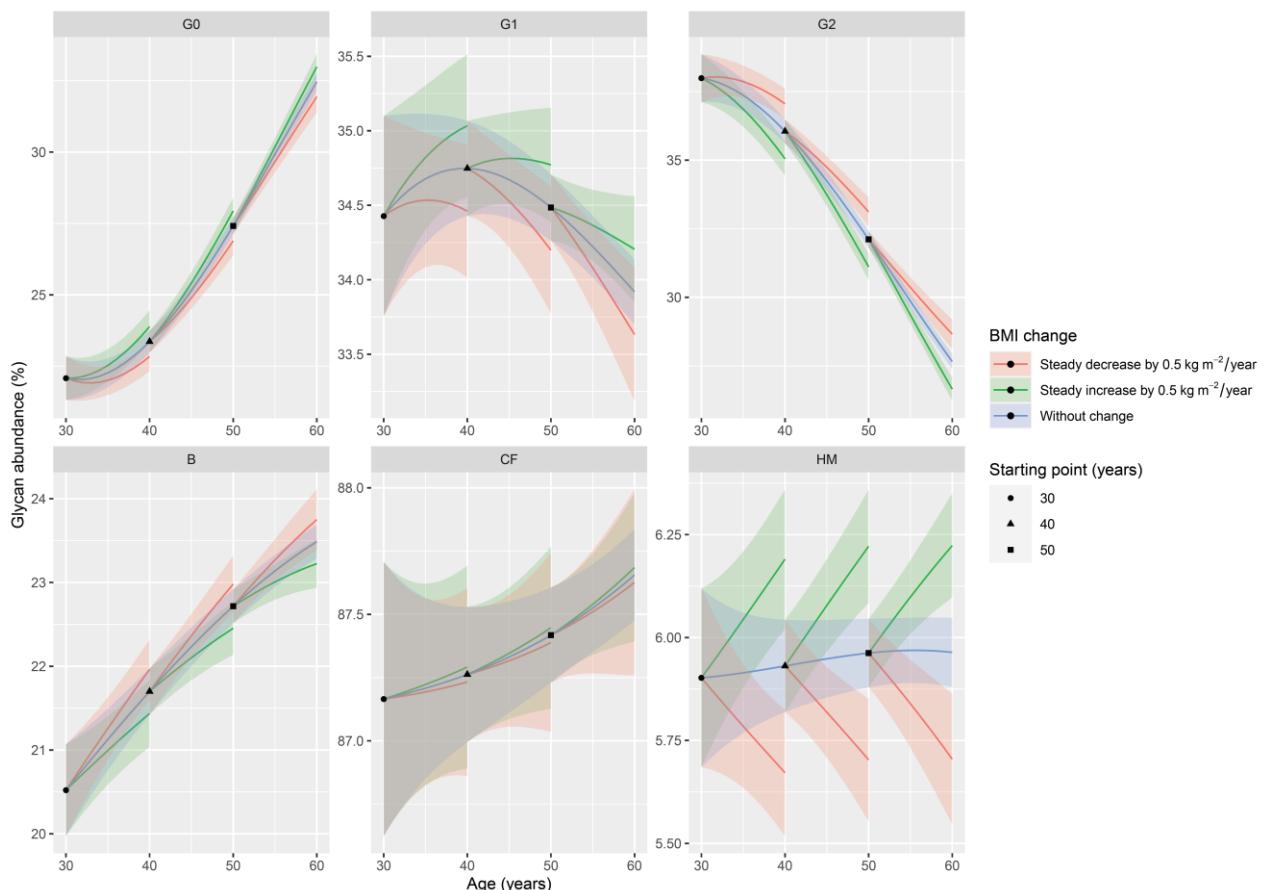

270 **Impact of pre-surgical low-calorie diet on IgG glycosylation**

271 We chromatographically profiled the IgG N-glycome in a cohort of bariatric surgery-candidate
272 patients before and after the pre-operative diet. By employing a linear mixed model, we
273 observed significant change in only one out of eight examined IgG derived glycan traits.
274 Namely, the levels of bisecting GlcNAc (B) were substantially decreased after the low-calorie
275 diet intervention (Table 3), indicating a decreased proinflammatory potential of the circulating
276 IgG. The other IgG glycosylation features did not exhibit significant alterations, possibly due
277 to rather short follow-up period (3 weeks) and limited number of participants (n=8) (Table
278 3). Graphical representation of the longitudinal alterations in IgG N-glycome after low-calorie
279 diet are depicted in Supplementary Figure 3.

280

281 **IgG N-glycosylation markedly changes after weight loss surgery**

282 Using the same chromatographic approach, we analysed samples from patients who
283 underwent bariatric surgery. The plasma samples were collected on the day of surgery (month
284 0), approximately 6 months post-surgery and 12 months post-surgery. IgG N-glycans were
285 profiled in each of these timepoints, and the obtained values were used for derived glycan
286 traits calculations. Statistical analysis revealed extensive changes in IgG N-glycome following
287 the bariatric procedure. Namely, four out of eight tested derived traits showed marked
288 changes: core fucosylated (CF) and agalactosylated (G0) glycans decreased, while
289 digalactosylated (G2) and monosialylated (S1) glycans increased after the surgery (Table 4).
290 The IgG glycans whose abundances were increased after bariatric surgery are major
291 components of a young IgG glycome, as they are typically associated with a younger age. The
292 opposite applies to agalactosylated structures, which are usual denominators of an old-like
293 IgG glycome profile. We also examined the correlation of patients' clinical data with IgG N-
294 glycome features using multivariate analysis, but found no statistically significant associations
295 (Supplementary Table 4). Finally, the type of bariatric surgery (either sleeve gastrectomy or
296 Roux-en-Y gastric bypass) did not affect IgG glycome composition. Graphical representations
297 of the longitudinal alterations in IgG glycosylation features are depicted in Figure 1.


298

299 **Figure 1 Bariatric surgery-related alterations in IgG N-glycome over time (months).** Red line –
300 significant decrease; green line – significant increase; blue line – non-significant change.

301 **Weight loss induces a shift towards young-like IgG N-glycome**

302 Using the same chromatographic approach, we profiled the plasma protein N-glycome from
303 1,680 TwinsUK study participants sampled at several timepoints over a 20-year-period. This
304 served as a replication of the findings from the bariatric cohort, whose participants exhibited
305 the reversal from old- to young-like IgG N-glycome due to weight loss. Due to the fact that for
306 TwinsUK cohort plasma glycome was profiled, we calculated derived traits and performed
307 statistical analysis based only on the first 11 plasma glycan peaks, corresponding to the glycans
308 predominantly originating from IgG [30]. We examined IgG glycome alterations associated
309 with changes in BMI using a mixed model on a subset of 3,742 samples. Out of six examined
310 IgG glycosylation features (derived traits), three displayed significant BMI-decrease-related

311 changes – agalactosylation (G0), digalactosylation (G2) and incidence of high mannose
312 structures (HM) (Table 5). Namely, the abundance of digalactosylated (G2) glycans increased
313 with the BMI decrease, while the abundance of agalactosylated (G0) and high mannose
314 glycans (HM) decreased with the weight loss, estimated by the BMI drop. These findings are
315 in line with the results observed in the bariatric surgery cohort. Graphical representation of
316 the longitudinal BMI-dependent alterations of IgG glycosylation are depicted at Figure 2.

318 **Figure 2 BMI-associated alterations in IgG N-glycosylation across multiple timepoints.** Changes in IgG
319 derived traits are presented with lineplots of hypothetical ageing of TwinsUK participants (all women).
320 Black dot represents a starting point of a 30-year-old woman, black triangle of a 40-year-old woman
321 and black square of a 50-year-old woman. All of these women have a baseline BMI of 25 kg m^{-2} . Blue
322 lines represent age-related IgG glycosylation changes attributed to stable BMI. Green lines represent
323 age-related IgG glycosylation changes attributed to increasing BMI (0.5 kg m^{-2} per year, through a
324 period of 10 years). Red lines represent age-related IgG glycosylation changes attributed to decreasing

325 BMI (0.5 kg m⁻² per year, through a period of 10 years). Highlighted areas represent 95% confidence
326 intervals. The effect of age on IgG glycosylation is represented with the curve slope, while the effect
327 of BMI change is represented with the distance of green/red line from the blue line.

328

329 **DISCUSSION**

330 In this study, we have observed extensive changes in the IgG N-glycome associated with
331 weight loss following a low-calorie diet, bariatric surgery, or a decrease of BMI throughout
332 time. To the best of our knowledge, this is the first study to investigate IgG N-glycome
333 alterations in patients who underwent a low-calorie diet followed by bariatric surgery.

334 Prior to bariatric surgery, patients were subjected to a 3-week low-calorie diet which induced
335 a single significant change to the IgG N-glycome. Specifically, the levels of bisecting GlcNAc
336 were found to be reduced after the dieting period. In general, higher levels of bisecting GlcNAc
337 are associated with enhanced affinity for Fc_YRs and, consequently, with enhanced antibody-
338 dependent cellular cytotoxicity (ADCC) and other effector functions of the immune cells [9].

339 Hence, the reduction of bisecting GlcNAc levels on IgG decreases IgG inflammatory potential.
340 Furthermore, several studies have reported a sex-independent increase in the levels of
341 bisecting GlcNAc with age [32,33], suggesting that this diet-related decrease of its levels also
342 contributes to the reduction of the biological age. Lastly, increased abundance of bisecting
343 GlcNAc on IgG has been previously associated with type 2 diabetes [34] and with higher
344 cardiovascular risk [13], implying that dieting improves individual's cardiometabolic health
345 through altered IgG glycosylation as well. As for the other examined IgG glycosylation traits,
346 no significant changes were found to be associated with a low-calorie diet, probably due to
347 the relatively short follow-up period (three weeks), which matches IgG serum half-life.

348 Moreover, only 8 participants were subjected to the low-calorie diet intervention, hence,
349 further analysis on a larger sample size might reveal additional relevant changes.

350 We have also analysed IgG N-glycome from individuals who underwent bariatric surgery, in a
351 longitudinal manner. We observed several significant changes in IgG N-glycome, such as a
352 marked decrease in agalactosylated (G0) IgG. Elevated levels of G0 IgG glycoforms are
353 typically associated with aging, pro-inflammatory IgG glycan profile and various inflammatory
354 diseases [9]. On the other hand, the levels of digalactosylated (G2) glycans increased after
355 bariatric surgery and at sequential timepoints, in accordance with a reduced inflammatory
356 potential of the circulating IgG. The increased levels of IgG galactosylation were previously
357 associated with a younger biological age and are considered, in a way, as a measure of an
358 individual's well-being [9,12]. Conversely, IgG galactosylation levels substantially decrease
359 with ageing and during inflammation [9,11]. Our results demonstrate that weight loss,
360 resulting from bariatric surgery, can initiate the reversal from an old-like to a young-like IgG
361 N-glycome, potentially reversing the clock for the immune/biological age. Furthermore,
362 bariatric surgery also resulted in significant IgG glycome alteration inducing a decrease in core
363 fucosylation. The vast majority of circulating IgG molecules bears core fucose (approximately
364 95%), which profoundly decreases IgG binding affinity to Fc γ RIIIA receptor and sequential
365 ADCC [35]. ADCC is largely mediated by natural killer cells that can lyse target cells and fight
366 viral infections. This would suggest that an extensive weight loss ameliorates immune
367 responses against pathogens, by altering IgG glycosylation and modulating its effector
368 functions. Lastly, bariatric surgery-related weight loss led to an increase in IgG sialylation,
369 which is the main modulator of the IgG anti-inflammatory actions [36]. In addition to its anti-
370 inflammatory actions, the level of IgG sialylation has been implicated in the pathogenesis of
371 obesity-induced insulin resistance and hypertension, as already mentioned [20,21]. Inhibitory

372 IgG receptor Fc γ RIIB was found to be expressed in the microvascular endothelium. Moreover,
373 it was shown that hyposialylated IgG acts as its operating ligand, leading to the induction of
374 obesity-related insulin resistance and hypertension. On the other hand, the sialylated
375 glycoform is not activating the signalling pathways responsible for the insulin resistance and
376 hypertension development, but is rather preserving insulin sensitivity and normal vasomotor
377 tone, even in obese mice. Interestingly, the same group made another significant discovery –
378 promotion of IgG sialylation breaks the link between obesity and hypertension/insulin
379 resistance [21,22]. Namely, supplementation with the sialic acid precursor restored IgG
380 sialylation, highlighting a potential approach to improve both metabolic and cardiovascular
381 health in humans, with a single intervention. Our data suggest that a similar effect might be
382 achieved by weight loss interventions, through restoring of IgG sialylation levels
383 In order to confirm the effects of weight loss on the biological immune age, we investigated
384 how a decreasing BMI affects the IgG N-glycome during a 20-year-period. We observed the
385 prominent inverse changes of agalactosylated (G0) and digalactosylated (G2) IgG glycans.
386 Namely, agalactosylated IgG glycans significantly decreased, while digalactosylated ones
387 substantially increased as the BMI decreased. These observations corroborated our findings
388 from the bariatric patients, confirming that the body weight reduction reverses IgG glycome
389 from old-like to young-like, implying at the same time a likely reduction in the biological and
390 immune age. Nonetheless, TwinsUK participants have not experienced such an extensive
391 weight loss, which potentially influenced the replication of other significant glycan changes
392 from the bariatric cohort; second – herein, the weight loss was approximated by BMI
393 decrease, which is usually a legitimate assumption, however, it does not have to apply to all
394 cases; and third – we profiled plasma glycome, while the IgG glycan traits were approximated
395 and the information on IgG sialylation was confounded by other plasma glycoproteins. Ideally,

396 these issues could be circumvented in the future studies whose experimental design would
397 allow the simultaneous, multi-centre follow-up of larger groups of patients.

398 Intense physical exercise can also shift IgG N-glycome towards a young-like profile by
399 increasing IgG galactosylation [23]. Although another study reported that prolonged intensive
400 exercise can have the opposite effect and promote pro-inflammatory changes of IgG N-
401 glycome [37], its findings are not surprising since it recruited healthy, normal-weight female
402 participants, subjected to the intense energy deprivation and exercise levels, to induce
403 substantial fat loss in a rather short time period. The authors also highlighted that starting
404 weight and the way in which weight loss is achieved could be crucial for the final effect on the
405 immune system [37]. Therefore, it seems that exercise overall has a positive impact on the
406 immune system and biological clock, but its intensity and duration should be personalized in
407 order to achieve the optimal results.

408 To summarize, our results indicate that both dieting and bariatric surgery have an impact on
409 inflammation and biological aging by altering IgG N-glycan patterns. All of the observed
410 weight-loss-associated alterations in IgG glycosylation are suggesting a decreased
411 inflammatory potential of the circulating IgG and a reduction of biological age. Hence,
412 improving metabolic and endocrine health through weight loss consequently also contributes
413 to the preservation of a healthy immune system.

414

415 **ACKNOWLEDGMENTS**

416 This research was funded by the National Institute for Health Research (NIHR) Oxford
417 Biomedical Research Centre (BRC). The views expressed are those of the author(s) and not
418 necessarily those of the NHS, the NIHR or the Department of Health. The authors thank Rachel

419 Franklin, Michelle Haylock, James Chivenga, Roxanne Williams and the BRC Oxford GI Biobank
420 for sample collection. The authors thank all the patients who took part in this study.

421

422 **AUTHORS` CONTRIBUTION**

423 Cristina Menni, Alessandra Geremia, Carolina V Arancibia-Cárcamo and Gordan Lauc:
424 Conceptualization, Supervision, Project administration, Funding acquisition. Valentina L
425 Greto, Ana Cvetko, Tamara Štambuk, Niall J Dempster, Helena Deriš, Ana Cindrić, Mario Falchi,
426 Cristina Menni: Investigation. Domagoj Kifer, Frano Vučković: Methodology, Software, Formal
427 analysis. Valentina L Greto, Ana Cvetko, Tamara Štambuk, Niall J Dempster, Domagoj Kifer,
428 Frano Vučković, Mario Falchi, Jeremy W Tomlinson, Olga Gornik, Tim Spector, Cristina Menni,
429 Alessandra Geremia, Carolina V Arancibia-Cárcamo, Gordan Lauc: Data curation and
430 visualization: Valentina L Greto, Ana Cvetko, Tamara Štambuk, Niall J Dempster, Domagoj
431 Kifer, Frano Vučković, Gordan Lauc: Writing-original draft. Valentina L Greto, Ana Cvetko,
432 Tamara Štambuk, Niall J Dempster, Domagoj Kifer, Helena Deriš, Ana Cindrić, Frano Vučković,
433 Mario Falchi, Richard S Gillies, Jeremy W Tomlinson, Olga Gornik, Bruno Sgromo, MD6, Tim D
434 Spector, Cristina Menni, Alessandra Geremia, Carolina V Arancibia-Cárcamo, Gordan Lauc:
435 Review & Editing.

436

437

438

439

440

441

442

443 REFERENCES

- 444 [1] Obesity and overweight <https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight> (accessed April 16, 2020).
- 445 [2] Han TS, Lean ME. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. *JRSM Cardiovasc Dis* 2016;5:2048004016633371. <https://doi.org/10.1177/2048004016633371>.
- 446 [3] Alpert A, Pickman Y, Leipold M, Rosenberg-Hasson Y, Ji X, Gaujoux R, et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. *Nat Med* 2019;25:487–95. <https://doi.org/10.1038/s41591-019-0381-y>.
- 447 [4] Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune–metabolic viewpoint for age-related diseases. *Nature Reviews Endocrinology* 2018;14:576–90. <https://doi.org/10.1038/s41574-018-0059-4>.
- 448 [5] Touch S, Clément K, André S. T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes. *Curr Diab Rep* 2017;17:81. <https://doi.org/10.1007/s11892-017-0900-5>.
- 449 [6] Lauc G, Sinclair D. Biomarkers of biological age as predictors of COVID-19 disease severity. *Aging* 2020. <https://doi.org/10.18632/aging.103052>.
- 450 [7] Lauc G, Pezer M, Rudan I, Campbell H. Mechanisms of disease: The human N-glycome. *Biochimica et Biophysica Acta - General Subjects* 2016;1860:1574–82. <https://doi.org/10.1016/j.bbagen.2015.10.016>.
- 451 [8] Gornik O, Pavić T, Lauc G. Alternative glycosylation modulates function of IgG and other proteins - implications on evolution and disease. *Biochim Biophys Acta* 2012;1820:1318–26. <https://doi.org/10.1016/j.bbagen.2011.12.004>.
- 452 [9] Gudelj I, Lauc G, Pezer M. Immunoglobulin G glycosylation in aging and diseases. *Cellular Immunology* 2018. <https://doi.org/10.1016/j.cellimm.2018.07.009>.
- 453 [10] Dall’Olio F. Glycobiology of aging. *Subcellular Biochemistry*, 2018. https://doi.org/10.1007/978-981-13-2835-0_17.
- 454 [11] Krištić J, Vučković F, Menni C, Klarić L, Keser T, Beceheli I, et al. Glycans Are a Novel Biomarker of Chronological and Biological Ages. *The Journals of Gerontology: Series A* 2014;69:779–89. <https://doi.org/10.1093/gerona/glt190>.
- 455 [12] Štambuk J, Nakić N, Vučković F, Pučić-Baković M, Razdorov G, Trbojević-Akmačić I, et al. Global variability of the human IgG glycome. *Biochemistry*; 2019. <https://doi.org/10.1101/535237>.
- 456 [13] Menni C, Gudelj I, MacDonald-Dunlop E, Mangino M, Zierer J, Bešić E, et al. Glycosylation Profile of Immunoglobulin G Is Cross-Sectionally Associated with Cardiovascular Disease Risk Score and Subclinical Atherosclerosis in Two Independent Cohorts. *Circulation Research* 2018;122:1555–64. <https://doi.org/10.1161/CIRCRESAHA.117.312174>.
- 457 [14] Wittenbecher C, Štambuk T, Kuxhaus O, Rudman N, Vučković F, Štambuk J, et al. Plasma N-Glycans as Emerging Biomarkers of Cardiometabolic Risk: A Prospective Investigation in the EPIC-Potsdam Cohort Study. *Diabetes Care* 2020;43:661–8. <https://doi.org/10.2337/dc19-1507>.
- 458 [15] Gao Q, Dolikun M, Stambuk J, Wang H, Zhao F, Yiliham N, et al. Immunoglobulin G N-Glycans as Potential Postgenomic Biomarkers for Hypertension in the Kazakh Population. *Omics* 2017;21:380–9. <https://doi.org/10.1089/omi.2017.0044>.
- 459 [16] Liu J, Dolikun M, Štambuk J, Trbojević-Akmačić I, Zhang J, Wang H, et al. The association between subclass-specific IgG Fc N-glycosylation profiles and hypertension in the

- 490 Uygur, Kazak, Kirgiz, and Tajik populations. *J Hum Hypertens* 2018;32:555–63.
491 <https://doi.org/10.1038/s41371-018-0071-0>.
- 492 [17] Wang Y, Klarić L, Yu X, Thaqi K, Dong J, Novokmet M, et al. The Association Between
493 Glycosylation of Immunoglobulin G and Hypertension: A Multiple Ethnic Cross-Sectional
494 Study. *Medicine* 2016;95:e3379. <https://doi.org/10.1097/MD.0000000000003379>.
- 495 [18] Nikolac Perkovic M, Pucic Bakovic M, Kristic J, Novokmet M, Huffman JE, Vitart V, et al.
496 The association between galactosylation of immunoglobulin G and body mass index.
497 *Progress in Neuro-Psychopharmacology and Biological Psychiatry* 2014;48:20–5.
498 <https://doi.org/10.1016/j.pnpbp.2013.08.014>.
- 499 [19] Russell AC, Kepka A, Trbojević-Akmačić I, Ugrina I, Song M, Hui J, et al. Increased central
500 adiposity is associated with pro-inflammatory immunoglobulin G N-glycans.
501 *Immunobiology* 2019;224:110–5. <https://doi.org/10.1016/j.imbio.2018.10.002>.
- 502 [20] Sundgren NC, Vongpatanasin W, Boggan BMD, Tanigaki K, Yuhanna IS, Chambliss KL, et
503 al. IgG receptor Fc γ RIIB plays a key role in obesity-induced hypertension. *Hypertension*
504 2015;65:456–62. <https://doi.org/10.1161/HYPERTENSIONAHA.114.04670>.
- 505 [21] Tanigaki K, Sacharidou A, Peng J, Chambliss KL, Yuhanna IS, Ghosh D, et al.
506 Hyposialylated IgG activates endothelial IgG receptor Fc γ RIIB to promote obesity-
507 induced insulin resistance. *J Clin Invest* 2018;128:309–22.
508 <https://doi.org/10.1172/JCI89333>.
- 509 [22] Peng J, Vongpatanasin W, Sacharidou A, Kifer D, Yuhanna IS, Banerjee S, et al.
510 Supplementation with the Sialic Acid Precursor N-acetyl-D-Mannosamine Breaks the
511 Link Between Obesity and Hypertension. *Circulation* 2019.
512 <https://doi.org/10.1161/circulationaha.119.043490>.
- 513 [23] Tijardović M, Marijančević D, Bok D, Kifer D, Lauc G, Gornik O, et al. Intense Physical
514 Exercise Induces an Anti-inflammatory Change in IgG N-Glycosylation Profile. *Frontiers
515 in Physiology* 2019;10:1–10. <https://doi.org/10.3389/fphys.2019.01522>.
- 516 [24] Nguyen NT, Kim E, Vu S, Phelan M. Ten-year Outcomes of a Prospective Randomized
517 Trial of Laparoscopic Gastric Bypass Versus Laparoscopic Gastric Banding. *Ann Surg*
518 2018;268:106–13. <https://doi.org/10.1097/SLA.0000000000002348>.
- 519 [25] O'Brien P. Bariatric surgery and type 2 diabetes: a step closer to defining an optimal
520 approach. *The Lancet Diabetes & Endocrinology* 2019;7:889–91.
521 [https://doi.org/10.1016/S2213-8587\(19\)30352-3](https://doi.org/10.1016/S2213-8587(19)30352-3).
- 522 [26] Verdi S, Abbasian G, Bowyer RCE, Lachance G, Yarand D, Christofidou P, et al. TwinsUK:
523 The UK Adult Twin Registry Update. *Twin Res Hum Genet* 2019;22:523–9.
524 <https://doi.org/10.1017/thg.2019.65>.
- 525 [27] Pavić T, Dilber D, Kifer D, Selak N, Keser T, Ljubičić Đ, et al. N-glycosylation patterns of
526 plasma proteins and immunoglobulin G in chronic obstructive pulmonary disease. *J
527 Transl Med* 2018;16. <https://doi.org/10.1186/s12967-018-1695-0>.
- 528 [28] Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing
529 batch effects and other unwanted variation in high-throughput experiments.
530 *Bioinformatics* 2012;28:882–3. <https://doi.org/10.1093/bioinformatics/bts034>.
- 531 [29] R Core Team (2020). R: A language and environment for statistical computing. R
532 Foundation for Statistical Computing, Vienna, Austria. URL <https://www.R-project.org/>. n.d.
- 533
- 534 [30] Clerc F, Reiding KR, Jansen BC, Kammeijer GSM, Bondt A, Wuhrer M. Human plasma
535 protein N-glycosylation. *Glycoconj J* 2016;33:309–43. <https://doi.org/10.1007/s10719-015-9626-2>.

- 537 [31] Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using
538 lme4. *Journal of Statistical Software* 2015;67:1–48.
539 <https://doi.org/10.18637/jss.v067.i01>.
- 540 [32] Ruhaak LR, Uh H-W, Beekman M, Koeleman CAM, Hokke CH, Westendorp RGJ, et al.
541 Decreased Levels of Bisecting GlcNAc Glycoforms of IgG Are Associated with Human
542 Longevity. *PLOS ONE* 2010;5:e12566. <https://doi.org/10.1371/journal.pone.0012566>.
- 543 [33] Pučić M, Knežević A, Vidič J, Adamczyk B, Novokmet M, Polašek O, et al. High
544 Throughput Isolation and Glycosylation Analysis of IgG—Variability and Heritability of
545 the IgG Glycome in Three Isolated Human Populations. *Mol Cell Proteomics* 2011;10.
546 <https://doi.org/10.1074/mcp.M111.010090>.
- 547 [34] Lemmers RFH, Vilaj M, Urda D, Agakov F, Šimurina M, Klaric L, et al. IgG glycan patterns
548 are associated with type 2 diabetes in independent European populations. *Biochim
549 Biophys Acta Gen Subj* 2017;1861:2240–9.
550 <https://doi.org/10.1016/j.bbagen.2017.06.020>.
- 551 [35] Iida S, Kuni-Kamochi R, Mori K, Misaka H, Inoue M, Okazaki A, et al. Two mechanisms of
552 the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-
553 fucosylated therapeutic antibodies in human blood. *BMC Cancer* 2009;9:58.
554 <https://doi.org/10.1186/1471-2407-9-58>.
- 555 [36] Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-Inflammatory Activity of Immunoglobulin G
556 Resulting from Fc Sialylation. *Science* 2006;313:670–3.
557 <https://doi.org/10.1126/science.1129594>.
- 558 [37] Sarin HV, Gudelj I, Honkanen J, Ihalainen JK, Vuorela A, Lee JH, et al. Molecular
559 Pathways Mediating Immunosuppression in Response to Prolonged Intensive Physical
560 Training, Low-Energy Availability, and Intensive Weight Loss. *Front Immunol*
561 2019;10:907. <https://doi.org/10.3389/fimmu.2019.00907>.
- 562
- 563
- 564
- 565
- 566
- 567
- 568
- 569
- 570
- 571
- 572

573 **TABLES**

574 **Table 1 Demographic characteristics of the bariatric cohort**

<i>Characteristics</i>	<i>Bariatric cohort</i>				
Total No. of participants (N)	37				
No. of participants Sleeve Gastrectomy (SG), N (%)	25 (68%)				
No. Roux-en-Y Gastric Bypass RYGB N (%)	12 (32%)				
No. of participants each timepoint (N)	Pre-op low-calorie diet		Time of surgery	1 st post-op timepoint	2 nd post-op timepoint
	8		37	30	24
BMI* each timepoint, mean \pm SD, kg/m ²	Before diet	End of diet	Time of surgery	1 st post-op timepoint	2 nd post-op timepoint
	48.53 \pm 4.13	46.60 \pm 4.21	46.21 \pm 4.75	36.01 \pm 5.07	32.82 \pm 5.17
Female, sex, N (%)	33 (89%)				
Type 2 diabetes, N (%)	6 (16%)				

575

576 *BMI reference values: <18.5 (underweight), 18.5–24.9 (normal weight), 25–29.9

577 (overweight), >30 (obese).

578

579

580 **Table 2 Demographic characteristics of the TwinsUK cohort**

<i>Characteristics</i>	<i>TwinsUK cohort (BMI subset)</i>
No. of participants (N)	1,680
No. of glycan measurements (N)	3,742
Baseline age, mean \pm SD, years	53.23 \pm 10.86
Follow up time, mean \pm SD, years	7.90 \pm 5.66
Female sex, N (%)	1,680 (100)
Baseline BMI, mean \pm SD, kg/m ²	25.45 \pm 4.53

581

582

583 **Table 3 Impact of pre-surgical low-calorie diet on IgG glycosylation.** Longitudinal analysis

584 was performed by implementing a linear mixed effects model, with time as a fixed effect and
585 the individual sample measurement as a random effect. False discovery rate was controlled
586 using Benjamini-Hochberg method at the specified level of 0.05.

<i>Derived IgG glycan trait</i>	<i>Time_effect</i>	<i>Time_SE</i>	<i>Time_p-value</i>	<i>Adjusted p-value</i>
bisecting GlcNAc (B)	-0.2801	0.0743	0.0043	0.0341
agalactosylation (G0)	-0.0493	0.1876	0.7930	0.7930
monogalactosylation (G1)	0.1122	0.1869	0.5526	0.7930
digalactosylation (G2)	-0.0539	0.1387	0.6991	0.7930
total sialylation (S)	0.0941	0.2090	0.6544	0.7930
monosialylation (S1)	0.1354	0.1878	0.4779	0.7930
disialylation (S2)	-0.0869	0.2474	0.7266	0.7930
core fucosylation (CF)	0.0810	0.2416	0.7385	0.7930

587 Red – significant decrease; blue – non-significant change. GlcNAc – N-acetylglucosamine; SE –

588 standard error

589

590 **Table 4 Bariatric surgery induces significant changes in IgG N-glycome.** Longitudinal analysis

591 was performed by implementing a linear mixed effects model, with time as a fixed effect and

592 the individual sample measurement as a random effect. False discovery rate was controlled

593 using Benjamini-Hochberg method at the specified level of 0.05.

<i>Derived IgG glycan trait</i>	<i>Time_effect</i>	<i>Time_SE</i>	<i>Time_p-value</i>	<i>Adjusted p-value</i>
agalactosylation (G0)	-0.0339	0.0078	9.23x10 ⁻⁰⁵	7.38x10 ⁻⁰⁴
digalactosylation (G2)	0.0275	0.0072	3.75x10 ⁻⁰⁴	1.50x10 ⁻⁰³
monosialylation (S1)	0.0193	0.0080	1.97x10 ⁻⁰²	3.94x10 ⁻⁰²
core fucosylation (CF)	-0.0155	0.0064	1.74x10 ⁻⁰²	3.94x10 ⁻⁰²
total sialylation (S)	0.0171	0.0083	4.70x10 ⁻⁰²	6.27x10 ⁻⁰²
bisecting GlcNAc (B)	0.0173	0.0083	4.01x10 ⁻⁰²	6.27x10 ⁻⁰²
monogalactosylation (G1)	0.0206	0.0107	8.18x10 ⁻⁰²	9.35x10 ⁻⁰²
disialylation (S2)	0.0048	0.0080	5.48x10 ⁻⁰¹	5.48x10 ⁻⁰¹

594 Red – significant decrease; green – significant increase; blue – non-significant change.

595 GlcNAc – N-acetylglucosamine; SE – standard error

596

597

598

599

600

601

602

603

604 **Table 5 Longitudinally monitored weight loss results with significant changes of IgG N-**

605 **glycosylation.** Longitudinal analysis was performed by implementing a mixed model, fitted
606 to estimate the effect of BMI change on IgG N-glycome. False discovery rate was controlled
607 using Benjamini-Hochberg method at the specified level of 0.05.

<i>Derived IgG glycan trait</i>	<i>BMI difference effect (glycan abundance (%) change per 1 kgm⁻² decrease in BMI)</i>	<i>BMI difference SE (glycan abundance (%) change per 1 kgm⁻² decrease in BMI)</i>	<i>p-value</i>	<i>Adjusted p-value</i>
digalactosylation (G2)	0.2004	0.0403	6.88x10 ⁻⁰⁷	5.85 x10 ⁻⁰⁶
high mannose (HM)	-0.0519	0.0119	1.33x10 ⁻⁰⁵	5.66 x10 ⁻⁰⁵
agalactosylation (G0)	-0.1048	0.0397	8.43x10 ⁻⁰³	1.79 x10 ⁻⁰²
bisecting GlcNAc (B)	0.0526	0.0262	4.49x10 ⁻⁰²	6.94x10 ⁻⁰²
monogalactosylation (G1)	-0.0573	0.0343	9.53x10 ⁻⁰²	1.25x10 ⁻⁰¹
core fucosylation (CF)	-0.0059	0.0285	8.36x10 ⁻⁰¹	8.89x10 ⁻⁰¹

608 Red – significant decrease; green – significant increase; blue – non-significant change.

609 GlcNAc – N-acetylglucosamine; SE – standard error

610