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Abstract

Almost half of the primate species recognized today worldwide are classified as endangered
or critically endangered in the wild. Captive breeding is vital for primate conservation, with
modern zoos serving a crucial role as breeders of populations acting as buffers against
extinction, ambassadors of endangered species, and educators of the general public.
However, captive populations may experience welfare issues that may also undermine their
breeding success. In order to design and test a new scent enrichment programme to enhance
the breeding success and well-being of critically endangered zoo primates, we carried out a
preliminary study to assess the effects of lavender on captive red-ruffed lemurs (Varecia
rubra) and Lar gibbons (Hylobates lar) as these species presently show a low success rate in
captive breeding and are critically endangered in the wild. We combined behavioural
observations and faecal endocrinology analyses to assess the effects of lavender on two
captive troops (N = 8) housed at Dudley Zoo and Castle (UK). We recorded observations of
natural species-specific and abnormal stress-related behaviours for 144 hr using
instantaneous scan sampling. We collected 78 faecal samples and measured the faecal
cortisol concentrations using radioimmunoassay. We found a significant effect by the scent
enrichment on social interactions and stress-related behaviours (i.e., pacing and self-
scratching), with both species reducing their rates of stress-related behaviours after they were
exposed to lavender. We also found that both species displayed a significant increase in
faecal glucocorticoids following the exposure to lavender. Our findings suggest that lavender
may work as scent enrichment to decrease the stress levels of zoo primates across the major
lineages, but its effects might change depending on the species-specific social lives and
olfactory repertoires of primates.

Keywords: lavender, stereotypic behaviours, faecal cortisol, Varecia rubra, Hylobates lar
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Introduction

Almost half of the total primate species recognized today worldwide are classified as
endangered or critically endangered in the wild — primarily due to human activities [1].
Therefore, raising global scientific and public awareness of the plight of the world’s primates
is now vital [1]. The most important actions needed for ensuring the survival of these
irreplaceable species are conservation, research, public education and outreach. Across all
these contexts, zoos play a major role [2], as zoo animal populations are usually managed to
educate the public regarding wildlife and their habitats, and to preserve endangered species
through captive breeding and reintroduction programmes [3]. In this context, the maintenance
of the genetic variation of such captive populations is imperative [4]. However, captive
populations, potentially serving as buffers against extinction, experience problems that impair
them from being viable for reintroduction into the wild. More specifically, zoo animal
populations face reproductive challenges which have so far inhibited them from serving as
viable ‘reserve populations’ [5]. Additionally, managing zoo populations is challenging
because of the mismatch between natural and captive environments [6]. Primates have
evolved distinct behavioural patterns, and difficulty in engaging in these behaviours can
cause frustration or boredom, which, in turn, can lead to stress and development of abnormal
behaviours [7] that may undermine their individual welfare and their breeding success.

To maintain captive healthy populations, with good genetic variability and thus high
survival rates in case of reintroduction, modern zoos take part in conservation breeding
programmes. As reproductive success is linked to how closely captive environmental
conditions mirror those that primates would be experiencing in the wild [5], zoos also use
environmental enrichments to manage captive populations. Environmental enrichments and

conservation breeding programmes are strictly related, as enrichment is a dynamic process
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that changes an animal’s environment, increasing its behavioural choices and prompting a
wider range of natural and species-specific behaviours and abilities [8]. Furthermore,
enrichment can contribute to promoting resiliency to stress, which helps animals recovering
from adverse stimuli [9], improving both the exhibit from the visitor perspective and the
reproductive performance of the hosted animals [10]. Enrichment can also foster the essential
skills that animals need for their survival if reintroduced into their habitat [11].

Scent-based enrichments can be effective at increasing active behaviours in zoo
animals and potentially improve their welfare [9,12,13]. However, some authors reported
findings that are less clear or indicate that scent enrichment has little effect [14,15]. The
delivery mechanism of the scent and the type of scents used are crucial for the
implementation of novel olfactory enrichment programmes [16]. The majority of studies have
used spices or essential oils rather than focusing on natural or biological scents, but this may
not necessarily be appropriate for all species [14]. The main goal of olfactory enrichment is
to improve welfare of animals in captive environments, but there is also the possibility that
the use of scents can have further positive impacts in addition to this. For instance, scents
may elicit behavioural and physiological responses and thus it is important to consider the
use of olfactory enrichment to promote potential beneficial effects on reproductive success
[17].

Primates are traditionally considered “microsmatic” (i.e., with a poor sense of smell)
[18] and only a small proportion of studies on olfactory enrichment have been undertaken on
primate species [19] with the majority of scents currently used in these studies remaining
largely focused on essential oils, spices or herbs [14]. However, various lines of evidence
suggest that chemical communication may be important in primates [20]. In particular, it has
become increasingly clear that the sense of smell plays a crucial role in primate socio-sexual

communication, with semiochemicals being important for kin recognition, mate choice and
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99  the regulation of socio-sexual behaviours [21]. However, little is known about the overall
100 effects of olfactory enrichment on primate species.
101 The overarching aim of our work is to design and test a new scent enrichment
102  programme to enhance the breeding success and well-being of critically endangered zoo
103  primates. In this context, we carried out a preliminary study which aimed to assess the effects
104  of lavender (which was chosen based on its effectiveness in humans and domestic animals;
105 reviewed in [22]) on resting and social behaviour as well as on both behavioural and
106  physiological indicators of stress in two captive primate species: red-ruffed lemurs (Varecia
107  rubra) and Lar gibbons (Hylobates lar). These species are currently classified as either
108  critically endangered (red-ruffed lemurs [23]) or endangered (Lar gibbons [24]), largely due
109  to the deforestation, logging and hunting activities that threaten the habitat and survival of
110 these species [23,24]. Therefore, designing and implementing strategies that improve welfare
111  and breeding success of these species in captivity is particularly crucial. In this study, we
112  predicted that lavender would reduce the stress levels of zoo red-ruffed lemurs and Lar
113  gibbons, which would be reflected by significant changes in behavioural (i.e., decrease of the
114  frequency of stress-related behaviours, and increase of the frequency of social behaviours)
115 and physiological indicators of well-being when comparing before (i.e., baseline period) and
116  after (i.e., post enrichment period) the scent enrichment.
117
118  Material and methods
119
120  Study subjects and housing
121
122 We studied two captive troops of red-ruffed lemurs (n = 3) and Lar gibbons (n = 5)

123 housed at Dudley Zoological Gardens (UK). The troop of red-ruffed lemurs consisted of two
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124  related (brothers) adult males (15 y/o) and one unrelated adult female (14 y/0). The troop of
125  Lar gibbons consisted of one adult male (16 y/o), one adult females (17 y/o) and their
126  offspring — one adult female (6 y/0), two young males (2 y/o and 8 y/o, respectively).

127 We carried out behavioural observations and faecal sampling from September to
128  December 2019 (red-ruffed lemurs) and from September to December 2018 (Lar gibbons).
129  Both troops lived in an indoor enclosure (heated to 28 °C) with access to an outdoor
130  enclosure (i.e., “visitor walkthrough” enclosure in the case of red-ruffed lemurs).

131

132 Study protocol

133

134 We divided the overall study period in three periods: baseline, scent enrichment, post
135  enrichment. We collected behavioural data and faecal samples (see below “Assessment of
136  welfare”) for four days per study period (12 days in total) over three months.

137

138  Scent enrichment

139

140 We cut white cotton sheets into 75 cm long and 5 cm wide strips, which we then
141  soaked with 20 drops naissance 100% pure lavender essential oil diluted with 12 ml of cold
142  boiled water. We prepared the scent cotton strips at early morning of each sampling day over
143  the scent enrichment period. We positioned these strips around both indoor and outdoor
144  enclosures; particularly, and we tied them approximately 1 m from the ground around the
145  climbing frames as these were the most used areas of the enclosures.

146

147  Assessment of welfare

148
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149 We have used both behavioural (e.g., naturalistic species-specific behaviours,
150  stereotypic behaviours) and physiological (e.g., corticosteroid levels, regulated by
151  hypothalamic-pituitary-adrenal-HPA axis) methods to assess the effects of scent enrichment.
152

153  Behavioural data collection

154

155 We collected behavioural data by instantaneous scan sampling [25] of some
156  behaviours (Table 1), with behaviours recorded at 5-min intervals over the duration of six
157  hours from 9am to 3pm, four days per study period (baseline, scent enrichment, post
158  enrichment) over three months. We recorded a total of 144 hr of observations over the study
159  period (excluding the pilot study), with 50 scan samples each sampling day on each group
160  (see supporting information).

161

162  Table 1 - Ethogram

Behaviour Description
Resting Lying or sitting while awake, with eyes open and arms down
by side of body.
Sleeping Lying on back, front or side, eyes closed and whole body is
relaxed
Grooming Using fingers or mouth to pick through the coat, removing
any foreign bodies from a conspecific
Play Animal is engaging in activities such as chasing others,
leaping around the enclosure etc. in a playful context
Self-scratching An animal rubs their own body at a fast pace
Pacing Animal walks back and forth in a distinct, unchanging pattern
within the enclosure.
163
164

165 Hormone sampling and measurements

166
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167 We collected faecal samples of all subjects every morning before behavioural
168  observations, whenever defecation was observed and the identity of the animal was known.
169 In total, we collected 78 samples (red-ruffed lemurs = 25; Lar gibbons = 53). The samples
170  were stored in a freezer at 20°C right after collection. At the end of the study period, the
171  collated samples were fully prepared by adding biological hazard labels onto each pot before
172 being delivered in a refrigerated (dry ice) to the Department of Veterinary Medical Sciences
173  and Animal Production Science of Bologna University for radioimmunoassay (RIA).

174 Cortisol concentrations were determined by RIA. All concentrations were expressed
175  in pg/mg of faecal matter. The extraction methodology followed the methods of Fontani and
176  colleagues [26]. In brief, five millilitres of a methanol:water (4:1 v/v) solution were added to
177 60 mg (wet weight) of faeces in capped-glass tube vials. The vials were then vortexed for 30
178  min using a multitube pulsing vortexer. After centrifugation at 1,500 g for 15 min, 5 ml ethyl
179  ether (BDH Italia, M1, Italy) and 0.2 ml NaHCO3 (5%; Sigma Chemical Co., St. Louis, MO)
180  were added to 1 ml of supernatant. This preparation was vortexed for 1 min and centrifuged
181  for 5 min at 1,500 g. The ether portion was aspirated with a pipette, and evaporated under an
182  airstream suction hood at 37°C. The dry residue was redissolved into 0.5 ml of 0.05 M
183  phosphate-buffered saline (PBS; pH 7.5).

184 Cortisol was assayed in the faecal samples according to the method of [27]. The

185  validation parameters of the analyses were as follows:

186 Cortisol. Sensitivity 3.10 pg/100 1; intra-assay variability 6.8%; interassay variability
187 9.3%:; specificity (%), cortisol 100, corticosterone 9.5, 11, -hydroxyprogesterone 8.3,
188 cortisone 5.3, 11,-desoxycortisol 5.0, progesterone 0.6, desoxycorticosterone 0.5, 20, -
189 dihydrocortisone 0.4, testosterone 0.3, aldosterone 0.1, dehydroepiandrosterone <
190 0.0001, 5,-pregnenolone <0.0001, 17 -estradiol < 0.0001, and cholesterol < 0.0001.
191
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192  Statistical analyses

193

194 In order to assess the effect of scent enrichment on red-ruffed lemurs’ and Lar
195  gibbons’ behaviour and FGCs, we first generated three behavioural categories from the
196 individual behavioural measures we collected. More specifically, we generated: 1) a resting
197  category by adding up our data on resting and sleeping behaviours; 2) a social category by
198 combining our data on grooming and play; and, finally, 3) a stress category by combining our
199  data on pacing and self-scratching behaviours. We included scratching in this category since
200  this is commonly considered an indicator of anxiety [28]. We then used the aov function in R
201 (v 4.0.2) [28] to run a 2x2 Analysis of Variance (ANOVA), in which the rates of resting,
202  social and stress-related behaviours as well as FGC concentrations were set as dependent
203  variables in separate models, while species (Lar gibbon vs red-ruffed lemur) and enrichment
204  condition (before vs. after exposure to scent enrichment), along with their interaction, were
205  entered as independent factors in all models. We excluded from the analysis an outlier from
206  the faecal glucocorticoid data set. All models met the assumptions of homogeneity of
207  variance and normality of residuals.

208

209  Results

210

211 The 2x2 ANOVA model that included resting rates as the outcome variable revealed
212 only a significant main effect of Species, with red-ruffed lemurs resting more frequently than
213  Lar gibbons, but there was no significant main effect of Enrichment condition or the
214  interaction between Enrichment and Species on resting rates (Table 2).

215

216
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Table 2. Results of the 2x2 ANOVA testing the effect of Enrichment condition, Species and

their interaction on resting rates. Significant result is shown in bold.

Depe.ndent Independent df Sum square F-value P-value Parglal
variable variables n
Enrichment 1 0.003 0.48 0.499 0.17
Resting Species 1 0.266 51.23 <0.001 0.8
Enrichment * Species 1 0.00 0.00 0.999 <0.01
Residuals 13 0.07

By contrast, we found a significant effect of the interaction between enrichment
condition and species on rates of social interaction (Table 3). Follow-up post-hoc t-tests
revealed that, while Lar gibbons increased their rates of social interactions following their
exposure to lavender (t(3.2) = 7, p = 0.005, d = 5.7, Figure 1), red-ruffed lemurs showed a
reduction in rates of social interactions after being exposed to lavender (t(8.3) = 2.8, p = 0.02,

d= 1.6, Fig. 1).

Table 3. Results of the 2x2 ANOVA testing the effect of Enrichment condition, Species and

their interaction on social rates. Significant result is shown in bold.

Depe.ndent IndePendent df Sum square F-value P-value Partial
variable variables n2
Enrichment 1 0.002 3.04 0.10 0.22
Species 1 0.001 1.65 0.22 0.11
) 5 .
Social Enrichment 1 0.005 646 002 033
Species
Residuals 13 0.01

Fig. 1. Effect of enrichment condition on rates of social interactions in red-ruffed lemur and

Lar gibbon. Height of the boxes represents mean while whiskers represent standard error.

10
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Rates of stress-related behaviours were significantly predicted by enrichment
condition but not by species or the interaction between species and enrichment condition
(Table 4). More specifically, both species reduced their rates of stress-related behaviours

after they were exposed to lavender (Fig. 2).

Table 4. Results of the 2x2 ANOVA testing the effect of Enrichment condition, Species and

their interaction on rates of stress-related behaviours. Significant result is shown in bold.

Depe.ndent Independent df Sum F-value P-value Partial
variable variables square n2
Enrichment 1 0.0013 5.42 0.037 0.30
Stress-related Species 1 0.0001 0.23 0.641 0.02
behaviours Enrichment * Species 1 0.0001 0.41 0.533 0.03
Residuals 13 0.0032

Fig. 2. Effect of enrichment condition on rates of stress-related behaviours in both red-ruffed
lemur and Lar gibbon. Height of the boxes represents mean while whiskers represent

standard error.

Finally, we found that enrichment condition significantly predicted FGCs (Table 5):
following the exposure to lavender, both species displayed a significant increase in FGC

concentration, compared to before being exposed to the scent enrichment (Fig. 3).

Table 5. Results of the 2x2 ANOVA testing the effect of Enrichment condition, Species and

their interaction on FGC concentration. Significant result is shown in bold.

Depe'ndent Inde[?endent df Sum F-value P-value Partial
variable variables square n2
Enrichment 1 9.89 11.23 0.002 0.26
FGC Species 1 2.06 2.34 0.135 0.06
Enrichment * Species 1 1.13 1.28 0.265 0.03
Residuals 36 31.72

11
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254  Fig. 3. Effect of enrichment condition on FGC concentration in both red-ruffed lemur and
255  Lar gibbon. Height of the boxes represents mean while whiskers represent standard error.

256

257  Discussion

258

259 The effects of olfactory enrichment have been tested on several domestic, farm,
260 laboratory and zoo-housed animals [29,30]. However, olfactory stimulation is still one of the
261 least studied forms of enrichment (reviewed in [31]). In addition, there are mixed and
262  conflicting conclusions regarding the benefits of olfactory enrichment on animal welfare, and
263  this is particularly the case of primate species among which the overall effects of olfactory
264  enrichment is currently unclear and understudied (reviewed in [22]).

265 In this study, we found a significant effect of the scent enrichment on social
266 interactions, with red-ruffed lemurs showing a reduction and Lar gibbons exhibiting an
267 increase in rates of social interactions after being exposed to lavender. Generally, several
268  studies have found that scent enrichments may be effective at increasing active behaviours in
269  individuals in zoo-housed animals, such as cheetahs (Acinonyx jubatus) [9], Californian sea
270  lions (Zalophus californianus) [13] and Rothschild giraffes (Giraffa camelopardalis
271  rothschildi) [12] but not in meerkats (Suricata suricatta) [15]. Regarding primates, Gronqvist
272  and colleagues [32] showed that, among captive Javan gibbons (Hylobates moloch), olfactory
273  enrichment significantly increased the frequency of natural species-specific behaviours,
274  although individuals’ interest in the olfactory enrichment decreased rapidly after the first day.
275 By contrast, Baker et al. [16] tested the effects of olfactory enrichment on ring-tailed lemurs
276  (Lemur catta) and found no significant effects on individuals’ behaviours in the presence of
277  the odours, a result which was also shown in a study with essential oils on gorillas (Gorilla

278  gorilla gorilla) [14].

12
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279 The opposite effect that scent enrichment exerted on rates of social interactions in the
280  two study species, with increased rates of social behaviour in Lar gibbons and decreased rates
281  of social behaviour in red-ruffed lemurs following exposure to the scent enrichment, might be
282  related to the fact that these two species spent most of their time in different types of social
283  behaviour. More specifically, Lar gibbons spent 72% of their social time playing, while red-
284  ruffed lemurs spent 78% of their social time grooming. A wide range of studies has shown
285  that frequency of play behaviour is strongly affected by the levels of exposure to stress the
286  animal is experiencing. In rats (Rattus rattus), for example, prenatal exposure to a stressor
287  significantly increases the latency to play [33]. Similarly, studies on both squirrel monkeys
288  (Saimiri sp.), thesus macaque (Macaca mulatta) and common marmoset (Callithrix jacchus)
289  showed that play rates were higher in individuals who experienced low stress levels [34-36].
290 In this context, our findings that Lar gibbon spent more time playing after the introduction of
291  the scent enrichment compared to before the exposure to lavender might reflect the fact that
292  this species might have experienced lower stress levels after the exposure to the scent, which
293  is consistent with our prediction. On the other hand, social grooming, a common affiliative
294  behaviour in primates, has long been shown to have a stress-reducing effect. Work conducted
295  on macaques has shown, for example, that either receiving or giving grooming lowers stress
296 levels in the individuals involved in the interaction [36—42]. We, therefore, suggest that red-
297  ruffed lemurs reduced their rates of social grooming following the exposure to the scent
298  enrichment because the presence of lavender might have decreased their overall stress levels.

299 As we predicted, we found a significant effect on the scent enrichment on stress-
300 related behaviours, with both red-ruffed lemurs and Lar gibbons reducing their rates of stress-
301 related behaviours after they were exposed to lavender. This is consistent with our prediction
302  that scent enrichment reduces behavioural indicators of stress (i.e., pacing and self-

303  scratching). Similar results were reported in other species. Uccheddu and colleagues [43], for

13
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304 example, exposed domestic dogs to a variety of essentials oils, and found that some scents
305 increased frequencies of behavioural indicators of relaxation while others decreased
306  behavioural indicators of stress such as pacing and over-grooming. Similarly, a study on
307  cheetahs and Sumatran tigers (Panthera tigris sumatrae) found that stereotypic pacing
308  behaviour was significantly decreased in the presence of a hay ball with cinnamon [44].

309 Finally, our finding that both red-ruffed lemurs and Lar gibbons displayed a
310 significant increase in FGCs following the exposure to lavender is at first puzzling and in
311  direct opposite to our findings related to the behavioural indicator of stress (see above). This
312 result, therefore, suggests that changes in behavioural indicators of stress such as pacing and
313  self-scratching do not necessarily reflect physiological indicators of stress, such as FGCs.
314  This is consistent with the work conducted by Higham and colleagues [45] showing that,
315 among olive baboons (Papio anubis), both short-term (i.e., day-to-day) and long-term
316  variation in rates of self-directed variation does not reflect changes in FGCs. This mismatch
317  might be due to the fact that self-directed behaviours and FGCs may reflect two different
318 types of stress. More specifically, self-directed behaviours likely reflect low-level acute
319  stress, or anxiety [46], while FGCs likely reflect high-level chronic stress. Accordingly, self-
320  directed behaviours have been found to increase in anxiety-inducing context, such as when
321 animals are given anxiogenic drugs [47], or after aggression [48]. On the other hand, FGC
322  levels have been shown to increase when animals are exposed to high levels of stress, such as
323  in the presence of tourists [49] or when exposed to the odour of a predator [50]. Therefore,
324  this suggests that researchers should, ideally, use both behavioural and physiological
325  indicators of stress and anxiety in order to have a complete picture on the levels of stress an
326 animal experiences and that behavioural indicators of anxiety should not necessarily be

327 interpreted as indicator of glucocorticoid production.
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328 The question remains, however, on why both red-ruffed lemurs and Lar gibbons
329  exhibited higher FGC levels after exposure to scent enrichment compared to before scent
330 enrichment was introduced. The main function of glucocorticoids is to mobilize the energy
331 into the bloodstream from storage sites inside the body. This energy can then be used by
332  tissues and organs, such as muscle, and brain. Consequently, glucocorticoids are generally
333  produced every time the body needs energy, such as during stress response, when the animal
334  might need energy, for example, to escape from a predator. However, there are other non-
335  stress-related contexts in which animal body might need energy, such as early in the morning
336  when an animal needs to start their physical activity. Accordingly, glucocorticoid levels tend
337 to peak early in the morning. Here we argue that FGCs increased after the exposure to
338 lavender because the introduction of the scent enrichment might have increased the animals’
339  general activity pattern (e.g., locomotion, foraging), which might have required an increase in
340  glucocorticoid production by the animals’ body.

341 In general, it is crucial to consider the ecological/biological relevance of the scent
342  enrichment to the species as this is likely to affect the results. Many scents, including
343 lavender, are chosen based on their effectiveness in humans or domestic animals, but this
344  may not necessarily be appropriate for all animal species [22]. In particular, as previous
345  authors have suggested, important factors to consider for the implementation of novel
346  olfactory enrichment programmes are the delivery of the scent and the type of scents used
347  [16]. The majority of studies have used spices or essential oils rather than focusing on natural
348  or biological scents; however, as with all types of enrichment, the biology of the species
349  should be taken into account and its effectiveness should be continually monitored to inform
350 Dbest practices. For example, several studies have suggested that the use of either natural
351 prey/predator odours or odours from conspecifics should be researched further [32]. Other

352  studies have suggested the use of diffusers as a delivery method may be more effective [16].
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353  Additionally, further studies have indicated that scents could be used in a number of
354  combinations and introduced randomly to continue to add novelty to the enrichment
355  programme and avoid the problem of habituation [9].

356 Interestingly, we found that scent enrichment exerted both behavioural and
357  physiological effects on both red-ruffed lemurs and Lar gibbon. While the use of chemical
358 communication and olfactory signals in lemurs has long been established [51-53], apes are
359  commonly considered microsmatic. However, accumulating evidence seems to suggest that
360 apes may also rely on olfactory signals and chemical communication. Henkel and Setchell
361 [54], for example, recently showed that chimpanzees (Pan troglodytes) spend more time
362  sniffing the urine of outgroup individuals than that of group members. Similarly, accounts of
363  border patrolling among wild chimpanzees report how individuals are often seen sniffing the
364  ground when near the territory of a neighbouring group [55]. Our findings showing that scent
365  enrichment exerts both behavioural and physiological changes in Lar gibbon confirms that
366  olfactory communication plays a key role in social interaction and physiological regulation
367 not only in chimpanzees but also in other apes.

368 In conclusion, our preliminary study provides strong evidence of a beneficial effect of
369  scent enrichment on animal welfare. Following exposure to the scent enrichment, animals
370 spend more time play, and less time grooming and exhibit lower rates of stress-related
371  behaviours. Our finding that both red-ruffed lemurs and Lar gibbon increased their levels of
372  FGCs after exposure to lavender might be associated to an increase in activity after animals
373  were exposed to the scent enrichment. Future work will need to expand the investigation of
374  the effect of scent enrichment on animal welfare by focusing on a wider range of primate
375  species and on a bigger sample size.

376
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