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 2 

Abstract  48 

 49 

India is one of the countries most affected by the recent COVID-19 pandemic. 50 

Characterization of humoral responses to SARS-CoV-2 infection, including immunoglobulin 51 

isotype usage, neutralizing activity and memory B cell generation, is necessary to provide 52 

critical insights on the formation of immune memory in Indian subjects. In this study, we 53 

evaluated SARS-CoV-2 receptor-binding domain (RBD)-specific IgG, IgM, and IgA antibody 54 

responses, neutralization of live virus, and RBD-specific memory B cell responses in pre-55 

pandemic healthy versus convalescent COVID-19 individuals from India. We observed 56 

substantial heterogeneity in the formation of humoral and B cell memory post COVID-19 57 

recovery. While a vast majority (38/42, 90.47%) of COVID-19 recovered individuals 58 

developed SARS-CoV-2 RBD-specific IgG responses, only half of them had appreciable 59 

neutralizing antibody titers. RBD-specific IgG titers correlated with these neutralizing 60 

antibody titers as well as with RBD-specific memory B cell frequencies. In contrast, IgG titers 61 

measured against SARS-CoV-2 whole virus preparation, which includes responses to 62 

additional viral proteins besides RBD, did not show robust correlation. Our results suggest 63 

that assessing RBD-specific IgG titers can serve as a surrogate assay to determine the 64 

neutralizing antibody response. These observations have timely implications for identifying 65 

potential plasma therapy donors based on RBD-specific IgG in resource-limited settings 66 

where routine performance of neutralization assays remains a challenge. 67 

 68 

 69 

 70 
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 3 

Importance  71 

 72 

Our study provides an understanding of SARS-CoV-2-specific neutralizing antibodies, 73 

binding antibodies and memory B cells in COVID-19 convalescent subjects from India. Our 74 

study highlights that PCR-confirmed convalescent COVID-19 individuals develop SARS-CoV-75 

2 RBD-specific IgG antibodies, which correlate strongly with their neutralizing antibody 76 

titers. RBD-specific IgG titers, thus, can serve as a valuable surrogate measurement for 77 

neutralizing antibody responses.  These finding have timely significance for selection of 78 

appropriate individuals as donors for plasma intervention strategies, as well as determining 79 

vaccine efficacy.   80 
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 4 

Introduction 81 

 82 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for 83 

the coronavirus disease 2019 (COVID-19) pandemic, emerged as a grave public health threat 84 

beginning in December 2019(1), paralyzing daily lives and causing economic downturns in 85 

many parts of the world. Currently, India is one of the countries most affected with more 86 

than 3 million COVID-19 confirmed cases and 60,000 associated deaths (2).  87 

 88 

Intense efforts are underway to develop vaccines and antiviral therapeutics (3-11). These 89 

efforts require a detailed understanding of immune correlates of protection, formation of 90 

immune memory, and durability of these responses. Additionally, infusion of plasma derived 91 

from COVID-19 recovered individuals is also being explored as a treatment strategy (12-20).  92 

All these efforts require a detailed understanding of humoral immunity, immunoglobulin 93 

isotype usage and neutralizing activity following recovery from SARS-CoV-2 infection. 94 

Moreover, given that many of the SARS-CoV-2 neutralizing epitopes are located in the viral 95 

receptor binding domain (RBD) of the Spike (S) protein (21-29), it is important to evaluate 96 

the relationship between RBD-specific IgG titers and neutralizing antibody responses.  97 

 98 

In this study, we evaluated IgG, IgA, IgM, neutralizing antibodies and memory B cell 99 

responses in PCR-confirmed COVID-19 convalescent subjects. Our results show that while a 100 

vast majority (38/42, 90.47%) of COVID-19 recovered individuals developed SARS-CoV-2 101 

RBD-specific IgG responses, we were able to detect appreciable levels of neutralizing 102 

antibody responses in only half of the convalescent subjects. Neutralizing responses 103 
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 5 

correlated closely with RBD-specific IgG titers, but weakly with IgG titers measured against 104 

crude virus concentrate using a commercial ELISA kit. Taken together, these findings suggest 105 

that despite significant inter-individual variation in the RBD-specific IgG titers and 106 

neutralizing antibodies, RBD-specific IgG titers can serve as a valuable and robust surrogate 107 

measurement for neutralizing antibody responses. These observations not only provide a 108 

glimpse of humoral immune responses in COVID-19 recovered individuals from India, but 109 

also have timely implications for identifying potential plasma therapy donors using on RBD-110 

specific IgG ELISA’s in India where routine performance of neutralization assays remains a 111 

challenge.  112 
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 6 

Methods 113 

 114 

Subject recruitment  115 

COVID-19 recovered individuals were recruited at Shaheed Hasan Khan Mewati Government 116 

Medical College, Nuh, Haryana, India, Super Specialty Pediatric Hospital and Post Graduate 117 

Teaching Institute, Noida and ICMR-National Institute of Malaria Research, New Delhi. The 118 

Institutional ethical boards approved the study. Informed consent was obtained prior to 119 

inclusion in the study. All subjects (mean age 39.4 years, range 15 – 70 years) were SARS-120 

CoV-2 PCR positive at the time of initial diagnosis, and were PCR negative when recruited for 121 

this study at 3.6 – 12 weeks post initial diagnosis (Table 1).  Samples collected from healthy 122 

adult blood bank donors in the year 2018 are included as pre-pandemic controls.  123 

SARS-CoV-2 specific PCR  124 

SARS-CoV-2 specific rRT-PCR was performed as per the Indian government guidelines for 125 

COVID-19 diagnosis. Nasopharyngeal and throat swabs were collected in viral transport 126 

medium (VTM) (HiMedia, #AL 167)) and transported to the testing laboratory maintaining 127 

cold chain. All the samples were subjected to the first line screening assay or the ‘e’ gene 128 

assay as per the guidelines (30). Samples reactive by the first line assay were subjected to 129 

the RdRp gene assay (Invitrogen SuperScript™ III Platinum® One-Step Quantitative Kit (Cat. 130 

No.11732088). Samples reactive for both the genes were labeled positive, while samples 131 

reactive to ‘e’ gene only were considered indeterminate and were subjected to repeat 132 

sampling. The same protocol was used to verify that the subjects were PCR negative at the 133 

time of recruitment for this study.  134 
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 7 

SARS-CoV-2 RBD-specific direct ELISA 135 

Recombinant SARS-CoV-2 RDB gene was cloned, expressed, purified and standard direct 136 

ELISAs were performed as previously described (31). Briefly, purified RBD was coated on 137 

MaxiSorp plates (Thermo Fisher, #439454) at a concentration of 1 ug/mL in 100 uL 138 

phosphate-buffered saline (PBS) at 4oC overnight. The plates were washed extensively with 139 

PBS containing 0.05% Tween-20. Three-fold serially diluted plasma samples were added to 140 

the plates and incubated at room temperature for 1hr. After incubation, the plates were 141 

washed and the SARS-CoV-2 RBD specific IgG, IgM, IgA signals were detected by incubating 142 

with horseradish peroxidase (HRP) conjugated - anti-human IgG (Jackson ImmunoResearch 143 

Labs, #109-036-098), IgM (Jackson ImmunoResearch Labs, #109-036-129), or IgA (Jackson 144 

ImmunoResearch Labs, #109-036-011). Plates were then washed thoroughly and developed 145 

with o-phenylenediamine (OPD) substrate (Sigma, #P8787) in 0.05M phosphate-citrate 146 

buffer (Sigma, #P4809) pH 5.0, containing with 0.012% hydrogen peroxide (Fisher Scientific, 147 

#18755) just before use.  Absorbance was measured at 490 nm.  148 

Enumeration of SARS-CoV-2 RBD-specific memory B cells  149 

Purified RBD protein (100 ug) was labeled with Alexa Fluor 488 using microscale protein 150 

labeling kit (Life Technologies, #A30006) as per manufacturer’s protocol. PBMC’s were 151 

stained with RBD-Alexa Fluor 488 for 1 hour at 4oC, followed by washing with PBS containing 152 

0.25% FBS, and incubation with efluor780 Fixable Viability (Live Dead) dye (Life 153 

Technologies, #65-0865-14) and anti-human CD3, CD19, CD27, CD38 and IgD antibodies (BD 154 

Biosciences) for 30 minutes. Cells were washed twice with FACS buffer and acquired on BD 155 

LSR Fortessa X20. Data was analyzed using FlowJo software 10. SARS-CoV-2 RBD-specific 156 
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 8 

memory B cells were identified in cells positive for CD19, CD20, CD27 that were negative for 157 

IgD and CD3.  158 

 159 

IgG ELISA for SARS-CoV-2 whole virus preparation  160 

SARS-CoV-2 antigen specific IgG was detected using a commercially available assay (COVID-161 

Kavach ELISA tests kit, Zydus diagnostics), which measures responses to antigen 162 

concentrated from gamma-irradiated SARS-CoV-2-infected tissue culture fluid as per the 163 

manufacturer’s instructions (32, 33). 164 

SARS-CoV-2 neutralization assay 165 

Neutralization titers to SARS-CoV-2 were determined as previously described (31). Briefly 166 

infectious clone of the full-length mNeonGreen SARS-CoV-2 (2019-nCoV/USA_WA1/2020) 167 

was used to test heat-inactivated COVID-19 convalescent samples and healthy donor 168 

samples (pre-pandemic). Heat-inactivated serum was serially diluted three-fold in duplicate 169 

starting at a 1:20 dilution in a 96-well round-bottom plate and incubated between 750 FFU 170 

of ic-SARS-CoV-2-mNG for 1 h at 37°C. This antibody-virus mixture was transferred into the 171 

wells of a 96-well plate that had been seeded with Vero-E6 cells the previous day at a 172 

concentration of 2.5× 104 cells/well. After 1 hour, the antibody-virus inoculum was removed 173 

and 0.85% methylcellulose in 2% FBS containing DMEM was overlaid onto the cell 174 

monolayer. Cells were incubated at 37°C for 24 hours. Cells were washed three times with 175 

1XPBS (Corning Cellgro) and fixed with 125 µl of 2% paraformaldehyde in PBS (Electron 176 

Microscopy Sciences) for 30 minutes. Following fixation, plates were washed twice with 1x 177 

PBS and imaged on an ELISPOT reader (CTL Analyzer). Foci were counted using Viridot (34) 178 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 1, 2020. . https://doi.org/10.1101/2020.08.31.276675doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.276675
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

(counted first under the “green light” setting followed by background subtraction under the 179 

“red light” setting). FRNT-mNG50 titers were calculated by non-linear regression analysis 180 

using the 4PL sigmoidal dose curve equation on Prism 8 (Graphpad Software). 181 

Neutralization titers were calculated as 100% x [1- (average foci in duplicate wells incubated 182 

with the specimen) ÷ (average number of foci in the duplicate wells incubated at the highest 183 

dilution of the respective specimen). 184 

Statistical analysis 185 

Statistical analysis was performed using GraphPad prism 8.0 software. Non-parametric t test 186 

(Mann-Whitney) was used to calculate the differences between groups. Non-parametric 187 

Spearman’s correlation coefficient (r) was used to calculate correlation between groups.          188 

A  p value of <0.05 was considered as significant. 189 

190 
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 10 

Results  191 

 192 

SARS-CoV-2 RBD-specific humoral immunity in COVID-19 recovered individuals. 193 

The demographic profile of COVID-19 recovered individuals recruited for this study is shown 194 

in Table 1. All subjects were at least 3.6 weeks past their initial SARS-CoV-2 positive 195 

diagnosis. RBD-specific ELISA curves for IgG, IgA and IgM at different dilutions of plasma in 196 

pre-pandemic healthy versus COVID-19 recovered individuals are shown in Figure 1. RBD-197 

specific responses were highly elevated in COVID-19 recovered individuals as compared to 198 

pre-pandemic healthy controls (Figure 1A,B,C, left versus middle panels). Titers of IgG, 199 

IgA and IgM in the COVID-19 recovered individuals showed substantial inter-individual 200 

variation (Figure 1 A, B, C, right panel) - with IgG endpoint titers ranging from below 201 

detection to 24484 (2000+619); IgA titers from below detection to 5686 (386+136) and IgM 202 

titers from below detection to 2958 (515+90). Four individuals had undetectable RBD-203 

specific IgG and IgA titers. One of these individuals was also below detection for IgM (Table 204 

2).  Inter-individual heterogeneity was not related to the age of the individuals (Figure 2A) 205 

or the number of days that elapsed between PCR confirmation of infection and sample 206 

collection (Figure 2B).  207 

 208 

SARS-CoV-2 specific neutralizing titers in COVID-19 recovered individuals.  209 

To assess plasma neutralizing titers from COVID-19 convalescent individuals, we performed 210 

a live virus neutralization assay using a focus-reduction neutralization mNeonGreen (FRNT-211 

mNG) assay (31). The neutralizing activity at different dilutions of plasma for pre-pandemic 212 
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 11 

healthy individuals (Figure 3A) and COVID-19 recovered individuals is shown in (Figure 213 

3B). Figure 3C shows FRNT-mNG50 titers calculated based on the plasma dilution that 214 

neutralized 50% of the virus. While all pre-pandemic healthy individuals had undetectable 215 

FRNT-mNG50 titers, only half of the COVID-19 recovered individuals showed 50% or more 216 

neutralization even at a 1:20 dilution of plasma. Similar to RBD-specific IgG titers, the FRNT-217 

mNG50 titers were heterogeneous with the latter reaching titers as high as 682 (Figure 3C).  218 

 219 

Previous studies in other viral infections have shown that all three antibody isotypes (IgG, 220 

IgA and IgM) can potentially neutralize (35-39). We next determined if any correlation exists 221 

between SARS-CoV-2 neutralizing titers and RBD-specific IgG, IgA, IgM binding antibody 222 

titers. We observed a positive correlation (r=0.83; p<0.001) between SARS-CoV-2 223 

neutralizing titers and RBD-specific IgG titers (Figure 4, left graph) but not with IgA 224 

(Figure 4, middle graph) or IgM titers (Figure 4, right graph).    225 

 226 

Plasma infusion therapy has recently been started in India as an intervention therapy for 227 

COVID-19. For this, plasma donors are being typically identified by the presence of IgG to 228 

SARS-CoV-2 by commercial ELISA tests (40). One of these tests detects IgG towards viral 229 

antigens concentrated from gamma-irradiated SARS-CoV-2-infected tissue culture fluid (32, 230 

33). It was therefore of interest to examine the correlation between neutralization titers and 231 

IgG responses measured using this test. We observed that, of the 42 COVID-19 recovered 232 

individuals tested, 33 were IgG positive whereas 9 were below the assay cut off (Figure 5A). 233 

Of the 9 individuals that were below cut off, 4 also tested negative by the RBD-specific IgG 234 

ELISA (Table 2). All of the samples from the pre-pandemic healthy individuals were below 235 
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 12 

the limit of detection using both the ELISA methods. Most importantly, the IgG values 236 

obtained by whole virus-based ELISA did not show as robust a correlation (r=0.56) with 237 

neutralizing antibody titers (Figure 5B) as compared to those observed with RBD-specific 238 

IgG titers (r=0.83) (Figure 4, left graph).  239 

 240 

Characterization of RBD-specific memory B cells in COVID-19 recovered individuals.  241 

While circulating neutralizing antibodies help prevent re-infection by viruses, memory B 242 

cells allow for rapid production of new antibodies in case of re-infection. To address whether 243 

the COVID-19 recovered individuals generated memory B cells, we enumerated RBD-specific 244 

memory B cells using fluorescently-conjugated RBD antigen. An example of the flow 245 

cytometric gating strategy and RBD staining among the gated memory B cells is shown in 246 

Figure 6A and 6B. Figure 6C shows the frequency of RBD-specific memory B cells in a 247 

subset of the individuals where sufficient PBMCs were available. Though we found that there 248 

was substantial inter-individual variation in the frequency of SARS-CoV-2 RBD-specific 249 

memory B cells, their frequencies modestly correlated with RBD-specific IgG titers.   250 
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 13 

Discussion 251 

 252 

Our study provides a detailed understanding of humoral immunity and memory B cells in 253 

COVID-19 recovered individuals from India. We examined SARS-CoV-2 neutralizing 254 

antibodies, IgG, IgM, IgA and memory B cells in pre-pandemic healthy versus COVID-19 255 

recovered individuals and further evaluated inter-individual variation and relation among 256 

these.  257 

 258 

Our correlative analysis of RBD-specific IgG binding titers with neutralizing antibody titers 259 

and memory B cells has important implications for not only identifying potential donors for 260 

plasma therapy but also for understanding humoral and cellular memory post COVID-19. 261 

Though current plasma therapy guidelines in India do not consider neutralizing antibody 262 

titers, United States Food and Drug Administration (FDA) guidelines recommend, when 263 

available, a neutralizing titer of 1:160 or 1:80 to be used for identifying potential plasma 264 

donors (41). Our correlation analysis shows that RBD-specific titers of more than 3668 can 265 

provide a suitable surrogate for identifying the individuals with neutralizing titers of above 266 

1:160 and RBD-specific IgG titers 1926 for neutralizing titers of 1:80. Though larger scale 267 

studies are needed to establish robustness, these observations have timely implications to 268 

identify potential plasma therapy donors. 269 

 270 

Our study raises important questions on formation of protective immune memory after 271 

recovering from COVID-19. We found that nearly half of the COVID-19 recovered individuals 272 

did not induce 50% neutralizing titers even at 1:20 dilution of plasma. This raises the 273 
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question of whether these individuals with low neutralizing antibodies also differ in 274 

formation of cellular immune memory.  Our data show that individuals with low neutralizing 275 

antibodies indeed had lower memory B cells. Given that T cells may also contribute to COVID-276 

19 protection, studies are needed to understand whether these individuals may also differ 277 

in the generation of memory CD8 and CD4 T cells (42-44).  278 

 279 

The reason why only half of the COVID-19 recovered individuals developed appreciable 280 

levels of neutralizing antibody titers requires further investigation. This may be related to 281 

inter-individual differences in human immune responses associated with the expected 282 

heterogeneity in initial viral inoculum(45), initial viral loads (46-48), incubation period (49), 283 

host genetic factors (50-52) and disease severity (53, 54). This is consistent with previous 284 

studies that show relatively higher neutralizing antibodies in COVID-19 hospitalized patients 285 

during the acute febrile phase, or in recovered individuals that were previously hospitalized 286 

with severe COVID-19 disease (53, 54). It is noteworthy that the COVID-19 recovered 287 

individuals from our study had mild to moderate symptoms during the initial diagnosis. In 288 

light of these studies, our findings warrant future studies to seek an understanding of 289 

whether the individuals that have generated low or no neutralizing antibodies, IgG titers or 290 

memory B cells past recovery will be protected if they were re-exposed to SARS-CoV-2 or a 291 

related virus.   292 
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Figure legends 309 

 310 

Figure 1: Evaluation of SARS-CoV-2 RBD specific IgG, IgA and IgM antibody responses.  311 

(A) RBD-specific IgG, (B), RBD-specific IgA; (C), RBD-specific IgM. Left, pre-pandemic 312 

healthy (n-22), middle COVID-19 recovered (n=42); right, endpoint titers.  ELISA cutoff 313 

values are calculated using the average plus 3 standard deviations of the 22 healthy controls 314 

at 1:100 dilution (shown as a dotted line). The unpaired analysis was done using non-315 
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parametric Mann-Whitney-U test. p ≤ 0.05 was considered significant. Assay cutoff value is 316 

marked with dotted line. 317 

Figure 2. Correlation of age and day post initial diagnosis of COVID-19 recovered 318 

individuals with SARS-CoV-2 IgG, IgM and IgA titers.  319 

(A). Age versus IgG (left, n=42), IgA (middle, n=42) or IgM (right, n=42) titers. (B). Time post 320 

initial diagnosis versus IgG (left, n=42), IgA (middle, n=42) or IgM (right, n=42) titers.  321 

Correlations were calculated by Spearman’s correlation coefficient r. p ≤ 0.05 is considered 322 

significant. Note that none of the data sets  above reached significant values of correlation.  323 

 324 

Figure 3. Evaluation of SARS-CoV-2 neutralizing antibodies in COVID-19 recovered 325 

individuals.  326 

SARS-CoV-2 neutralizing activity at indicated dilutions of plasma is shown in pre-pandemic 327 

healthy (n=22, in grey) (A) and in COVID-19 recovered individuals (n=42, in blue) (B). 328 

Dotted line represents the plasma dilution that leads to 50% neutralization. (C) Scatter plot 329 

shows neutralization titers (FRNT-mNG50) in pre-pandemic healthy (n=22) and COVID-19 330 

recovered (n=42) individuals.  The unpaired analysis was done using non-parametric Mann-331 

Whitney-U test. p ≤ 0.05 was considered significant. Limit of detection is marked with a 332 

dotted line.  333 

 334 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 1, 2020. . https://doi.org/10.1101/2020.08.31.276675doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.31.276675
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

Figure 4. Correlation analysis of SARS-CoV-2-specific antibody responses versus 335 

neutralization titers.  336 

Correlation analysis shows FRNT-mNG50 titers (x-axis) versus RBD-specific IgG (Left), IgA 337 

(middle) and IgM (right) titers on y-axis in COVID-19 recovered individuals (n=42, blue 338 

dots). Correlation analysis was performed by log transformation of the endpoint ELISA titers 339 

followed by linear regression analysis. Correlations were calculated by Spearman’s 340 

correlation coefficient r. p ≤ 0.05 was considered significant. Dotted line on x-axis and y-axis 341 

indicate limit of detection.  342 

 343 

Figure 5. Correlation analysis of SARS-CoV-2 whole virus specific IgG versus neutralizing 344 

titers.  345 

(A). Scatter plots shows SARS-CoV-2 whole virus specific IgG measured using measured 346 

using commercial kit (Zydus diagnosis, Covid Kavach) in pre-pandemic healthy (n=5) and 347 

COVID-19 recovered (n=42). The unpaired analysis was done using non-parametric Mann-348 

Whitney-U test. p ≤ 0.05 was considered significant. (B). Correlation analysis of SARS-CoV-2 349 

whole virus antigen specific IgG ELISA kit values (y-axis) versus neutralizing titers (x-axis) 350 

in COVID-19 recovered individuals (n=42).  Correlations were calculated by Spearman’s 351 

correlation coefficient r. p ≤ 0.05 was considered significant. Dotted line on x-axis indicate 352 

limit of detection and on y-axis assay cut off.  353 

 354 
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Figure 6. SARS-CoV-2 RBD-specific memory B cell analysis in COVID-19 recovered 355 

individuals.  356 

(A) Gating strategy used to identify memory B cells. (B) SARS-CoV-2 RBD-specific memory 357 

B cells on gated total memory B cells that were CD19 positive, CD20 high,  IgD negative and 358 

CD27 high is shown.  (C) Frequency of RBD-specific memory B cells of the total memory B 359 

cells in the COVID-19 recovered individuals (n= 13). (D) Correlation analysis shows 360 

frequency of RBD-specific memory B cells (x-axis) and the RBD-specific IgG titers (y-axis) in 361 

COVID-19 recovered individuals. 362 

 363 

 364 

 365 

 366 

 367 

 368 

 369 
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 371 
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