

1 **Title:** Effects of scent enrichment on behavioural and physiological indicators of stress in zoo
2 primates – a preliminary study on red-ruffed lemurs and Lar gibbons

3 **Short title:** Effect of scent enrichment on the welfare of red-ruffed lemur and Lar gibbon

4

5 **Authors:** Stefano Vaglio^{1,2}, Stefano S. K. Kaburu^{3*}, Christopher Young¹, Richard Pearce¹,
6 Sarah Smith¹, Beth Tompkins¹, Emily Elwell¹, Sara Fontani¹, Giovanna Marliani⁴ & Pier
7 Attilio Accorsi⁴

8

9 **Affiliations of Authors:**

10 ¹Department of Biology, Chemistry and Forensic Science, University of Wolverhampton,
11 Wolverhampton, UK

12 ²Department of Anthropology & Behaviour, Ecology and Evolution Research (BEER)
13 Centre, Durham University, Durham, UK

14 ³Department of Biomedical Science & Physiology, University of Wolverhampton,
15 Wolverhampton, UK

16 ⁴Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy

17

18 ***Corresponding Author:**

19 Dr Stefano S. K. Kaburu
20 Department of Biomedical Science & Physiology, Faculty of Science and Engineering,
21 University of Wolverhampton, City Campus South, Wulfruna Street, Wolverhampton, WV1
22 1LY, UK
23 E-mail s.kaburu@wlv.ac.uk

24 **Abstract**

25

26 Almost half of the primate species recognized today worldwide are classified as endangered
27 or critically endangered in the wild. Captive breeding is vital for primate conservation, with
28 modern zoos serving a crucial role as breeders of populations acting as buffers against
29 extinction, ambassadors of endangered species, and educators of the general public.
30 However, captive populations may experience welfare issues that may also undermine their
31 breeding success. In order to design and test a new scent enrichment programme to enhance
32 the breeding success and well-being of critically endangered zoo primates, we carried out a
33 preliminary study to assess the effects of lavender on captive red-ruffed lemurs (*Varecia*
34 *rubra*) and Lar gibbons (*Hylobates lar*) as these species presently show a low success rate in
35 captive breeding and are critically endangered in the wild. We combined behavioural
36 observations and faecal endocrinology analyses to assess the effects of lavender on two
37 captive troops (N = 8) housed at Dudley Zoo and Castle (UK). We recorded observations of
38 natural species-specific and abnormal stress-related behaviours for 144 hr using
39 instantaneous scan sampling. We collected 78 faecal samples and measured the faecal
40 cortisol concentrations using radioimmunoassay. We found a significant effect by the scent
41 enrichment on social interactions and stress-related behaviours (i.e., pacing and self-
42 scratching), with both species reducing their rates of stress-related behaviours after they were
43 exposed to lavender. We also found that both species displayed a significant increase in
44 faecal glucocorticoids following the exposure to lavender. Our findings suggest that lavender
45 may work as scent enrichment to decrease the stress levels of zoo primates across the major
46 lineages, but its effects might change depending on the species-specific social lives and
47 olfactory repertoires of primates.

48 **Keywords:** lavender, stereotypic behaviours, faecal cortisol, *Varecia rubra*, *Hylobates lar*

49 **Introduction**

50

51 Almost half of the total primate species recognized today worldwide are classified as
52 endangered or critically endangered in the wild – primarily due to human activities [1].
53 Therefore, raising global scientific and public awareness of the plight of the world's primates
54 is now vital [1]. The most important actions needed for ensuring the survival of these
55 irreplaceable species are conservation, research, public education and outreach. Across all
56 these contexts, zoos play a major role [2], as zoo animal populations are usually managed to
57 educate the public regarding wildlife and their habitats, and to preserve endangered species
58 through captive breeding and reintroduction programmes [3]. In this context, the maintenance
59 of the genetic variation of such captive populations is imperative [4]. However, captive
60 populations, potentially serving as buffers against extinction, experience problems that impair
61 them from being viable for reintroduction into the wild. More specifically, zoo animal
62 populations face reproductive challenges which have so far inhibited them from serving as
63 viable 'reserve populations' [5]. Additionally, managing zoo populations is challenging
64 because of the mismatch between natural and captive environments [6]. Primates have
65 evolved distinct behavioural patterns, and difficulty in engaging in these behaviours can
66 cause frustration or boredom, which, in turn, can lead to stress and development of abnormal
67 behaviours [7] that may undermine their individual welfare and their breeding success.

68 To maintain captive healthy populations, with good genetic variability and thus high
69 survival rates in case of reintroduction, modern zoos take part in conservation breeding
70 programmes. As reproductive success is linked to how closely captive environmental
71 conditions mirror those that primates would be experiencing in the wild [5], zoos also use
72 environmental enrichments to manage captive populations. Environmental enrichments and
73 conservation breeding programmes are strictly related, as enrichment is a dynamic process

74 that changes an animal's environment, increasing its behavioural choices and prompting a
75 wider range of natural and species-specific behaviours and abilities [8]. Furthermore,
76 enrichment can contribute to promoting resiliency to stress, which helps animals recovering
77 from adverse stimuli [9], improving both the exhibit from the visitor perspective and the
78 reproductive performance of the hosted animals [10]. Enrichment can also foster the essential
79 skills that animals need for their survival if reintroduced into their habitat [11].

80 Scent-based enrichments can be effective at increasing active behaviours in zoo
81 animals and potentially improve their welfare [9,12,13]. However, some authors reported
82 findings that are less clear or indicate that scent enrichment has little effect [14,15]. The
83 delivery mechanism of the scent and the type of scents used are crucial for the
84 implementation of novel olfactory enrichment programmes [16]. The majority of studies have
85 used spices or essential oils rather than focusing on natural or biological scents, but this may
86 not necessarily be appropriate for all species [14]. The main goal of olfactory enrichment is
87 to improve welfare of animals in captive environments, but there is also the possibility that
88 the use of scents can have further positive impacts in addition to this. For instance, scents
89 may elicit behavioural and physiological responses and thus it is important to consider the
90 use of olfactory enrichment to promote potential beneficial effects on reproductive success
91 [17].

92 Primates are traditionally considered “microsmatic” (i.e., with a poor sense of smell)
93 [18] and only a small proportion of studies on olfactory enrichment have been undertaken on
94 primate species [19] with the majority of scents currently used in these studies remaining
95 largely focused on essential oils, spices or herbs [14]. However, various lines of evidence
96 suggest that chemical communication may be important in primates [20]. In particular, it has
97 become increasingly clear that the sense of smell plays a crucial role in primate socio-sexual
98 communication, with semiochemicals being important for kin recognition, mate choice and

99 the regulation of socio-sexual behaviours [21]. However, little is known about the overall
100 effects of olfactory enrichment on primate species.

101 The overarching aim of our work is to design and test a new scent enrichment
102 programme to enhance the breeding success and well-being of critically endangered zoo
103 primates. In this context, we carried out a preliminary study which aimed to assess the effects
104 of lavender (which was chosen based on its effectiveness in humans and domestic animals;
105 reviewed in [22]) on resting and social behaviour as well as on both behavioural and
106 physiological indicators of stress in two captive primate species: red-ruffed lemurs (*Varecia*
107 *rubra*) and Lar gibbons (*Hylobates lar*). These species are currently classified as either
108 critically endangered (red-ruffed lemurs [23]) or endangered (Lar gibbons [24]), largely due
109 to the deforestation, logging and hunting activities that threaten the habitat and survival of
110 these species [23,24]. Therefore, designing and implementing strategies that improve welfare
111 and breeding success of these species in captivity is particularly crucial. In this study, we
112 predicted that lavender would reduce the stress levels of zoo red-ruffed lemurs and Lar
113 gibbons, which would be reflected by significant changes in behavioural (i.e., decrease of the
114 frequency of stress-related behaviours, and increase of the frequency of social behaviours)
115 and physiological indicators of well-being when comparing before (i.e., baseline period) and
116 after (i.e., post enrichment period) the scent enrichment.

117

118 **Material and methods**

119

120 ***Study subjects and housing***

121

122 We studied two captive troops of red-ruffed lemurs ($n = 3$) and Lar gibbons ($n = 5$)
123 housed at Dudley Zoological Gardens (UK). The troop of red-ruffed lemurs consisted of two

124 related (brothers) adult males (15 y/o) and one unrelated adult female (14 y/o). The troop of
125 Lar gibbons consisted of one adult male (16 y/o), one adult females (17 y/o) and their
126 offspring – one adult female (6 y/o), two young males (2 y/o and 8 y/o, respectively).

127 We carried out behavioural observations and faecal sampling from September to
128 December 2019 (red-ruffed lemurs) and from September to December 2018 (Lar gibbons).

129 Both troops lived in an indoor enclosure (heated to 28 °C) with access to an outdoor
130 enclosure (i.e., “visitor walkthrough” enclosure in the case of red-ruffed lemurs).

131

132 ***Study protocol***

133

134 We divided the overall study period in three periods: baseline, scent enrichment, post
135 enrichment. We collected behavioural data and faecal samples (see below “Assessment of
136 welfare”) for four days per study period (12 days in total) over three months.

137

138 ***Scent enrichment***

139

140 We cut white cotton sheets into 75 cm long and 5 cm wide strips, which we then
141 soaked with 20 drops naissance 100% pure lavender essential oil diluted with 12 ml of cold
142 boiled water. We prepared the scent cotton strips at early morning of each sampling day over
143 the scent enrichment period. We positioned these strips around both indoor and outdoor
144 enclosures; particularly, and we tied them approximately 1 m from the ground around the
145 climbing frames as these were the most used areas of the enclosures.

146

147 ***Assessment of welfare***

148

149 We have used both behavioural (e.g., naturalistic species-specific behaviours,
150 stereotypic behaviours) and physiological (e.g., corticosteroid levels, regulated by
151 hypothalamic-pituitary-adrenal-HPA axis) methods to assess the effects of scent enrichment.

152

153 Behavioural data collection

154

155 We collected behavioural data by instantaneous scan sampling [25] of some
156 behaviours (Table 1), with behaviours recorded at 5-min intervals over the duration of six
157 hours from 9am to 3pm, four days per study period (baseline, scent enrichment, post
158 enrichment) over three months. We recorded a total of 144 hr of observations over the study
159 period (excluding the pilot study), with 50 scan samples each sampling day on each group
160 (see supporting information).

161

162 **Table 1 - Ethogram**

Behaviour	Description
Resting	Lying or sitting while awake, with eyes open and arms down by side of body.
Sleeping	Lying on back, front or side, eyes closed and whole body is relaxed
Grooming	Using fingers or mouth to pick through the coat, removing any foreign bodies from a conspecific
Play	Animal is engaging in activities such as chasing others, leaping around the enclosure etc. in a playful context
Self-scratching	An animal rubs their own body at a fast pace
Pacing	Animal walks back and forth in a distinct, unchanging pattern within the enclosure.

163

164

165 Hormone sampling and measurements

166

167 We collected faecal samples of all subjects every morning before behavioural
168 observations, whenever defecation was observed and the identity of the animal was known.
169 In total, we collected 78 samples (red-ruffed lemurs = 25; Lar gibbons = 53). The samples
170 were stored in a freezer at 20°C right after collection. At the end of the study period, the
171 collated samples were fully prepared by adding biological hazard labels onto each pot before
172 being delivered in a refrigerated (dry ice) to the Department of Veterinary Medical Sciences
173 and Animal Production Science of Bologna University for radioimmunoassay (RIA).

174 Cortisol concentrations were determined by RIA. All concentrations were expressed
175 in pg/mg of faecal matter. The extraction methodology followed the methods of Fontani and
176 colleagues [26]. In brief, five millilitres of a methanol:water (4:1 v/v) solution were added to
177 60 mg (wet weight) of faeces in capped-glass tube vials. The vials were then vortexed for 30
178 min using a multitube pulsing vortexer. After centrifugation at 1,500 g for 15 min, 5 ml ethyl
179 ether (BDH Italia, MI, Italy) and 0.2 ml NaHCO₃ (5%; Sigma Chemical Co., St. Louis, MO)
180 were added to 1 ml of supernatant. This preparation was vortexed for 1 min and centrifuged
181 for 5 min at 1,500 g. The ether portion was aspirated with a pipette, and evaporated under an
182 airstream suction hood at 37°C. The dry residue was redissolved into 0.5 ml of 0.05 M
183 phosphate-buffered saline (PBS; pH 7.5).

184 Cortisol was assayed in the faecal samples according to the method of [27]. The
185 validation parameters of the analyses were as follows:

186 *Cortisol*. Sensitivity 3.10 pg/100 l; intra-assay variability 6.8%; interassay variability
187 9.3%; specificity (%), cortisol 100, corticosterone 9.5, 11_β-hydroxyprogesterone 8.3,
188 cortisone 5.3, 11_β-desoxycortisol 5.0, progesterone 0.6, desoxycorticosterone 0.5, 20_β-
189 dihydrocortisone 0.4, testosterone 0.3, aldosterone 0.1, dehydroepiandrosterone <
190 0.0001, 5_α-pregnenolone <0.0001, 17_β-estradiol < 0.0001, and cholesterol < 0.0001.

191

192 **Statistical analyses**

193

194 In order to assess the effect of scent enrichment on red-ruffed lemurs' and Lar
195 gibbons' behaviour and FGCs, we first generated three behavioural categories from the
196 individual behavioural measures we collected. More specifically, we generated: 1) a resting
197 category by adding up our data on resting and sleeping behaviours; 2) a social category by
198 combining our data on grooming and play; and, finally, 3) a stress category by combining our
199 data on pacing and self-scratching behaviours. We included scratching in this category since
200 this is commonly considered an indicator of anxiety [28]. We then used the *aov* function in R
201 (v 4.0.2) [28] to run a 2x2 Analysis of Variance (ANOVA), in which the rates of resting,
202 social and stress-related behaviours as well as FGC concentrations were set as dependent
203 variables in separate models, while species (Lar gibbon vs red-ruffed lemur) and enrichment
204 condition (before vs. after exposure to scent enrichment), along with their interaction, were
205 entered as independent factors in all models. We excluded from the analysis an outlier from
206 the faecal glucocorticoid data set. All models met the assumptions of homogeneity of
207 variance and normality of residuals.

208

209 **Results**

210

211 The 2x2 ANOVA model that included resting rates as the outcome variable revealed
212 only a significant main effect of Species, with red-ruffed lemurs resting more frequently than
213 Lar gibbons, but there was no significant main effect of Enrichment condition or the
214 interaction between Enrichment and Species on resting rates (Table 2).

215

216

217

218 **Table 2.** Results of the 2x2 ANOVA testing the effect of Enrichment condition, Species and
219 their interaction on resting rates. Significant result is shown in bold.

Dependent variable	Independent variables	df	Sum square	F-value	P-value	Partial η^2
Resting	Enrichment	1	0.003	0.48	0.499	0.17
	Species	1	0.266	51.23	< 0.001	0.8
	Enrichment * Species	1	0.00	0.00	0.999	< 0.01
	Residuals	13	0.07			

220

221 By contrast, we found a significant effect of the interaction between enrichment
222 condition and species on rates of social interaction (Table 3). Follow-up post-hoc t-tests
223 revealed that, while Lar gibbons increased their rates of social interactions following their
224 exposure to lavender ($t(3.2) = 7$, $p = 0.005$, $d = 5.7$, Figure 1), red-ruffed lemurs showed a
225 reduction in rates of social interactions after being exposed to lavender ($t(8.3) = 2.8$, $p = 0.02$,
226 $d = 1.6$, Fig. 1).

227

228 **Table 3.** Results of the 2x2 ANOVA testing the effect of Enrichment condition, Species and
229 their interaction on social rates. Significant result is shown in bold.

Dependent variable	Independent variables	df	Sum square	F-value	P-value	Partial η^2
Social	Enrichment	1	0.002	3.04	0.10	0.22
	Species	1	0.001	1.65	0.22	0.11
	Enrichment * Species	1	0.005	6.46	0.02	0.33
	Residuals	13	0.01			

230

231

232 **Fig. 1.** Effect of enrichment condition on rates of social interactions in red-ruffed lemur and
233 Lar gibbon. Height of the boxes represents mean while whiskers represent standard error.

234

235 Rates of stress-related behaviours were significantly predicted by enrichment
236 condition but not by species or the interaction between species and enrichment condition
237 (Table 4). More specifically, both species reduced their rates of stress-related behaviours
238 after they were exposed to lavender (Fig. 2).

239

240 **Table 4.** Results of the 2x2 ANOVA testing the effect of Enrichment condition, Species and
241 their interaction on rates of stress-related behaviours. Significant result is shown in bold.

Dependent variable	Independent variables	df	Sum square	F-value	P-value	Partial η^2
Stress-related behaviours	Enrichment	1	0.0013	5.42	0.037	0.30
	Species	1	0.0001	0.23	0.641	0.02
	Enrichment * Species	1	0.0001	0.41	0.533	0.03
	Residuals	13	0.0032			

242

243 **Fig. 2.** Effect of enrichment condition on rates of stress-related behaviours in both red-ruffed
244 lemur and Lar gibbon. Height of the boxes represents mean while whiskers represent
245 standard error.

246

247 Finally, we found that enrichment condition significantly predicted FGCs (Table 5):
248 following the exposure to lavender, both species displayed a significant increase in FGC
249 concentration, compared to before being exposed to the scent enrichment (Fig. 3).

250

251 **Table 5.** Results of the 2x2 ANOVA testing the effect of Enrichment condition, Species and
252 their interaction on FGC concentration. Significant result is shown in bold.

Dependent variable	Independent variables	df	Sum square	F-value	P-value	Partial η^2
FGC	Enrichment	1	9.89	11.23	0.002	0.26
	Species	1	2.06	2.34	0.135	0.06
	Enrichment * Species	1	1.13	1.28	0.265	0.03
	Residuals	36	31.72			

253

254 **Fig. 3.** Effect of enrichment condition on FGC concentration in both red-ruffed lemur and
255 Lar gibbon. Height of the boxes represents mean while whiskers represent standard error.

256

257 **Discussion**

258

259 The effects of olfactory enrichment have been tested on several domestic, farm,
260 laboratory and zoo-housed animals [29,30]. However, olfactory stimulation is still one of the
261 least studied forms of enrichment (reviewed in [31]). In addition, there are mixed and
262 conflicting conclusions regarding the benefits of olfactory enrichment on animal welfare, and
263 this is particularly the case of primate species among which the overall effects of olfactory
264 enrichment is currently unclear and understudied (reviewed in [22]).

265 In this study, we found a significant effect of the scent enrichment on social
266 interactions, with red-ruffed lemurs showing a reduction and Lar gibbons exhibiting an
267 increase in rates of social interactions after being exposed to lavender. Generally, several
268 studies have found that scent enrichments may be effective at increasing active behaviours in
269 individuals in zoo-housed animals, such as cheetahs (*Acinonyx jubatus*) [9], Californian sea
270 lions (*Zalophus californianus*) [13] and Rothschild giraffes (*Giraffa camelopardalis*
271 *rothschildi*) [12] but not in meerkats (*Suricata suricatta*) [15]. Regarding primates, Gronqvist
272 and colleagues [32] showed that, among captive Javan gibbons (*Hylobates moloch*), olfactory
273 enrichment significantly increased the frequency of natural species-specific behaviours,
274 although individuals' interest in the olfactory enrichment decreased rapidly after the first day.
275 By contrast, Baker et al. [16] tested the effects of olfactory enrichment on ring-tailed lemurs
276 (*Lemur catta*) and found no significant effects on individuals' behaviours in the presence of
277 the odours, a result which was also shown in a study with essential oils on gorillas (*Gorilla*
278 *gorilla gorilla*) [14].

279 The opposite effect that scent enrichment exerted on rates of social interactions in the
280 two study species, with increased rates of social behaviour in Lar gibbons and decreased rates
281 of social behaviour in red-ruffed lemurs following exposure to the scent enrichment, might be
282 related to the fact that these two species spent most of their time in different types of social
283 behaviour. More specifically, Lar gibbons spent 72% of their social time playing, while red-
284 ruffed lemurs spent 78% of their social time grooming. A wide range of studies has shown
285 that frequency of play behaviour is strongly affected by the levels of exposure to stress the
286 animal is experiencing. In rats (*Rattus rattus*), for example, prenatal exposure to a stressor
287 significantly increases the latency to play [33]. Similarly, studies on both squirrel monkeys
288 (*Saimiri sp.*), rhesus macaque (*Macaca mulatta*) and common marmoset (*Callithrix jacchus*)
289 showed that play rates were higher in individuals who experienced low stress levels [34–36].
290 In this context, our findings that Lar gibbon spent more time playing after the introduction of
291 the scent enrichment compared to before the exposure to lavender might reflect the fact that
292 this species might have experienced lower stress levels after the exposure to the scent, which
293 is consistent with our prediction. On the other hand, social grooming, a common affiliative
294 behaviour in primates, has long been shown to have a stress-reducing effect. Work conducted
295 on macaques has shown, for example, that either receiving or giving grooming lowers stress
296 levels in the individuals involved in the interaction [36–42]. We, therefore, suggest that red-
297 ruffed lemurs reduced their rates of social grooming following the exposure to the scent
298 enrichment because the presence of lavender might have decreased their overall stress levels.

299 As we predicted, we found a significant effect on the scent enrichment on stress-
300 related behaviours, with both red-ruffed lemurs and Lar gibbons reducing their rates of stress-
301 related behaviours after they were exposed to lavender. This is consistent with our prediction
302 that scent enrichment reduces behavioural indicators of stress (i.e., pacing and self-
303 scratching). Similar results were reported in other species. Uccheddu and colleagues [43], for

304 example, exposed domestic dogs to a variety of essentials oils, and found that some scents
305 increased frequencies of behavioural indicators of relaxation while others decreased
306 behavioural indicators of stress such as pacing and over-grooming. Similarly, a study on
307 cheetahs and Sumatran tigers (*Panthera tigris sumatrae*) found that stereotypic pacing
308 behaviour was significantly decreased in the presence of a hay ball with cinnamon [44].

309 Finally, our finding that both red-ruffed lemurs and Lar gibbons displayed a
310 significant increase in FGCs following the exposure to lavender is at first puzzling and in
311 direct opposite to our findings related to the behavioural indicator of stress (see above). This
312 result, therefore, suggests that changes in behavioural indicators of stress such as pacing and
313 self-scratching do not necessarily reflect physiological indicators of stress, such as FGCs.
314 This is consistent with the work conducted by Higham and colleagues [45] showing that,
315 among olive baboons (*Papio anubis*), both short-term (i.e., day-to-day) and long-term
316 variation in rates of self-directed variation does not reflect changes in FGCs. This mismatch
317 might be due to the fact that self-directed behaviours and FGCs may reflect two different
318 types of stress. More specifically, self-directed behaviours likely reflect low-level acute
319 stress, or anxiety [46], while FGCs likely reflect high-level chronic stress. Accordingly, self-
320 directed behaviours have been found to increase in anxiety-inducing context, such as when
321 animals are given anxiogenic drugs [47], or after aggression [48]. On the other hand, FGC
322 levels have been shown to increase when animals are exposed to high levels of stress, such as
323 in the presence of tourists [49] or when exposed to the odour of a predator [50]. Therefore,
324 this suggests that researchers should, ideally, use *both* behavioural *and* physiological
325 indicators of stress and anxiety in order to have a complete picture on the levels of stress an
326 animal experiences and that behavioural indicators of anxiety should not necessarily be
327 interpreted as indicator of glucocorticoid production.

328 The question remains, however, on why both red-ruffed lemurs and Lar gibbons
329 exhibited higher FGC levels after exposure to scent enrichment compared to before scent
330 enrichment was introduced. The main function of glucocorticoids is to mobilize the energy
331 into the bloodstream from storage sites inside the body. This energy can then be used by
332 tissues and organs, such as muscle, and brain. Consequently, glucocorticoids are generally
333 produced every time the body needs energy, such as during stress response, when the animal
334 might need energy, for example, to escape from a predator. However, there are other non-
335 stress-related contexts in which animal body might need energy, such as early in the morning
336 when an animal needs to start their physical activity. Accordingly, glucocorticoid levels tend
337 to peak early in the morning. Here we argue that FGCs increased after the exposure to
338 lavender because the introduction of the scent enrichment might have increased the animals'
339 general activity pattern (e.g., locomotion, foraging), which might have required an increase in
340 glucocorticoid production by the animals' body.

341 In general, it is crucial to consider the ecological/biological relevance of the scent
342 enrichment to the species as this is likely to affect the results. Many scents, including
343 lavender, are chosen based on their effectiveness in humans or domestic animals, but this
344 may not necessarily be appropriate for all animal species [22]. In particular, as previous
345 authors have suggested, important factors to consider for the implementation of novel
346 olfactory enrichment programmes are the delivery of the scent and the type of scents used
347 [16]. The majority of studies have used spices or essential oils rather than focusing on natural
348 or biological scents; however, as with all types of enrichment, the biology of the species
349 should be taken into account and its effectiveness should be continually monitored to inform
350 best practices. For example, several studies have suggested that the use of either natural
351 prey/predator odours or odours from conspecifics should be researched further [32]. Other
352 studies have suggested the use of diffusers as a delivery method may be more effective [16].

353 Additionally, further studies have indicated that scents could be used in a number of
354 combinations and introduced randomly to continue to add novelty to the enrichment
355 programme and avoid the problem of habituation [9].

356 Interestingly, we found that scent enrichment exerted both behavioural and
357 physiological effects on both red-ruffed lemurs and Lar gibbon. While the use of chemical
358 communication and olfactory signals in lemurs has long been established [51–53], apes are
359 commonly considered microsmatic. However, accumulating evidence seems to suggest that
360 apes may also rely on olfactory signals and chemical communication. Henkel and Setchell
361 [54], for example, recently showed that chimpanzees (*Pan troglodytes*) spend more time
362 sniffing the urine of outgroup individuals than that of group members. Similarly, accounts of
363 border patrolling among wild chimpanzees report how individuals are often seen sniffing the
364 ground when near the territory of a neighbouring group [55]. Our findings showing that scent
365 enrichment exerts both behavioural and physiological changes in Lar gibbon confirms that
366 olfactory communication plays a key role in social interaction and physiological regulation
367 not only in chimpanzees but also in other apes.

368 In conclusion, our preliminary study provides strong evidence of a beneficial effect of
369 scent enrichment on animal welfare. Following exposure to the scent enrichment, animals
370 spend more time play, and less time grooming and exhibit lower rates of stress-related
371 behaviours. Our finding that both red-ruffed lemurs and Lar gibbon increased their levels of
372 FGCs after exposure to lavender might be associated to an increase in activity after animals
373 were exposed to the scent enrichment. Future work will need to expand the investigation of
374 the effect of scent enrichment on animal welfare by focusing on a wider range of primate
375 species and on a bigger sample size.

376

377 **Acknowledgements**

378

379 We are grateful to Dudley Zoo and Castle (especially David Beeston, Chris Leeson, Pat
380 Stevens, and primate keepers) and Twycross Zoo (especially Mat Liptovszky, Manuela
381 Townsend, Freisha Patel, and primate keepers) for their support to the project and assistance
382 with sample collection. We thank Jemma Billingsley, Stephanie Courten, Ailie McAuley,
383 Alexandria Lott, Amy Quirke, Demi Jayne Sheppard, Henry Swain, and Luke Bryant for
384 collecting data (which were not included in this paper) on howler monkeys, Diana monkeys
385 and orangutans at Dudley and Twycross zoos. This research work was supported by the
386 Faculty of Science and Engineering, University of Wolverhampton (equipment & laboratory
387 consumables), and the Department of Veterinary Medical Sciences, University of Bologna
388 (laboratory analyses).

389

390 **Author contribution**

391 Conceived and designed the experiment: SV. Performed the experiment: SS, BT, RP, GM,
392 PAA. Analysed the data: SSKK. Wrote the paper: SV, SSKK, CY, EE, SF.

393

394 **Supporting information caption**

395 **S1 Text. Dataset**

396 The table includes both the raw data and the rates of resting, social and stress-related
397 behaviours as well as the faecal glucocorticoid concentration (pg/mg) exhibited by red-ruffed
398 lemur and Lar gibbon before and after exposure to the scent enrichment (lavender).

399

400

401

402

403 **References**

404 1. Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, Di Fiore A,
405 et al. Impending extinction crisis of the world's primates: Why primates matter. *Science*
406 advances. 2017;3: e1600946.

407 2. Mellor DJ, Hunt S, Gusset M. Caring for wildlife: the world zoo and aquarium animal
408 welfare strategy. WAZA Executive Office. 2015.

409 3. Schulte-Hostedde AI, Mastromonaco GF. Integrating evolution in the management of
410 captive zoo populations. *Evolutionary applications*. 2015;8: 413–422.

411 4. Lacy RC. Stopping evolution. *Conservation genetics in the age of genomics*. New
412 York: Columbia University Press New York; 2009. pp. 58–81.

413 5. Meier K. Blue Eyes on Red Lists: Conservation and the Future of the Blue-eyed
414 Black Lemur. Award Winning Anthropology Papers, Macalester College. 2016.

415 6. Carroll SP, Jørgensen PS, Kinnison MT, Bergstrom CT, Denison RF, Gluckman P, et
416 al. Applying evolutionary biology to address global challenges. *Science*. 2014;346: 1245993.

417 7. Hosey GR. How does the zoo environment affect the behaviour of captive primates?
418 *Applied Animal Behaviour Science*. 2005;90: 107–129.

419 8. Ben-Ari ET. What's New at the Zoo? Zoo biologists are taking a scientific approach
420 to improving the quality of life for captive animals. *BioScience*. 2001;51: 172–177.

421 9. Quirke T, O'Riordan RM. The effect of a randomised enrichment treatment schedule
422 on the behaviour of cheetahs (*Acinonyx jubatus*). *Applied Animal Behaviour Science*.
423 2011;135: 103–109.

424 10. Carlstead K, Shepherdson D. Effects of environmental enrichment on reproduction.
425 *Zoo biology*. 1994;13: 447–458.

426 11. Danial Rioldi E. The influence of conservation breeding programs on animal
427 communication and behaviour—a literary review. Mälardalen University. 2013.

428 12. Fay C, Miller L. Utilizing scents as environmental enrichment: preference assessment
429 and application with Rothschild giraffe. *Animal Behavior and Cognition*. 2015;2: 285–291.

430 13. Samuelson MM, Lauderdale LK, Pulis K, Solangi M, Hoffland T, Lyn H. Olfactory
431 enrichment in California sea lions (*Zalophus californianus*): an effective tool for captive
432 welfare? *Journal of Applied Animal Welfare Science*. 2017;20: 75–85.

433 14. Wells DL, Hepper PG, Coleman D, Challis MG. A note on the effect of olfactory
434 stimulation on the behaviour and welfare of zoo-housed gorillas. *Applied Animal Behaviour
435 Science*. 2007;106: 155–160.

436 15. Myles S, Montrose VT. The effects of olfactory stimulation on the behaviour of
437 captive meerkats (*Suricata suricatta*). *Journal of Zoo and Aquarium Research*. 2015;3: 37–
438 42.

439 16. Baker B, Taylor S, Montrose VT. The effects of olfactory stimulation on the behavior
440 of captive ring-tailed lemurs (*Lemur catta*). *Zoo biology*. 2018;37: 16–22.

441 17. Rafacz ML, Santymire RM. Using odor cues to elicit a behavioral and hormonal
442 response in zoo-housed African wild dogs. *Zoo Biology*. 2014;33: 144–149.

443 18. Heymann EW. Scent marking strategies of New World primates. *American Journal of
444 Primatology*. 2006;68: 650–661.

445 19. Clark F, King AJ. A critical review of zoo-based olfactory enrichment. *Chemical
446 signals in vertebrates* 11. Springer; 2008. pp. 391–398.

447 20. Setchell JM, Vaglio S, Moggi-Cecchi J, Boscaro F, Calamai L, Knapp LA. Chemical
448 composition of scent-gland secretions in an Old World monkey (*Mandrillus sphinx*):
449 influence of sex, male status, and individual identity. *Chemical Senses*. 2010;35: 205–220.

450 21. Vaglio S, Minicozzi P, Romoli R, Boscaro F, Pieraccini G, Moneti G, et al. Sternal
451 gland scent-marking signals sex, age, rank, and group identity in captive mandrills. *Chemical
452 senses*. 2016;41: 177–186.

453 22. Wells DL. Sensory stimulation as environmental enrichment for captive animals: a
454 review. *Applied Animal Behaviour Science*. 2009;118: 1–11.

455 23. Borgerson C, Eppley TM, Patel E, Johnson S, Louis E, Razafindramanana J. Red
456 ruffed lemur (*Varecia rubra*). The IUCN Red List of Threatened Species 2020. 2020. Report
457 No.: 2307–8235.

458 24. Brockelman W, Geissmann T. *Hylobates lar*. The IUCN Red List of Threatened
459 Species 2020

460 25. Altmann S. The structure of primate social communication. *Social communication*
461 among primates. Chicago: University of Chicago Press; 1967. pp. 325–362.

462 26. Fontani S, Vaglio S, Beghelli V, Mattioli M, Bacci S, Accorsi PA. Fecal
463 concentrations of cortisol, testosterone, and progesterone in cotton-top tamarins housed in
464 different zoological parks: relationships among physiological data, environmental conditions,
465 and behavioral patterns. *Journal of Applied Animal Welfare Science*. 2014;17: 228–252.

466 27. Tamanini C, Giordano N, Chiesa F, Seren E. Plasma cortisol variations induced in the
467 stallion by mating. *European Journal of Endocrinology*. 1983;102: 447–450.

468 28. R Core Team. R: A language and environment for statistical computing. R
469 Foundation for Statistical Computing, Vienna, Austria. 2020.

470 29. Heitman K, Rabquer B, Heitman E, Streu C, Anderson P. The use of lavender
471 aromatherapy to relieve stress in trailered horses. *Journal of Equine Veterinary Science*.
472 2018;63: 8–12.

473 30. Blackie N, de Sousa M. The Use of Garlic Oil for Olfactory Enrichment Increases the
474 Use of Ropes in Weaned Pigs. *Animals*. 2019;9: 148.

475 31. Campbell-Palmer R, Rosell F. The importance of chemical communication studies to
476 mammalian conservation biology: a review. *Biological Conservation*. 2011;144: 1919–1930.

477 32. Gronqvist G, Kingston-Jones M, May A, Lehmann J. The effects of three types of
478 environmental enrichment on the behaviour of captive Javan gibbons (*Hylobates moloch*).
479 *Applied Animal Behaviour Science*. 2013;147: 214–223.

480 33. Takahashi LK, Haglin C, Kalin NH. Prenatal stress potentiates stress-induced
481 behavior and reduces the propensity to play in juvenile rats. *Physiology & behavior*. 1992;51:
482 319–323.

483 34. Biben M, Champoux M. Play and stress: cortisol as a negative correlate of play in
484 *Saimiri*. *Play Culture Stud*. 1999;2: 191–208.

485 35. Norscia I, Palagi E. When play is a family business: adult play, hierarchy, and
486 possible stress reduction in common marmosets. *Primates*. 2011;52: 101–104.

487 36. Wooddell LJ, Hamel AF, Murphy AM, Byers KL, Kaburu SSK, Meyer JS, et al.
488 Relationships between affiliative social behavior and hair cortisol concentrations in semi-free
489 ranging rhesus monkeys. *Psychoneuroendocrinology*. 2017;84: 109–115.

490 37. Aureli F, Yates K. Distress prevention by grooming others in crested black macaques.
491 *Biology letters*. 2010;6: 27–29.

492 38. Shutt K, MacLarnon A, Heistermann M, Semple S. Grooming in Barbary macaques:
493 better to give than to receive? *Biology Letters*. 2007;3: 231–233.

494 39. Boccia ML, Reite M, Laudenslager M. On the physiology of grooming in a pigtail
495 macaque. *Physiology & Behavior*. 1989;45: 667–670.

496 40. Aureli F, Preston SD, de Waal F. Heart rate responses to social interactions in free-
497 moving rhesus macaques (*Macaca mulatta*): a pilot study. *Journal of Comparative
498 Psychology*. 1999;113: 59–65.

499 41. Gust DA, Gordon TP, Hambright K, Wilson ME. Relationship between social factors
500 and pituitary-adrenocortical activity in female rhesus monkeys (*Macaca mulatta*). *Hormones
501 and Behavior*. 1993; 27: 318–331.

502 42. Kaburu SSK, MacLarnon A, Majolo B, Qarro M, Semple S. Dominance rank and
503 self-scratching among wild female Barbary macaques (*Macaca sylvanus*). *African Zoology*.
504 2012;47: 74–79.

505 43. Uccheddu S, Mariti M, Sannen A, Vervaecke H, Arnout H, Gutierrez RJ, et al.
506 Behavioural and cortisol responses of shelter dogs to a cognitive bias test after olfactory
507 enrichment with essential oils. *Dog Behavior*. 2018;2: 1–14.

508 44. Damasceno J, Genaro G, Quirke T, McCarthy S, McKeown S, O’Riordan R. The
509 effects of intrinsic enrichment on captive felids. *Zoo Biology*. 2017;36: 186–192.

510 45. Higham JP, MacLarnon AM, Heistermann M, Ross C, Semple S. Rates of self-
511 directed behaviour and faecal glucocorticoid levels are not correlated in female wild olive
512 baboons (*Papio hamadryas anubis*). *Stress*. 2009;12: 526–532.

513 46. Maestripieri D, Schino G, Aureli F, Troisi A. A modest proposal: displacement
514 activities as an indicator of emotions in primates. *Animal Behaviour*. 1992;44: 967–979.

515 47. Schino G, Perretta G, Taglioni AM, Monaco V, Troisi A. Primate displacement
516 activities as an ethopharmacological model of anxiety. *Anxiety*. 1996;2: 186–191.

517 48. Schino G. Reconciliation in domestic goats. *Behaviour*. 1998;135: 343–356.

518 49. Barja I, Silván G, Rosellini S, Piñeiro A, González-Gil A, Camacho L, et al. Stress
519 physiological responses to tourist pressure in a wild population of European pine marten. *The*
520 *Journal of Steroid Biochemistry and Molecular Biology*. 2007;104: 136–142.

521 50. Monclús R, Rödel HG, Palme R, Von Holst D, De Miguel J. Non-invasive
522 measurement of the physiological stress response of wild rabbits to the odour of a predator.
523 *Chemoecology*. 2006;16: 25–29.

524 51. Scordato ES, Dubay G, Drea CM. Chemical composition of scent marks in the
525 ringtailed lemur (*Lemur catta*): glandular differences, seasonal variation, and individual
526 signatures. *Chemical Senses*. 2007;32: 493–504.

527 52. Janda ED, Perry KL, Hankinson E, Walker D, Vaglio S. Sex differences in
528 scent-marking in captive red-ruffed lemurs. *American Journal of Primatology*. 2019;81:
529 e22951.

530 53. Hayes RA, Morelli T, Wright P. Anogenital gland secretions of *Lemur catta* and
531 *Propithecus verreauxi coquereli*: a preliminary chemical examination. *American Journal of*
532 *Primateology: Official Journal of the American Society of Primatologists*. 2004;63: 49–62.

533 54. Henkel S, Setchell JM. Group and kin recognition via olfactory cues in chimpanzees
534 (*Pan troglodytes*). *Proceedings of the Royal Society B*. 2018;285: 20181527.

535 55. Samuni L, Preis A, Mundry R, Deschner T, Crockford C, Wittig RM. Oxytocin
536 reactivity during intergroup conflict in wild chimpanzees. *Proceedings of the National*
537 *Academy of Sciences*. 2017;114: 268–273.

538

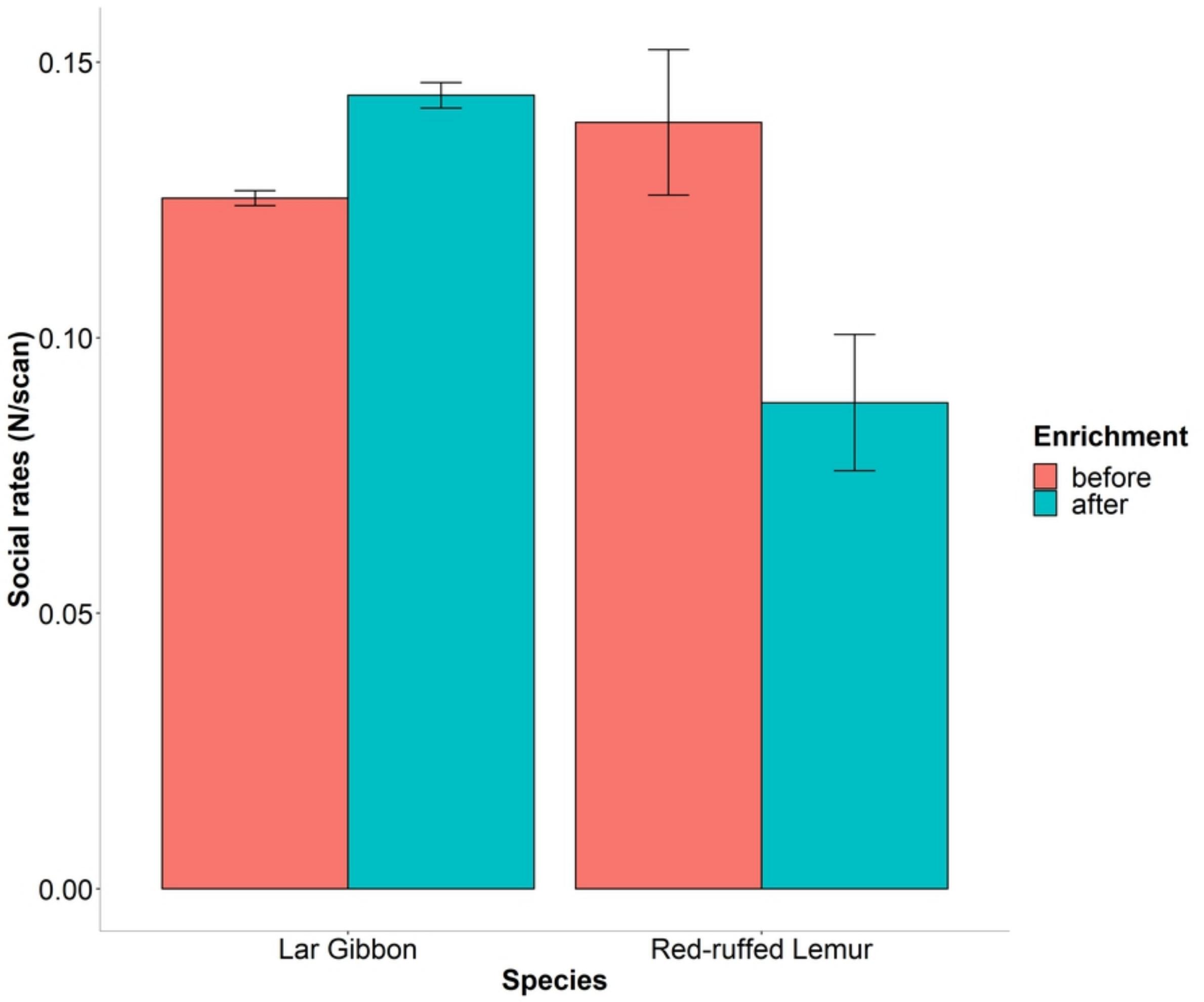


Figure 1

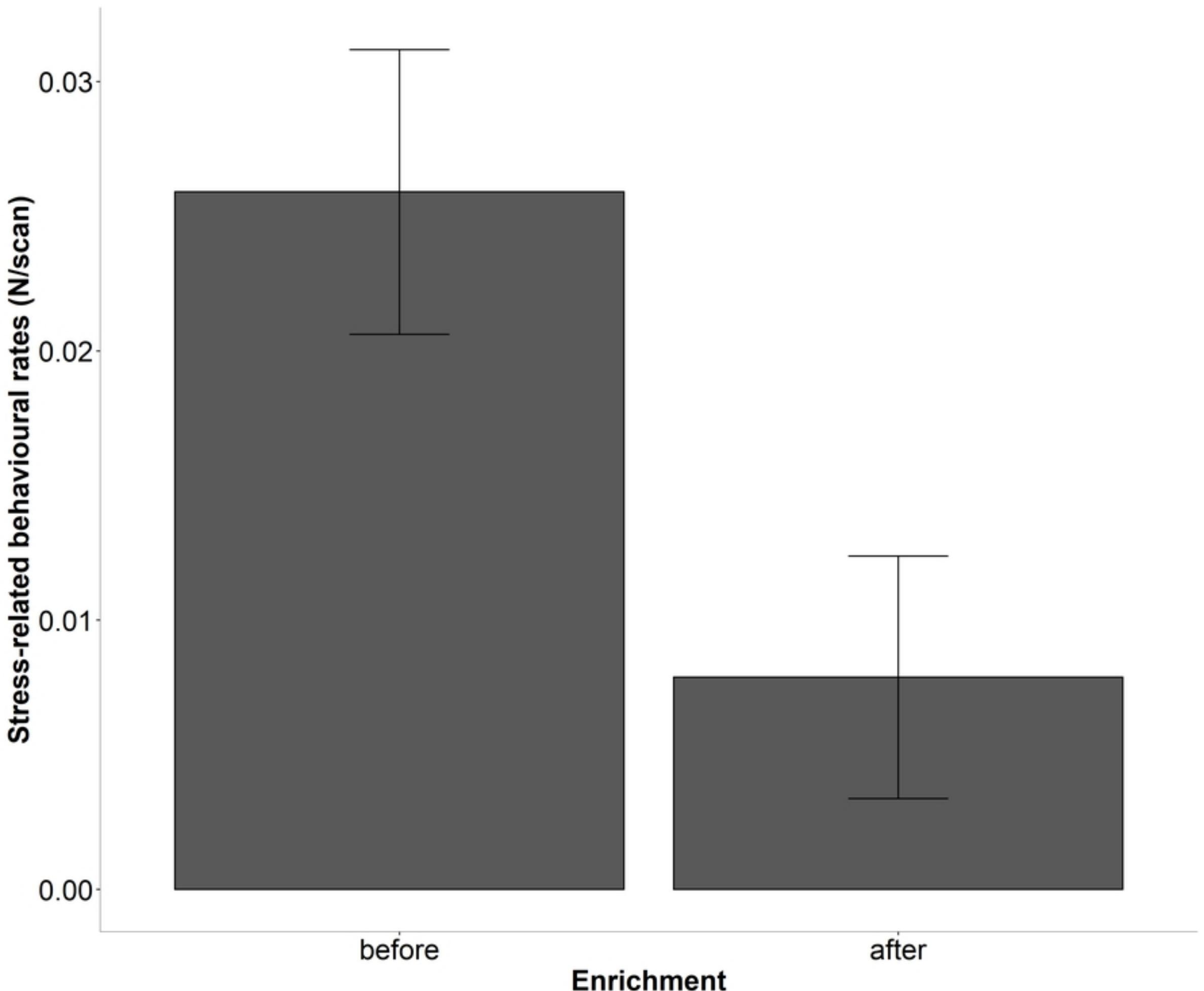


Figure 2

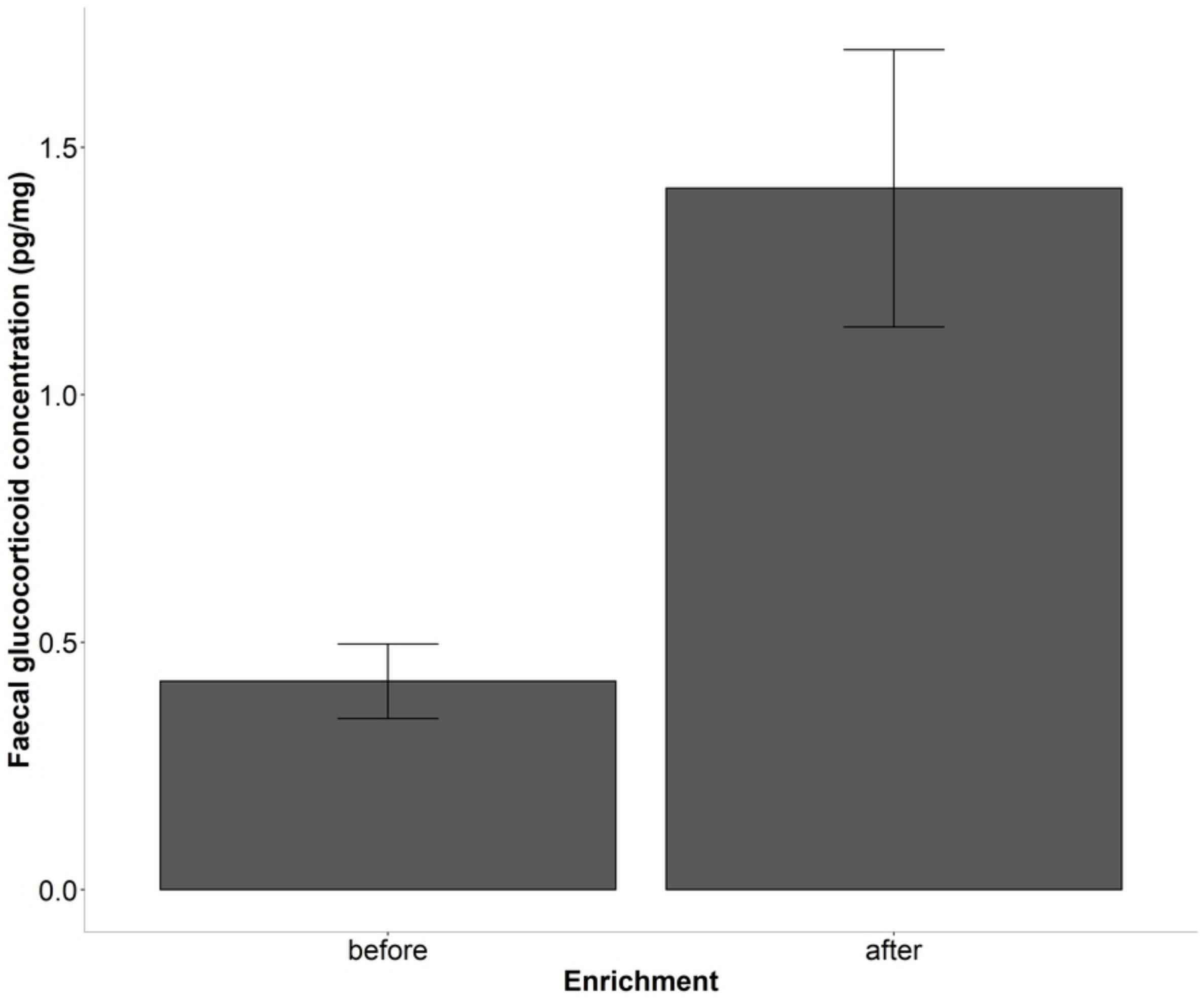


Figure 3