

Characterization of neutralizing versus binding antibodies and memory B cells in COVID-19 recovered individuals from India

3 Kaustuv Nayak^{a#}, Kamalvishnu Gottimukkala^{a#}, Sanjeev Kumar^{a#}, Elluri Seetharami Reddy^{a,b#},
4 Venkata Viswanadh Edara^{c,d,e}, Robert Kauffman^{c,d} Katharine Floyd^{c,d,e}, Grace Mantus^{c,d}, Deepali
5 Savargaonkar^f, Pawan Kumar Goel^g, Satyam Arora^h, Manju Rahiⁱ, Carl W Davis^{c,j}, Susanne Linderman^{c,d},
6 Jens Wrammert^{c,d}, Mehul S Suthar^{c,d,e}, Rafi Ahmed^{c,j} Amit Sharma^{f,k}, Kaja Murali-Krishna^{a,c,d§}, Anmol
7 Chandele^{a§}

⁹ a ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology,
¹⁰ Aruna Asaf Ali Marg, New Delhi, India.

^b Kasuma School of Biological Sciences, Indian Institute of Technology, New Delhi, India

12 ^c Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA.

¹³ Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA
¹⁴ 30322, USA.

15 ^e Yerkes National Primate Research Center, Atlanta, GA 30329, USA.

¹⁶ fICMR-National Institute of Malaria Research, Dwarka, New Delhi, India.

^g Shaheed Hasan Khan Mewat Government Medical College, Nalhar, Mewat, Haryana, India

^h Department of Transfusion Medicine, Super Speciality Pediatric Hospital and Post Graduate Teaching Institute, Noida, UP, India.

ⁱ Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India.

22 ^j Dept of Microbiology and Immunology, Emory University School of Medicine, Emory University,
23 Atlanta, GA 30322, USA.

²⁴ Structural Parasitology Group, International Centre for Genetic Engineering and Biotechnology,
²⁵ Aruna Asaf Ali Marg, New Delhi, India.

28 # Equal contributors / first authors
29 § Equal corresponding authors

30
31 **Keywords:**

32 SARS-CoV-2, COVID-19, Receptor Binding Domain, Neutralizing antibodies, Memory B cells, India.

31 **Keywords:**

32 SARS-CoV-2, COVID-19, Receptor Binding Domain, Neutralizing antibodies, Memory B cells, India.

34 Running title:

35 Humoral and B cell memory in COVID-19 recovered individuals from India

37 Address for correspondence

39 Kaja Murali-Krishna,

40 Dept of Pediatrics, 2015 Upper gate Drive, Emory University School of Medicine, Emory University,
41 Atlanta, GA 30322,USA.

42 Murali.kaja@emory.edu

44 Anmol Chandele,

45 ICGEB-Emory Vaccine Center, International Center for Genetic Engineering and Biotechnology,
46 Aruna Asaf Ali Marg, New Delhi, India.

47 chandeleanmol@gmail.com

48 **Abstract**

49

50 India is one of the countries most affected by the recent COVID-19 pandemic.
51 Characterization of humoral responses to SARS-CoV-2 infection, including immunoglobulin
52 isotype usage, neutralizing activity and memory B cell generation, is necessary to provide
53 critical insights on the formation of immune memory in Indian subjects. In this study, we
54 evaluated SARS-CoV-2 receptor-binding domain (RBD)-specific IgG, IgM, and IgA antibody
55 responses, neutralization of live virus, and RBD-specific memory B cell responses in pre-
56 pandemic healthy versus convalescent COVID-19 individuals from India. We observed
57 substantial heterogeneity in the formation of humoral and B cell memory post COVID-19
58 recovery. While a vast majority (38/42, 90.47%) of COVID-19 recovered individuals
59 developed SARS-CoV-2 RBD-specific IgG responses, only half of them had appreciable
60 neutralizing antibody titers. RBD-specific IgG titers correlated with these neutralizing
61 antibody titers as well as with RBD-specific memory B cell frequencies. In contrast, IgG titers
62 measured against SARS-CoV-2 whole virus preparation, which includes responses to
63 additional viral proteins besides RBD, did not show robust correlation. Our results suggest
64 that assessing RBD-specific IgG titers can serve as a surrogate assay to determine the
65 neutralizing antibody response. These observations have timely implications for identifying
66 potential plasma therapy donors based on RBD-specific IgG in resource-limited settings
67 where routine performance of neutralization assays remains a challenge.

68

69

70

71 **Importance**

72

73 Our study provides an understanding of SARS-CoV-2-specific neutralizing antibodies,
74 binding antibodies and memory B cells in COVID-19 convalescent subjects from India. Our
75 study highlights that PCR-confirmed convalescent COVID-19 individuals develop SARS-CoV-
76 2 RBD-specific IgG antibodies, which correlate strongly with their neutralizing antibody
77 titers. RBD-specific IgG titers, thus, can serve as a valuable surrogate measurement for
78 neutralizing antibody responses. These finding have timely significance for selection of
79 appropriate individuals as donors for plasma intervention strategies, as well as determining
80 vaccine efficacy.

81 **Introduction**

82

83 Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for
84 the coronavirus disease 2019 (COVID-19) pandemic, emerged as a grave public health threat
85 beginning in December 2019(1), paralyzing daily lives and causing economic downturns in
86 many parts of the world. Currently, India is one of the countries most affected with more
87 than 3 million COVID-19 confirmed cases and 60,000 associated deaths (2).

88

89 Intense efforts are underway to develop vaccines and antiviral therapeutics (3-11). These
90 efforts require a detailed understanding of immune correlates of protection, formation of
91 immune memory, and durability of these responses. Additionally, infusion of plasma derived
92 from COVID-19 recovered individuals is also being explored as a treatment strategy (12-20).
93 All these efforts require a detailed understanding of humoral immunity, immunoglobulin
94 isotype usage and neutralizing activity following recovery from SARS-CoV-2 infection.
95 Moreover, given that many of the SARS-CoV-2 neutralizing epitopes are located in the viral
96 receptor binding domain (RBD) of the Spike (S) protein (21-29), it is important to evaluate
97 the relationship between RBD-specific IgG titers and neutralizing antibody responses.

98

99 In this study, we evaluated IgG, IgA, IgM, neutralizing antibodies and memory B cell
100 responses in PCR-confirmed COVID-19 convalescent subjects. Our results show that while a
101 vast majority (38/42, 90.47%) of COVID-19 recovered individuals developed SARS-CoV-2
102 RBD-specific IgG responses, we were able to detect appreciable levels of neutralizing
103 antibody responses in only half of the convalescent subjects. Neutralizing responses

104 correlated closely with RBD-specific IgG titers, but weakly with IgG titers measured against
105 crude virus concentrate using a commercial ELISA kit. Taken together, these findings suggest
106 that despite significant inter-individual variation in the RBD-specific IgG titers and
107 neutralizing antibodies, RBD-specific IgG titers can serve as a valuable and robust surrogate
108 measurement for neutralizing antibody responses. These observations not only provide a
109 glimpse of humoral immune responses in COVID-19 recovered individuals from India, but
110 also have timely implications for identifying potential plasma therapy donors using on RBD-
111 specific IgG ELISA's in India where routine performance of neutralization assays remains a
112 challenge.

113 **Methods**

114

115 ***Subject recruitment***

116 COVID-19 recovered individuals were recruited at Shaheed Hasan Khan Mewati Government
117 Medical College, Nuh, Haryana, India, Super Specialty Pediatric Hospital and Post Graduate
118 Teaching Institute, Noida and ICMR-National Institute of Malaria Research, New Delhi. The
119 Institutional ethical boards approved the study. Informed consent was obtained prior to
120 inclusion in the study. All subjects (mean age 39.4 years, range 15 – 70 years) were SARS-
121 CoV-2 PCR positive at the time of initial diagnosis, and were PCR negative when recruited for
122 this study at 3.6 – 12 weeks post initial diagnosis (**Table 1**). Samples collected from healthy
123 adult blood bank donors in the year 2018 are included as pre-pandemic controls.

124 ***SARS-CoV-2 specific PCR***

125 SARS-CoV-2 specific rRT-PCR was performed as per the Indian government guidelines for
126 COVID-19 diagnosis. Nasopharyngeal and throat swabs were collected in viral transport
127 medium (VTM) (HiMedia, #AL 167)) and transported to the testing laboratory maintaining
128 cold chain. All the samples were subjected to the first line screening assay or the 'e' gene
129 assay as per the guidelines (30). Samples reactive by the first line assay were subjected to
130 the RdRp gene assay (Invitrogen SuperScript™ III Platinum® One-Step Quantitative Kit (Cat.
131 No.11732088). Samples reactive for both the genes were labeled positive, while samples
132 reactive to 'e' gene only were considered indeterminate and were subjected to repeat
133 sampling. The same protocol was used to verify that the subjects were PCR negative at the
134 time of recruitment for this study.

135 **SARS-CoV-2 RBD-specific direct ELISA**

136 Recombinant SARS-CoV-2 RDB gene was cloned, expressed, purified and standard direct
137 ELISAs were performed as previously described (31). Briefly, purified RBD was coated on
138 MaxiSorp plates (Thermo Fisher, #439454) at a concentration of 1 ug/mL in 100 uL
139 phosphate-buffered saline (PBS) at 4^oC overnight. The plates were washed extensively with
140 PBS containing 0.05% Tween-20. Three-fold serially diluted plasma samples were added to
141 the plates and incubated at room temperature for 1hr. After incubation, the plates were
142 washed and the SARS-CoV-2 RBD specific IgG, IgM, IgA signals were detected by incubating
143 with horseradish peroxidase (HRP) conjugated - anti-human IgG (Jackson ImmunoResearch
144 Labs, #109-036-098), IgM (Jackson ImmunoResearch Labs, #109-036-129), or IgA (Jackson
145 ImmunoResearch Labs, #109-036-011). Plates were then washed thoroughly and developed
146 with o-phenylenediamine (OPD) substrate (Sigma, #P8787) in 0.05M phosphate-citrate
147 buffer (Sigma, #P4809) pH 5.0, containing with 0.012% hydrogen peroxide (Fisher Scientific,
148 #18755) just before use. Absorbance was measured at 490 nm.

149 ***Enumeration of SARS-CoV-2 RBD-specific memory B cells***

150 Purified RBD protein (100 ug) was labeled with Alexa Fluor 488 using microscale protein
151 labeling kit (Life Technologies, #A30006) as per manufacturer's protocol. PBMC's were
152 stained with RBD-Alexa Fluor 488 for 1 hour at 4^oC, followed by washing with PBS containing
153 0.25% FBS, and incubation with efluor780 Fixable Viability (Live Dead) dye (Life
154 Technologies, #65-0865-14) and anti-human CD3, CD19, CD27, CD38 and IgD antibodies (BD
155 Biosciences) for 30 minutes. Cells were washed twice with FACS buffer and acquired on BD
156 LSR Fortessa X20. Data was analyzed using FlowJo software 10. SARS-CoV-2 RBD-specific

157 memory B cells were identified in cells positive for CD19, CD20, CD27 that were negative for
158 IgD and CD3.

159

160 ***IgG ELISA for SARS-CoV-2 whole virus preparation***

161 SARS-CoV-2 antigen specific IgG was detected using a commercially available assay (COVID-
162 Kavach ELISA tests kit, Zydus diagnostics), which measures responses to antigen
163 concentrated from gamma-irradiated SARS-CoV-2-infected tissue culture fluid as per the
164 manufacturer's instructions (32, 33).

165 ***SARS-CoV-2 neutralization assay***

166 Neutralization titers to SARS-CoV-2 were determined as previously described (31). Briefly
167 infectious clone of the full-length mNeonGreen SARS-CoV-2 (2019-nCoV/USA_WA1/2020)
168 was used to test heat-inactivated COVID-19 convalescent samples and healthy donor
169 samples (pre-pandemic). Heat-inactivated serum was serially diluted three-fold in duplicate
170 starting at a 1:20 dilution in a 96-well round-bottom plate and incubated between 750 FFU
171 of ic-SARS-CoV-2-mNG for 1 h at 37°C. This antibody-virus mixture was transferred into the
172 wells of a 96-well plate that had been seeded with Vero-E6 cells the previous day at a
173 concentration of 2.5×10^4 cells/well. After 1 hour, the antibody-virus inoculum was removed
174 and 0.85% methylcellulose in 2% FBS containing DMEM was overlaid onto the cell
175 monolayer. Cells were incubated at 37°C for 24 hours. Cells were washed three times with
176 1XPBS (Corning Cellgro) and fixed with 125 µl of 2% paraformaldehyde in PBS (Electron
177 Microscopy Sciences) for 30 minutes. Following fixation, plates were washed twice with 1x
178 PBS and imaged on an ELISPOT reader (CTL Analyzer). Foci were counted using Viridot (34)

179 (counted first under the “green light” setting followed by background subtraction under the
180 “red light” setting). FRNT-mNG₅₀ titers were calculated by non-linear regression analysis
181 using the 4PL sigmoidal dose curve equation on Prism 8 (Graphpad Software).
182 Neutralization titers were calculated as 100% x [1- (average foci in duplicate wells incubated
183 with the specimen) ÷ (average number of foci in the duplicate wells incubated at the highest
184 dilution of the respective specimen)].

185 ***Statistical analysis***

186 Statistical analysis was performed using GraphPad prism 8.0 software. Non-parametric t test
187 (Mann-Whitney) was used to calculate the differences between groups. Non-parametric
188 Spearman’s correlation coefficient (r) was used to calculate correlation between groups.
189 A *p* value of ≤ 0.05 was considered as significant.

190

191 **Results**

192

193 ***SARS-CoV-2 RBD-specific humoral immunity in COVID-19 recovered individuals.***

194 The demographic profile of COVID-19 recovered individuals recruited for this study is shown
195 in **Table 1**. All subjects were at least 3.6 weeks past their initial SARS-CoV-2 positive
196 diagnosis. RBD-specific ELISA curves for IgG, IgA and IgM at different dilutions of plasma in
197 pre-pandemic healthy versus COVID-19 recovered individuals are shown in **Figure 1**. RBD-
198 specific responses were highly elevated in COVID-19 recovered individuals as compared to
199 pre-pandemic healthy controls (**Figure 1A,B,C, left versus middle panels**). Titers of IgG,
200 IgA and IgM in the COVID-19 recovered individuals showed substantial inter-individual
201 variation (**Figure 1 A, B, C, right panel**) - with IgG endpoint titers ranging from below
202 detection to 24484 (2000 \pm 619); IgA titers from below detection to 5686 (386 \pm 136) and IgM
203 titers from below detection to 2958 (515 \pm 90). Four individuals had undetectable RBD-
204 specific IgG and IgA titers. One of these individuals was also below detection for IgM (**Table**
205 **2**). Inter-individual heterogeneity was not related to the age of the individuals (**Figure 2A**)
206 or the number of days that elapsed between PCR confirmation of infection and sample
207 collection (**Figure 2B**).

208

209 ***SARS-CoV-2 specific neutralizing titers in COVID-19 recovered individuals.***

210 To assess plasma neutralizing titers from COVID-19 convalescent individuals, we performed
211 a live virus neutralization assay using a focus-reduction neutralization mNeonGreen (FRNT-
212 mNG) assay (31). The neutralizing activity at different dilutions of plasma for pre-pandemic

213 healthy individuals (**Figure 3A**) and COVID-19 recovered individuals is shown in (**Figure**
214 **3B**). **Figure 3C** shows FRNT-mNG₅₀ titers calculated based on the plasma dilution that
215 neutralized 50% of the virus. While all pre-pandemic healthy individuals had undetectable
216 FRNT-mNG₅₀ titers, only half of the COVID-19 recovered individuals showed 50% or more
217 neutralization even at a 1:20 dilution of plasma. Similar to RBD-specific IgG titers, the FRNT-
218 mNG₅₀ titers were heterogeneous with the latter reaching titers as high as 682 (**Figure 3C**).
219

220 Previous studies in other viral infections have shown that all three antibody isotypes (IgG,
221 IgA and IgM) can potentially neutralize (35-39). We next determined if any correlation exists
222 between SARS-CoV-2 neutralizing titers and RBD-specific IgG, IgA, IgM binding antibody
223 titers. We observed a positive correlation ($r=0.83$; $p<0.001$) between SARS-CoV-2
224 neutralizing titers and RBD-specific IgG titers (**Figure 4, left graph**) but not with IgA
225 (**Figure 4, middle graph**) or IgM titers (**Figure 4, right graph**).
226

227 Plasma infusion therapy has recently been started in India as an intervention therapy for
228 COVID-19. For this, plasma donors are being typically identified by the presence of IgG to
229 SARS-CoV-2 by commercial ELISA tests (40). One of these tests detects IgG towards viral
230 antigens concentrated from gamma-irradiated SARS-CoV-2-infected tissue culture fluid (32,
231 33). It was therefore of interest to examine the correlation between neutralization titers and
232 IgG responses measured using this test. We observed that, of the 42 COVID-19 recovered
233 individuals tested, 33 were IgG positive whereas 9 were below the assay cut off (**Figure 5A**).
234 Of the 9 individuals that were below cut off, 4 also tested negative by the RBD-specific IgG
235 ELISA (**Table 2**). All of the samples from the pre-pandemic healthy individuals were below

236 the limit of detection using both the ELISA methods. Most importantly, the IgG values
237 obtained by whole virus-based ELISA did not show as robust a correlation ($r=0.56$) with
238 neutralizing antibody titers (**Figure 5B**) as compared to those observed with RBD-specific
239 IgG titers ($r=0.83$) (**Figure 4, left graph**).

240

241 ***Characterization of RBD-specific memory B cells in COVID-19 recovered individuals.***

242 While circulating neutralizing antibodies help prevent re-infection by viruses, memory B
243 cells allow for rapid production of new antibodies in case of re-infection. To address whether
244 the COVID-19 recovered individuals generated memory B cells, we enumerated RBD-specific
245 memory B cells using fluorescently-conjugated RBD antigen. An example of the flow
246 cytometric gating strategy and RBD staining among the gated memory B cells is shown in
247 **Figure 6A and 6B.** **Figure 6C** shows the frequency of RBD-specific memory B cells in a
248 subset of the individuals where sufficient PBMCs were available. Though we found that there
249 was substantial inter-individual variation in the frequency of SARS-CoV-2 RBD-specific
250 memory B cells, their frequencies modestly correlated with RBD-specific IgG titers.

251 **Discussion**

252

253 Our study provides a detailed understanding of humoral immunity and memory B cells in
254 COVID-19 recovered individuals from India. We examined SARS-CoV-2 neutralizing
255 antibodies, IgG, IgM, IgA and memory B cells in pre-pandemic healthy versus COVID-19
256 recovered individuals and further evaluated inter-individual variation and relation among
257 these.

258

259 Our correlative analysis of RBD-specific IgG binding titers with neutralizing antibody titers
260 and memory B cells has important implications for not only identifying potential donors for
261 plasma therapy but also for understanding humoral and cellular memory post COVID-19.
262 Though current plasma therapy guidelines in India do not consider neutralizing antibody
263 titers, United States Food and Drug Administration (FDA) guidelines recommend, when
264 available, a neutralizing titer of 1:160 or 1:80 to be used for identifying potential plasma
265 donors (41). Our correlation analysis shows that RBD-specific titers of more than 3668 can
266 provide a suitable surrogate for identifying the individuals with neutralizing titers of above
267 1:160 and RBD-specific IgG titers 1926 for neutralizing titers of 1:80. Though larger scale
268 studies are needed to establish robustness, these observations have timely implications to
269 identify potential plasma therapy donors.

270

271 Our study raises important questions on formation of protective immune memory after
272 recovering from COVID-19. We found that nearly half of the COVID-19 recovered individuals
273 did not induce 50% neutralizing titers even at 1:20 dilution of plasma. This raises the

274 question of whether these individuals with low neutralizing antibodies also differ in
275 formation of cellular immune memory. Our data show that individuals with low neutralizing
276 antibodies indeed had lower memory B cells. Given that T cells may also contribute to COVID-
277 19 protection, studies are needed to understand whether these individuals may also differ
278 in the generation of memory CD8 and CD4 T cells (42-44).

279

280 The reason why only half of the COVID-19 recovered individuals developed appreciable
281 levels of neutralizing antibody titers requires further investigation. This may be related to
282 inter-individual differences in human immune responses associated with the expected
283 heterogeneity in initial viral inoculum(45), initial viral loads (46-48), incubation period (49),
284 host genetic factors (50-52) and disease severity (53, 54). This is consistent with previous
285 studies that show relatively higher neutralizing antibodies in COVID-19 hospitalized patients
286 during the acute febrile phase, or in recovered individuals that were previously hospitalized
287 with severe COVID-19 disease (53, 54). It is noteworthy that the COVID-19 recovered
288 individuals from our study had mild to moderate symptoms during the initial diagnosis. In
289 light of these studies, our findings warrant future studies to seek an understanding of
290 whether the individuals that have generated low or no neutralizing antibodies, IgG titers or a
291 memory B cells past recovery will be protected if they were re-exposed to SARS-CoV-2 or a
292 related virus.

293 **Acknowledgements**

294 This research was supported in part by Indian Council of Medical Research VIR/COVID-
295 19/02/2020/ECD-1 (A.C, K.M). K.N, E.S.R. are supported through Dengue Translational Research
296 Consortia BIRAC/NBM-PMU/EST-TRC_ICGEB/2018 (A.C.); K.G. is supported through DBT grant
297 BT/PR30260/MED/15/194/2018 (A.C, K.M); S.K. is supported through DBT/Wellcome Trust India
298 Alliance Early Career Fellowship grant IA/E/18/1/504307. We are thankful to Mr. Satendra Singh
299 and Mr. Ajay Singh, ICGEB, New Delhi for technical support; Director, SSPH & PGTI, Noida and
300 Director, SHKM Government Medical College, Nuh, Haryana for facilitating the study. Vineet
301 Menachery and Pei-Yong Shi for providing the icSARS-CoV-2mNG for the neutralization assays.

302

303 **Author Contributions**

304 Experimental work, data acquisition and analysis of data by K.N, K.G, S.K, E.S.R, V.V.E., K.F,
305 R.K, S.L. C.D, J.W, M.S.S, and D.S. Clinical site coordination by D.S, P.K.G, S.A, A.S and M.R.
306 Conceptualization and implementation by A.S, R.A, K.M, A.C. Manuscript writing by A.C and
307 K.M. All authors contributed reviewing and editing the manuscript.

308

309 **Figure legends**

310

311 ***Figure 1: Evaluation of SARS-CoV-2 RBD specific IgG, IgA and IgM antibody responses.***

312 **(A)** RBD-specific IgG, **(B)**, RBD-specific IgA; **(C)**, RBD-specific IgM. Left, pre-pandemic
313 healthy (n=22), middle COVID-19 recovered (n=42); right, endpoint titers. ELISA cutoff
314 values are calculated using the average plus 3 standard deviations of the 22 healthy controls
315 at 1:100 dilution (shown as a dotted line). The unpaired analysis was done using non-

316 parametric Mann-Whitney-U test. $p \leq 0.05$ was considered significant. Assay cutoff value is
317 marked with dotted line.

318 **Figure 2. Correlation of age and day post initial diagnosis of COVID-19 recovered**
319 **individuals with SARS-CoV-2 IgG, IgM and IgA titers.**

320 **(A).** Age versus IgG (left, n=42), IgA (middle, n=42) or IgM (right, n=42) titers. **(B).** Time post
321 initial diagnosis versus IgG (left, n=42), IgA (middle, n=42) or IgM (right, n=42) titers.
322 Correlations were calculated by Spearman's correlation coefficient r . $p \leq 0.05$ is considered
323 significant. Note that none of the data sets above reached significant values of correlation.

324

325 **Figure 3. Evaluation of SARS-CoV-2 neutralizing antibodies in COVID-19 recovered**
326 **individuals.**

327 SARS-CoV-2 neutralizing activity at indicated dilutions of plasma is shown in pre-pandemic
328 healthy (n=22, in grey) **(A)** and in COVID-19 recovered individuals (n=42, in blue) **(B)**.
329 Dotted line represents the plasma dilution that leads to 50% neutralization. **(C)** Scatter plot
330 shows neutralization titers (FRNT-mNG₅₀) in pre-pandemic healthy (n=22) and COVID-19
331 recovered (n=42) individuals. The unpaired analysis was done using non-parametric Mann-
332 Whitney-U test. $p \leq 0.05$ was considered significant. Limit of detection is marked with a
333 dotted line.

334

335 **Figure 4. Correlation analysis of SARS-CoV-2-specific antibody responses versus**
336 **neutralization titers.**

337 Correlation analysis shows FRNT-mNG₅₀ titers (x-axis) versus RBD-specific IgG (Left), IgA
338 (middle) and IgM (right) titers on y-axis in COVID-19 recovered individuals (n=42, blue
339 dots). Correlation analysis was performed by log transformation of the endpoint ELISA titers
340 followed by linear regression analysis. Correlations were calculated by Spearman's
341 correlation coefficient r . $p \leq 0.05$ was considered significant. Dotted line on x-axis and y-axis
342 indicate limit of detection.

343

344 **Figure 5. Correlation analysis of SARS-CoV-2 whole virus specific IgG versus neutralizing**
345 **titers.**

346 **(A).** Scatter plots shows SARS-CoV-2 whole virus specific IgG measured using measured
347 using commercial kit (Zydus diagnosis, Covid Kavach) in pre-pandemic healthy (n=5) and
348 COVID-19 recovered (n=42). The unpaired analysis was done using non-parametric Mann-
349 Whitney-U test. $p \leq 0.05$ was considered significant. **(B).** Correlation analysis of SARS-CoV-2
350 whole virus antigen specific IgG ELISA kit values (y-axis) versus neutralizing titers (x-axis)
351 in COVID-19 recovered individuals (n=42). Correlations were calculated by Spearman's
352 correlation coefficient r . $p \leq 0.05$ was considered significant. Dotted line on x-axis indicate
353 limit of detection and on y-axis assay cut off.

354

355 **Figure 6. SARS-CoV-2 RBD-specific memory B cell analysis in COVID-19 recovered**
356 **individuals.**

357 **(A)** Gating strategy used to identify memory B cells. **(B)** SARS-CoV-2 RBD-specific memory
358 B cells on gated total memory B cells that were CD19 positive, CD20 high, IgD negative and
359 CD27 high is shown. **(C)** Frequency of RBD-specific memory B cells of the total memory B
360 cells in the COVID-19 recovered individuals (n= 13). **(D)** Correlation analysis shows
361 frequency of RBD-specific memory B cells (x-axis) and the RBD-specific IgG titers (y-axis) in
362 COVID-19 recovered individuals.

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377 **References:**

378

379 1. WHO. 2020. Timeline: WHO's COVID-19 response.

380 2. Ministry of Health and Family Welfare GoI. 2020. COVID-19 INDIA as on: 26 August

381 2020.

382 3. Al-Kassmy J, Pedersen J, Kobinger G. 2020. Vaccine Candidates against Coronavirus

383 Infections. Where Does COVID-19 Stand? *Viruses* 12.

384 4. Amanat F, Krammer F. 2020. SARS-CoV-2 Vaccines: Status Report. *Immunity* 52:583-

385 589.

386 5. Dagotto G, Yu J, Barouch DH. 2020. Approaches and Challenges in SARS-CoV-2 Vaccine

387 Development. *Cell Host Microbe* doi:10.1016/j.chom.2020.08.002.

388 6. Hashemian SM, Farhadi T, Velayati AA. 2020. A Review on Remdesivir: A Possible

389 Promising Agent for the Treatment of COVID-19. *Drug Des Devel Ther* 14:3215-3222.

390 7. Li Q, Kang C. 2020. Progress in Developing Inhibitors of SARS-CoV-2 3C-Like Protease.

391 *Microorganisms* 8.

392 8. Malik S, Gupta A, Zhong X, Rasmussen TP, Manautou JE, Bahal R. 2020. Emerging

393 Therapeutic Modalities against COVID-19. *Pharmaceuticals (Basel)* 13.

394 9. Nabil A, Uto K, Elshemy MM, Soliman R, Hassan AA, Ebara M, Shiha G. 2020. Current

395 coronavirus (SARS-CoV-2) epidemiological, diagnostic and therapeutic approaches:

396 An updated review until June 2020. *EXCLI J* 19:992-1016.

397 10. Parvathaneni V, Gupta V. 2020. Utilizing drug repurposing against COVID-19 - Efficacy,

398 limitations, and challenges. *Life Sci* doi:10.1016/j.lfs.2020.118275:118275.

399 11. Verma HK, Merchant N, Verma MK, Kuru CI, Singh AN, Ulucan F, Verma P,

400 Bhattacharya A, Bhaskar L. 2020. Current updates on the European and WHO

401 registered clinical trials of coronavirus disease 2019 (COVID-19). *Biomed J*

402 doi:10.1016/j.bj.2020.07.008.

403 12. Bloch EM. 2020. Convalescent plasma to treat COVID-19. *Blood* 136:654-655.

404 13. Dhanasekaran S, Vajravelu LK, Venkatesalu V. 2020. Risk-benefit analysis on the

405 clinical significance of convalescent plasma therapy in the management of COVID-19.

406 *Postgrad Med J* doi:10.1136/postgradmedj-2020-138056.

407 14. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, Peng C, Yuan M,

408 Huang J, Wang Z, Yu J, Gao X, Wang D, Yu X, Li L, Zhang J, Wu X, Li B, Xu Y, Chen W,

409 Peng Y, Hu Y, Lin L, Liu X, Huang S, Zhou Z, Zhang L, Wang Y, Zhang Z, Deng K, Xia Z,

410 Gong Q, Zhang W, Zheng X, Liu Y, Yang H, Zhou D, Yu D, Hou J, Shi Z, Chen S, Chen Z,

411 Zhang X, Yang X. 2020. Effectiveness of convalescent plasma therapy in severe COVID-

412 19 patients. *Proc Natl Acad Sci U S A* 117:9490-9496.

413 15. Focosi D, Anderson AO, Tang JW, Tuccori M. 2020. Convalescent Plasma Therapy for

414 COVID-19: State of the Art. *Clin Microbiol Rev* 33.

415 16. Rabelo-da-Ponte FD, Silvello D, Scherer JN, Ayala AR, Klamt F. 2020. Convalescent

416 Plasma Therapy on Patients with Severe or Life-Threatening COVID-19: A Metadata

417 Analysis. *J Infect Dis* doi:10.1093/infdis/jiaa509.

418 17. Salazar E, Christensen PA, Graviss EA, Nguyen DT, Castillo B, Chen J, Lopez BV, Eagar

419 TN, Yi X, Zhao P, Rogers J, Shehabeldin A, Joseph D, Leveque C, Olsen RJ, Bernard DW,

420 Gollihar J, Musser JM. 2020. Treatment of COVID-19 Patients with Convalescent

421 Plasma Reveals a Signal of Significantly Decreased Mortality. *Am J Pathol*
422 doi:10.1016/j.ajpath.2020.08.001.

423 18. Shen C, Wang Z, Zhao F, Yang Y, Li J, Yuan J, Wang F, Li D, Yang M, Xing L, Wei J, Xiao
424 H, Yang Y, Qu J, Qing L, Chen L, Xu Z, Peng L, Li Y, Zheng H, Chen F, Huang K, Jiang Y,
425 Liu D, Zhang Z, Liu Y, Liu L. 2020. Treatment of 5 Critically Ill Patients With COVID-19
426 With Convalescent Plasma. *JAMA* doi:10.1001/jama.2020.4783.

427 19. Ye M, Fu D, Ren Y, Wang F, Wang D, Zhang F, Xia X, Lv T. 2020. Treatment with
428 convalescent plasma for COVID-19 patients in Wuhan, China. *J Med Virol*
429 doi:10.1002/jmv.25882.

430 20. Zhang B, Liu S, Tan T, Huang W, Dong Y, Chen L, Chen Q, Zhang L, Zhong Q, Zhang X,
431 Zou Y, Zhang S. 2020. Treatment With Convalescent Plasma for Critically Ill Patients
432 With Severe Acute Respiratory Syndrome Coronavirus 2 Infection. *Chest* 158:e9-e13.

433 21. Barnes CO, West AP, Jr., Huey-Tubman KE, Hoffmann MAG, Sharaf NG, Hoffman PR,
434 Koranda N, Gristick HB, Gaebler C, Muecksch F, Lorenzi JCC, Finkin S, Hagglof T,
435 Hurley A, Millard KG, Weisblum Y, Schmidt F, Hatzioannou T, Bieniasz PD, Caskey M,
436 Robbiani DF, Nussenzweig MC, Bjorkman PJ. 2020. Structures of Human Antibodies
437 Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of
438 Antibodies. *Cell* 182:828-842 e16.

439 22. Cao WC, Liu W, Zhang PH, Zhang F, Richardus JH. 2007. Disappearance of antibodies
440 to SARS-associated coronavirus after recovery. *N Engl J Med* 357:1162-3.

441 23. Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L, Wang X. 2020.
442 Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2
443 receptor. *Nature* 581:215-220.

444 24. Liu L, Wang P, Nair MS, Yu J, Rapp M, Wang Q, Luo Y, Chan JF, Sahi V, Figueroa A, Guo
445 XV, Cerutti G, Bimela J, Gorman J, Zhou T, Chen Z, Yuen KY, Kwong PD, Sodroski JG, Yin
446 MT, Sheng Z, Huang Y, Shapiro L, Ho DD. 2020. Potent neutralizing antibodies against
447 multiple epitopes on SARS-CoV-2 spike. *Nature* 584:450-456.

448 25. Mittal A, Manjunath K, Ranjan RK, Kaushik S, Kumar S, Verma V. 2020. COVID-19
449 pandemic: Insights into structure, function, and hACE2 receptor recognition by SARS-
450 CoV-2. *PLoS Pathog* 16:e1008762.

451 26. Peterhoff D, Gluck V, Vogel M, Schuster P, Schutz A, Neubert P, Albert V, Frisch S,
452 Kiessling M, Pervan P, Werner M, Ritter N, Babl L, Deichner M, Hanses F, Lubnow M,
453 Muller T, Lunz D, Hitzenbichler F, Audebert F, Hahnel V, Offner R, Muller M, Schmid S,
454 Burkhardt R, Gluck T, Koller M, Niller HH, Graf B, Salzberger B, Wenzel JJ, Jantsch J,
455 Gessner A, Schmidt B, Wagner R. 2020. A highly specific and sensitive serological
456 assay detects SARS-CoV-2 antibody levels in COVID-19 patients that correlate with
457 neutralization. *Infection* doi:10.1007/s15010-020-01503-7.

458 27. Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, Wang Q,
459 Zhou H, Yan J, Qi J. 2020. Structural and Functional Basis of SARS-CoV-2 Entry by
460 Using Human ACE2. *Cell* 181:894-904 e9.

461 28. Zost SJ, Gilchuk P, Case JB, Binshtain E, Chen RE, Reidy JX, Trivette A, Nargi RS, Sutton
462 RE, Suryadevara N, Williamson LE, Chen EC, Jones T, Day S, Myers L, Hassan AO, Kafai
463 NM, Winkler ES, Fox JM, Steinhardt JJ, Ren K, Loo YM, Kallewaard NL, Martinez DR,
464 Schafer A, Gralinski LE, Baric RS, Thackray LB, Diamond MS, Carnahan RH, Crowe JE.
465 2020. Potently neutralizing human antibodies that block SARS-CoV-2 receptor
466 binding and protect animals. *bioRxiv* doi:10.1101/2020.05.22.111005.

467 29. Zost SJ, Gilchuk P, Chen RE, Case JB, Reidy JX, Trivette A, Nargi RS, Sutton RE,
468 Suryadevara N, Chen EC, Binshtein E, Shrihari S, Ostrowski M, Chu HY, Didier JE,
469 MacRenaris KW, Jones T, Day S, Myers L, Eun-Hyung Lee F, Nguyen DC, Sanz I,
470 Martinez DR, Rothlauf PW, Bloyet LM, Whelan SPJ, Baric RS, Thackray LB, Diamond
471 MS, Carnahan RH, Crowe JE, Jr. 2020. Rapid isolation and profiling of a diverse panel
472 of human monoclonal antibodies targeting the SARS-CoV-2 spike protein. *Nat Med*
473 doi:10.1038/s41591-020-0998-x.

474 30. ICMR-NIV. 2020. Standard Operating Procedure For Detection of 2019 novel
475 coronavirus (2019-nCoV) in suspected human cases by rRT-PCR : confirmation assay.

476 31. Suthar MS, Zimmerman M, Kauffman R, Mantus G, Linderman S, Vanderheiden A,
477 Nyhoff L, Davis C, Adekunle S, Affer M, Sherman M, Reynolds S, Verkerke H, Alter DN,
478 Guarner J, Bryksin J, Horwath M, Arthur C, Saakadze N, Smith GH, Edupuganti S,
479 Scherer EM, Hellmeister K, Cheng A, Morales JA, Neish AS, Stowell SR, Frank F, Ortlund
480 E, Anderson E, Menachery V, Roush N, Metha A, Stephens DS, Ahmed R, Roback J,
481 Wrammert J. 2020. Rapid generation of neutralizing antibody responses in COVID-19
482 patients. *medRxiv* doi:10.1101/2020.05.03.20084442.

483 32. Chaudhuri S TR, Kshetrapal P, Batra G, Shrivastava T, Desiraju KB, Kang G, Bhatnagar
484 S. 2020. Comparative Evaluation of SARS-CoV-2 IgG Assays in India. *medRxiv* preprint
485 doi:<https://doi.org/10.1101/2020.08.12.20173856>.

486 33. Sapkal G, Shete-Aich A, Jain R, Yadav PD, Sarkale P, Lakra R, Baradkar S, Deshpande
487 GR, Mali D, Tilekar BN, Majumdar T, Kaushal H, Gurav Y, Gupta N, Mohandas S,
488 Deshpande K, Kaduskar O, Salve M, Patil S, Gaikwad S, Sugunan AP, Ashok M, Giri S,
489 Shastri J, Abraham P, Gangakhedkar RR, Covid Support Team: Pawar S
490 PSSVNVMVMBJASPMRKRSRK. 2020. Development of indigenous IgG ELISA for the
491 detection of anti-SARS-CoV-2 IgG. *Indian J Med Res* 151:444-449.

492 34. Katzelnick LC, Coello Escoto A, McElvany BD, Chavez C, Salje H, Luo W, Rodriguez-
493 Barraquer I, Jarman R, Durbin AP, Diehl SA, Smith DJ, Whitehead SS, Cummings DAT.
494 2018. Viridot: An automated virus plaque (immunofocus) counter for the
495 measurement of serological neutralizing responses with application to dengue virus.
496 *PLoS Negl Trop Dis* 12:e0006862.

497 35. Chua CL, Sam IC, Chiam CW, Chan YF. 2017. The neutralizing role of IgM during early
498 Chikungunya virus infection. *PLoS One* 12:e0171989.

499 36. Ejemel M, Li Q, Hou S, Schiller ZA, Tree JA, Wallace A, Amcheslavsky A, Kurt Yilmaz N,
500 Buttigieg KR, Elmore MJ, Godwin K, Coombes N, Toomey JR, Schneider R, Ramchettty
501 AS, Close BJ, Chen DY, Conway HL, Saeed M, Ganesa C, Carroll MW, Cavacini LA,
502 Klempner MS, Schiffer CA, Wang Y. 2020. A cross-reactive human IgA monoclonal
503 antibody blocks SARS-CoV-2 spike-ACE2 interaction. *Nat Commun* 11:4198.

504 37. Lizeng Q, Nilsson C, Sourial S, Andersson S, Larsen O, Aaby P, Ehnlund M, BJORLING E.
505 2004. Potent neutralizing serum immunoglobulin A (IgA) in human
506 immunodeficiency virus type 2-exposed IgG-seronegative individuals. *J Virol*
507 78:7016-22.

508 38. Skountzou I, Satyabhama L, Stavropoulou A, Ashraf Z, Esser ES, Vassilieva E,
509 Koutsonanos D, Compans R, Jacob J. 2014. Influenza virus-specific neutralizing IgM
510 antibodies persist for a lifetime. *Clin Vaccine Immunol* 21:1481-9.

511 39. Sterlin D MA, Miyara M, Mohr A, Anna F, Claer L, Quentric P, Fadlallah J, Ghillani P,
512 Gunn C, Hockett R, Mudumba S, Guihot A, Luyt CE, Mayaux J, Beurton A, Fourati S,

513 Lacorte JM, Yssel H, Parizot C, Dorgham K, Charneau P, Amoura Z, Gorochov G. 2020.
514 IgA dominates the early neutralizing antibody response to SARS-CoV-2. medRxiv
515 doi:<https://doi.org/10.1101/2020.06.10.20126532>.

516 40. cdscov.gov.in. 2020. A Phase II, Open Label, Randomized Controlled Trial to Assess the
517 Safety and Efficacy of Convalescent Plasma to Limit COVID-19 Associated
518 Complications in Moderate Disease.

519 41. FDA. 2020. Recommendations for Investigational COVID-19 Convalescent Plasma.

520 42. Chen Z, John Wherry E. 2020. T cell responses in patients with COVID-19. Nat Rev
521 Immunol 20:529-536.

522 43. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA,
523 Sutherland A, Premkumar L, Jadi RS, Marrama D, de Silva AM, Frazier A, Carlin AF,
524 Greenbaum JA, Peters B, Krammer F, Smith DM, Crotty S, Sette A. 2020. Targets of T
525 Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and
526 Unexposed Individuals. Cell 181:1489-1501 e15.

527 44. Jesenak M, Brndiarova M, Urbancikova I, Rennerova Z, Vojtкова J, Bobcakova A, Ostro
528 R, Banovcin P. 2020. Immune Parameters and COVID-19 Infection - Associations With
529 Clinical Severity and Disease Prognosis. Front Cell Infect Microbiol 10:364.

530 45. Welten SPM, Redeker A, Toes REM, Arens R. 2016. Viral Persistence Induces Antibody
531 Inflation without Altering Antibody Avidity. J Virol 90:4402-4411.

532 46. Akondy RS, Johnson PL, Nakaya HI, Edupuganti S, Mulligan MJ, Lawson B, Miller JD,
533 Pulendran B, Antia R, Ahmed R. 2015. Initial viral load determines the magnitude of
534 the human CD8 T cell response to yellow fever vaccination. Proc Natl Acad Sci U S A
535 112:3050-5.

536 47. Arankalle VA, Lole KS, Arya RP, Tripathy AS, Ramdasi AY, Chadha MS, Sangle SA,
537 Kadam DB. 2010. Role of host immune response and viral load in the differential
538 outcome of pandemic H1N1 (2009) influenza virus infection in Indian patients. PLoS
539 One 5.

540 48. Reddy V, Mani RS, Desai A, Ravi V. 2014. Correlation of plasma viral loads and
541 presence of Chikungunya IgM antibodies with cytokine/chemokine levels during
542 acute Chikungunya virus infection. J Med Virol 86:1393-401.

543 49. Hermesh T, Moltedo B, Lopez CB, Moran TM. 2010. Buying time-the immune system
544 determinants of the incubation period to respiratory viruses. Viruses 2:2541-58.

545 50. Carter-Timofte ME, Jorgensen SE, Freytag MR, Thomsen MM, Brinck Andersen NS, Al-
546 Mousawi A, Hait AS, Mogensen TH. 2020. Deciphering the Role of Host Genetics in
547 Susceptibility to Severe COVID-19. Front Immunol 11:1606.

548 51. Hou Y, Zhao J, Martin W, Kallianpur A, Chung MK, Jehi L, Sharifi N, Erzurum S, Eng C,
549 Cheng F. 2020. New insights into genetic susceptibility of COVID-19: an ACE2 and
550 TMPRSS2 polymorphism analysis. BMC Med 18:216.

551 52. LoPresti M, Beck DB, Duggal P, Cummings DAT, Solomon BD. 2020. The Role of Host
552 Genetic Factors in Coronavirus Susceptibility: Review of Animal and Systematic
553 Review of Human Literature. Am J Hum Genet doi:10.1016/j.ajhg.2020.08.007.

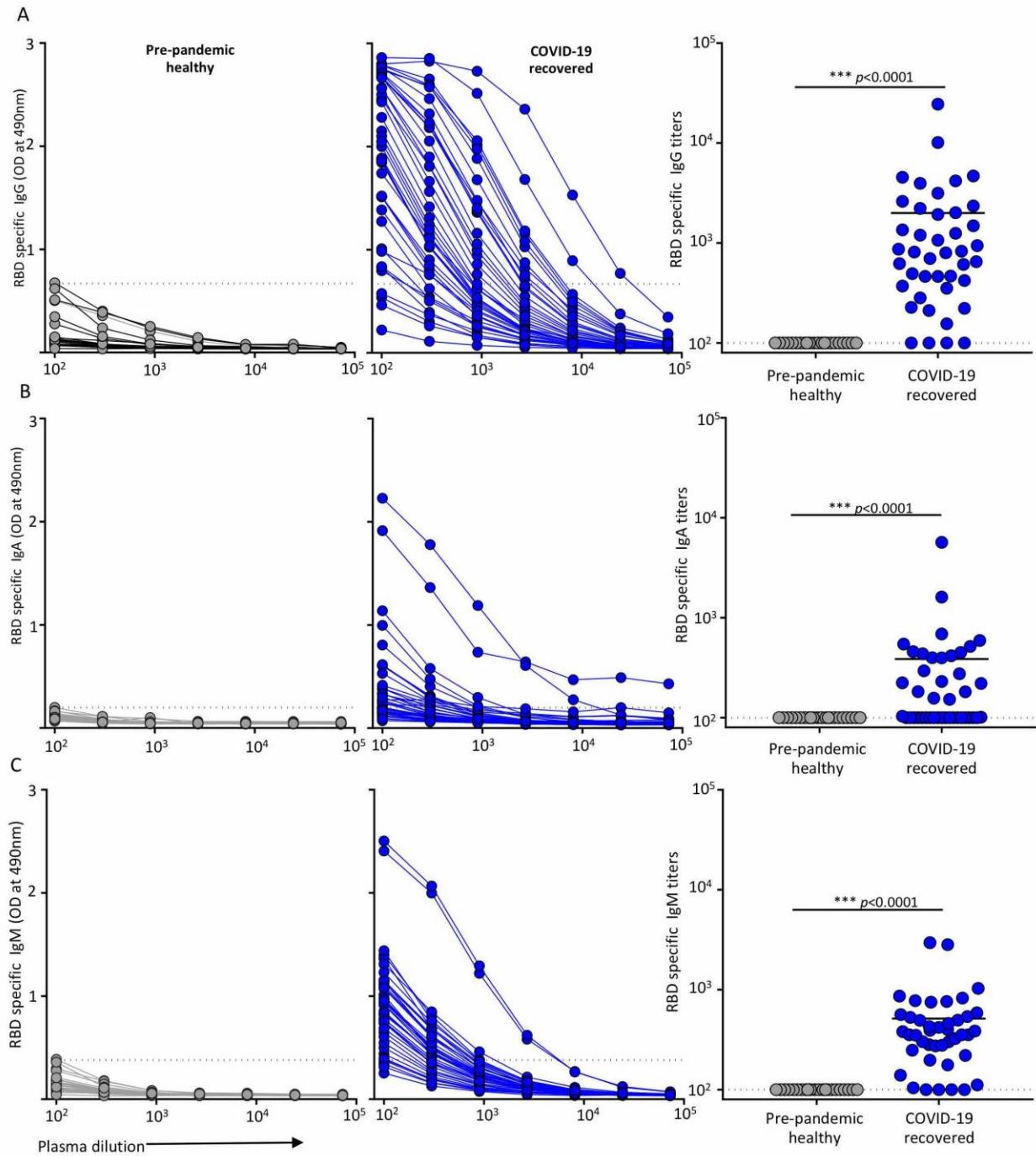
554 53. Kong WH, Zhao R, Zhou JB, Wang F, Kong DG, Sun JB, Ruan QF, Liu MQ. 2020. Serologic
555 Response to SARS-CoV-2 in COVID-19 Patients with Different Severity. Virol Sin
556 doi:10.1007/s12250-020-00270-x.

557 54. Liu ZL, Liu Y, Wan LG, Xiang TX, Le AP, Liu P, Peiris M, Poon LLM, Zhang W. 2020.
558 Antibody Profiles in Mild and Severe Cases of COVID-19. Clin Chem 66:1102-1104.

Table 1. COVID-19 recovered individuals characteristics (n=42)*

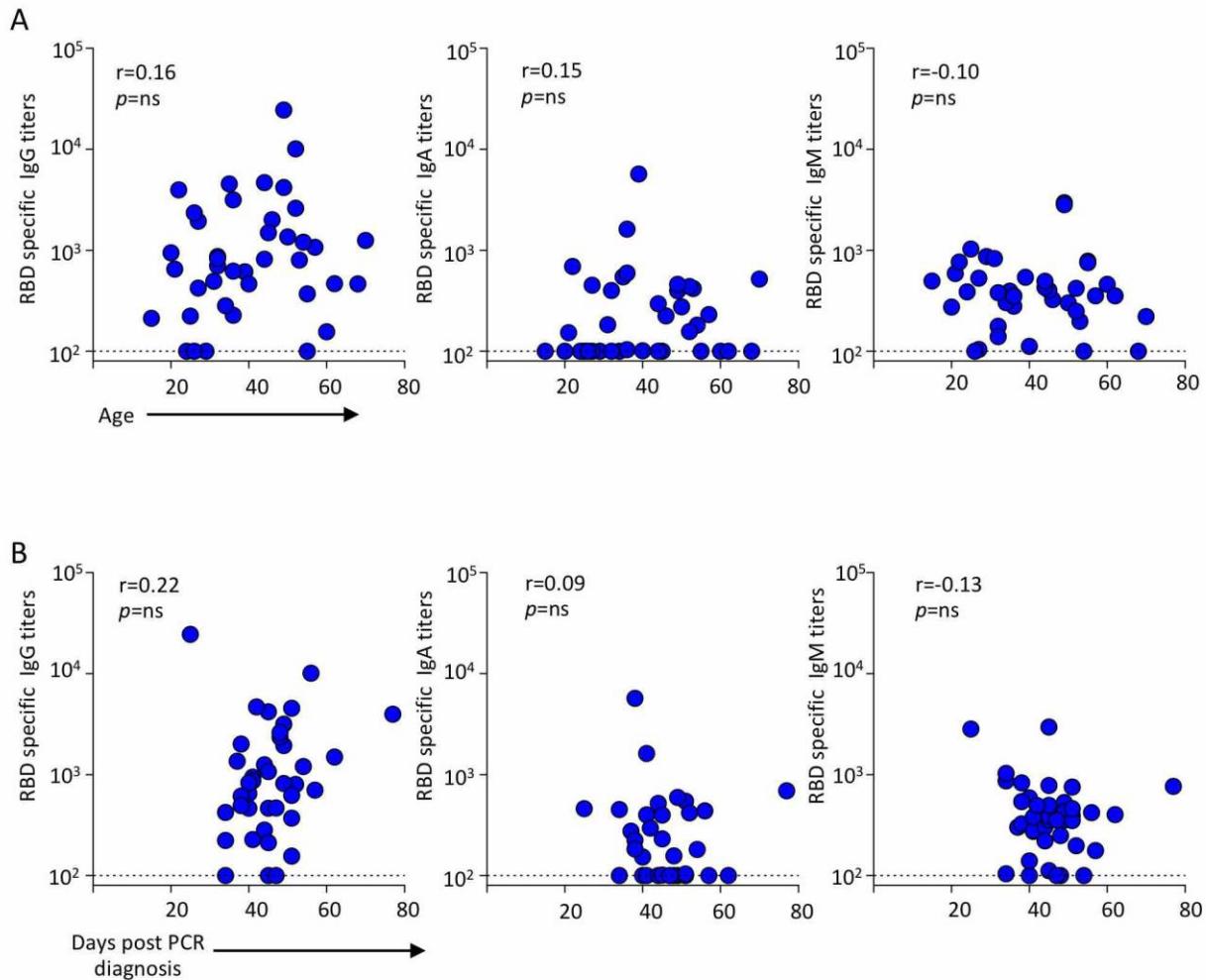
Age in years	Mean (Range)	39.4 (15-70)
Males/Females		38/4
Days post PCR diagnosis	Mean (Range)	47.3 (25-84)

*COVID-19 recovered individuals were recruited at Shaheed Hasan Khan Mewati Government Medical College, Nuh, Haryana, India. Super Speciality Paediatric Hospital and Post Graduate Teaching Institute, Noida and ICMR-National Institute of Malaria Research, New Delhi. All subjects were SARS-CoV-2 PCR positive at the time of initial diagnosis and were PCR negative when recruited for this study at 4.8 – 11 weeks post initial diagnosis.


Table 2. Individual characteristics of the COVID-19 recovered subjects

Subject number	Age	Gender (Male,M Female,F)	Days Post PCR Diagnosis	SARS CoV-2 RBD specific Immunoglobulin titers*			SARS Cov-2 whole Virus specific IgG ELISA values**	Neutralization titer (FRNT-mNG ₅₀)***
				IgG	IgM	IgA		
1	23	M	84	2220	565	220	26	39
2	22	F	84	354	283	<100	3	26
3	68	M	40	464	<100	<100	19	<20
4	35	M	51	4547	393	545	6	113
5	50	M	37	1354	301	275	7	81
6	29	M	34	<100	866	<100	<1.5	<20
7	27	M	34	422	104	450	<1.5	<20
8	25	M	34	222	1031	<100	26	<20
9	21	M	40	650	588	153	9	25
10	39	M	38	612	539	5686	12	23
11	46	M	38	2011	325	224	24	55
12	31	M	38	494	828	183	10	<20
13	20	M	41	944	274	<100	14	49
14	36	M	41	228	279	1614	<1.5	<20
15	34	M	44	282	302	<100	4	<20
16	70	M	44	1250	220	518	14	43
17	40	M	45	464	112	101	16	<20
18	32	M	41	867	381	399	<1.5	<20
19	57	M	45	1069	354	231	<1.5	<20
20	27	F	49	1935	528	<100	23	80
21	36	M	49	3156	355	593	28	166
22	24	M	45	<100	387	<100	<1.5	<20
23	55	F	45	<100	778	<100	<1.5	<20
24	15	M	45	212	496	<100	<1.5	<20
25	49	M	45	4183	2958	397	17	657
26	26	M	48	2352	<100	<100	16	48
27	54	F	54	1202	<100	182	15	49
28	53	M	52	799	197	417	12	<20
29	52	M	48	2611	249	157	23	46
30	45	M	62	1490	401	<100	15	50
31	52	M	56	10127	421	437	21	434
32	26	M	47	<100	<100	<100	<1.5	<20
33	32	M	57	701	177	<100	14	<20
34	44	M	49	815	428	<100	20	<20
35	32	M	40	829	140	<100	6	29
36	44	M	42	4685	494	295	26	167
37	22	M	77	3954	764	690	24	209
38	49	M	25	24484	2828	459	22	682
39	55	M	51	371	753	<100	17	<20
40	36	M	51	621	350	104	17	<20
41	60	M	51	156	459	<100	17	34
42	62	M	47	467	354	<100	6	<20

*ELISA end point titre limit of detection is 100.


**ELISA was performed with a commercial kit (Covid Kavach, Zydus) using 1:100 dilution of plasma as per by the manufacturer's recommendation. Assay cut off is 1.5.

***Neutralization titres: Neutralization assay were performed using 3 fold dilution of plasma, starting at 1:20 up to 1:43740. Limit of detection for FRNT-mNG₅₀ is 20.

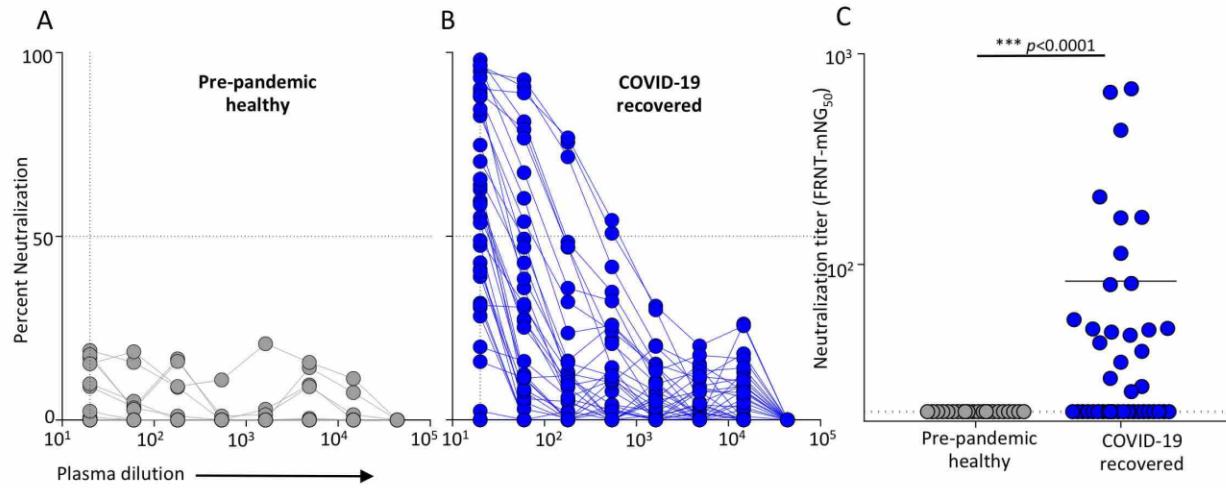

564
565
566
567
568
569
570
571

Figure 1

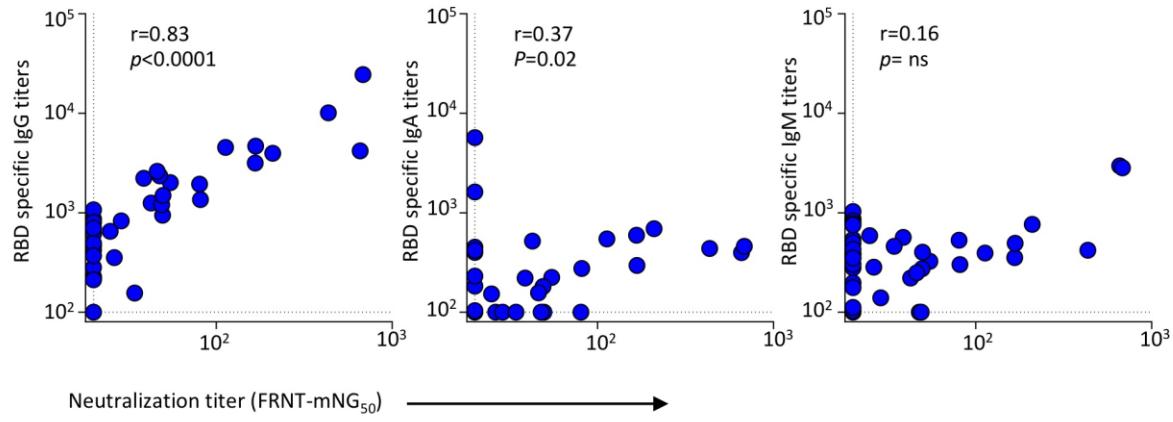
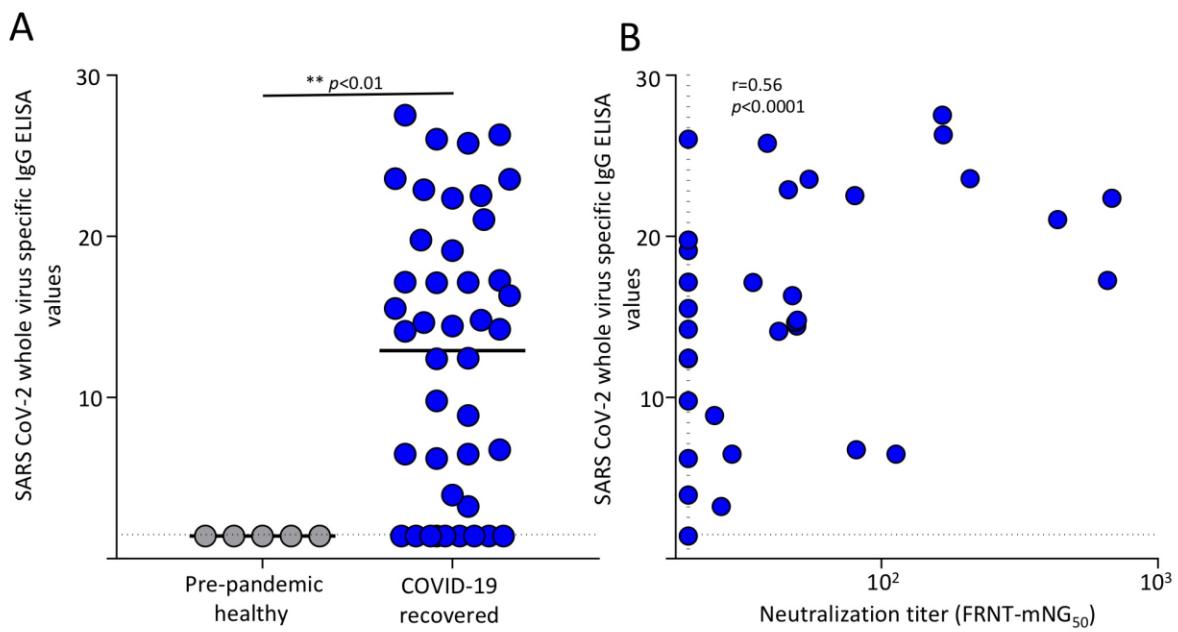

572
573
574
575
576
577
578

Figure 2

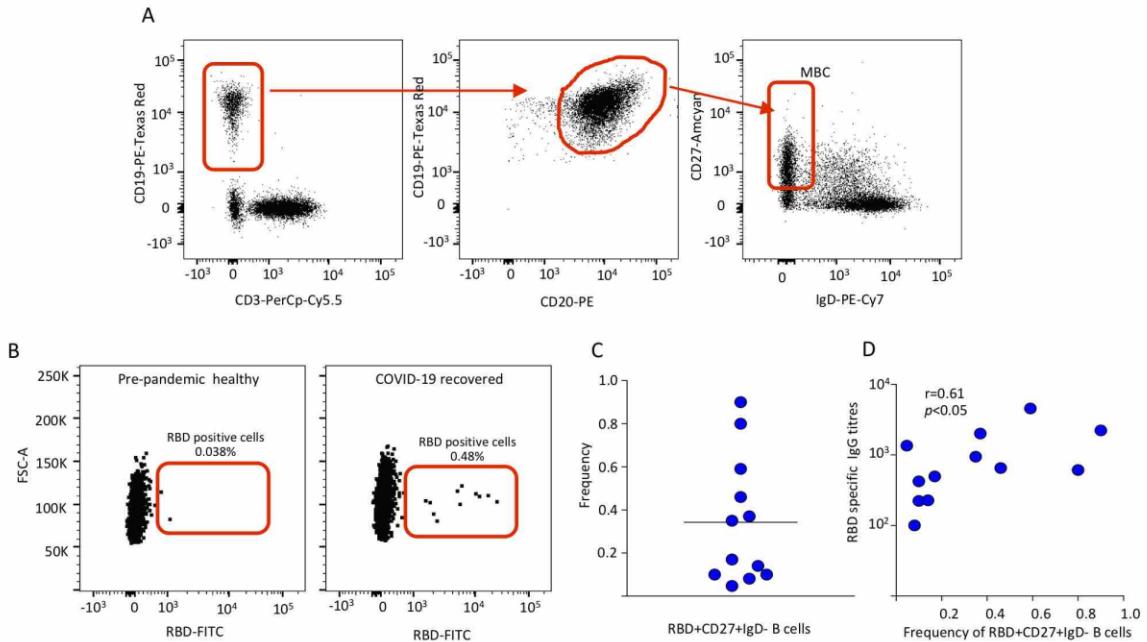
579
580
581
582
583
584
585
586
587
588
589
590


Figure 3

591
592
593
594
595
596
597
598
599
600
601
602
603

Figure 4

604


605

606

607

608

Figure 5

609
610
611
612
613
614
615
616

Figure 6