

1

2 **Reduced insulin signalling in adulthood protects soma and**
3 **germline under mutation accumulation**

4

5

6

7 **Elizabeth M.L. Duxbury^{1*}, Hanne Carlsson¹, Kris Sales¹, Simone Immler¹,**
8 **Tracey Chapman¹ and Alexei A. Maklakov¹**

9

10

11 ¹School of Biological Sciences, University of East Anglia, Norwich Research Park,
12 Norwich, NR4 7TJ, UK. *email: E.Duxbury@uea.ac.uk

13

14

15

16 **Abstract**

17 **Dominant theory maintains that organisms age due to resource allocation**
18 **trade-offs between the immortal germline and the disposable soma. Strikingly,**
19 **adulthood-only downregulation of insulin signalling, an evolutionarily**
20 **conserved pathway regulating resource allocation between reproduction and**
21 **soma, increases lifespan and offspring fitness without fecundity cost in the**
22 **nematode, *Caenorhabditis elegans*. Nevertheless, theory suggests that**
23 **reduced germline maintenance can be a hidden cost of lifespan extension. We**
24 **ran a mutation accumulation (MA) experiment and downregulated insulin**
25 **signalling in half of the 400 MA lines by silencing *daf-2* gene expression using**
26 **RNA interference (RNAi) across 40 generations. Adulthood-only *daf-2* RNAi**
27 **reduced extinction of MA lines both under UV-induced and spontaneous**
28 **mutation accumulation. Fitness of the surviving UV-induced MA lines was**
29 **higher under *daf-2* RNAi. Our results suggest that reduced insulin signalling**
30 **protects the soma and the germline and imply that suboptimal gene**
31 **expression in adulthood is a major driver of organismal ageing.**

32

33

34

35 **Main**

36 Ageing, the physiological deterioration of an organism leading to increased
37 probability of death and decreased reproduction with advancing adult age, is
38 taxonomically ubiquitous but remains incompletely understood¹⁻⁴. While there is
39 broad agreement that ageing evolves because natural selection gradients on traits
40 decline after reproductive maturity⁵⁻⁹, the proximate causes of late-life deterioration
41 are less clear^{1,2,10,11}. The “disposable soma” theory of ageing suggests that ageing
42 evolves as a result of competitive resource allocation between the germline and the
43 soma¹²⁻¹⁴. It follows that increased investment in somatic maintenance leading to
44 longer lifespan trades-off with traits associated with reproduction, such as the
45 number or size of progeny^{15,16}. Despite considerable support for trade-offs between
46 somatic maintenance and reproduction, growing empirical work questions the
47 universality of such resource allocation trade-offs in the evolution of ageing^{2,11,17,18}.
48 Several studies have shown that experimentally increased lifespan, often via the
49 downregulation of genes in nutrient-sensing signalling pathways in adulthood, is not
50 detrimental to reproduction measured as offspring number or offspring
51 fitness^{2,18,19,20,21}. These results are in line with the hypothesis that a gradual decline
52 in selection gradients with advancing age after reproductive maturity results in
53 suboptimal gene expression in adulthood contributing to somatic deterioration^{2,22-27}.

54 However, it has been proposed that reduced germline maintenance can be a
55 hidden cost of increased lifespan¹⁸. Germline maintenance, the repair and
56 surveillance of genomic and proteomic integrity in germline stem cells and gametes,
57 is energetically expensive^{18,28} and germline signalling plays a key role in resource
58 allocation to somatic maintenance^{18,28,29,30}. Germline ablation results in increased
59 somatic maintenance and lifespan in *Drosophila melanogaster* fruitflies³¹ and

60 *Caenorhabditis elegans* nematodes³²⁻³⁶, although lifespan extension in *C. elegans*
61 requires an intact somatic gonad³². It is important to note that the requirement of the
62 intact somatic gonad for lifespan extension in germline-less worms does not negate
63 the possibility of a resource allocation trade-off as sometimes implied, but only
64 shows that germline signalling is required to mediate the effect^{18,31,33}. Similarly,
65 recent work in *Danio rerio* zebrafish suggests that germline ablation increases
66 somatic maintenance under stress³⁷. Furthermore, nutritional stress in *C. elegans*
67 results in germline reduction and increased lifespan³⁸. When soma-to-germline
68 communication is disrupted, the number of germ cells is unaffected and lifespan
69 extension is abolished³⁸. Taken together, these results suggest that germline
70 maintenance is costly and can trade-off with somatic maintenance and lifespan^{18,28}.
71 Therefore, the “expensive germline” hypothesis predicts that increased investment
72 into somatic maintenance reduces resources available for germline maintenance,
73 leading to an increased germline mutation rate and reduced offspring quality¹⁸.

74 We tested this prediction by manipulating insulin/IGF-1 signalling (IIS), an
75 evolutionarily conserved pathway that regulates the physiological response of
76 organisms to their environment³. IIS mechanistically links nutrient intake with
77 development, growth, reproduction and lifespan across diverse taxa^{3,30,39}. Reduced
78 IIS, via genetic and environmental interventions, consistently extends lifespan³⁰.
79 Here, we combined a mutation accumulation (MA) approach⁴⁰⁻⁴³ with reduced IIS in
80 adulthood via *daf-2* RNA interference in *C. elegans* to test the “expensive germline”
81 hypothesis, by assessing extinction rate, life history traits and fitness of MA lines
82 under spontaneous and induced mutation accumulation.

83

84 **Results and Discussion**

85 **Parental *daf-2* RNAi in adulthood extends lifespan and improves offspring**

86 **fitness under UV-induced stress.** Adulthood-only *daf-2* RNAi in N2 wildtype *C.*

87 *elegans* nematodes, significantly extended parental lifespan relative to empty vector

88 (e.v.) controls under benign conditions (no irradiation) and under ultraviolet-C ("UV")

89 irradiation-induced stress (Cox proportional hazards mixed effects model, coxme,

90 with matricides censored, RNAi: $z=10.530$, $df=2$, $p<0.001$; UV: $z=0.070$, $df=3$,

91 $p=0.940$; RNAi x UV: $z= 1.500$, $df=4$, $p=0.130$; matricides classed as dead: RNAi:

92 $z=10.400$, $df=2$, $p<0.001$; UV: $z=0.250$, $df=3$, $p=0.800$; RNAi x UV: $z= 1.310$, $df=4$,

93 $p=0.190$; Fig. 1a).

94 There was no cost to parental reproduction, neither under benign conditions

95 nor when parents were UV-irradiated (Fig. S1). Reproduction was estimated as age-

96 specific offspring production (fecundity, Generalised Poisson, RNAi x UV x Age: $z = -$

97 2.546, $p=0.0109$), as individual fitness (lambda, generalised linear model, GLM,

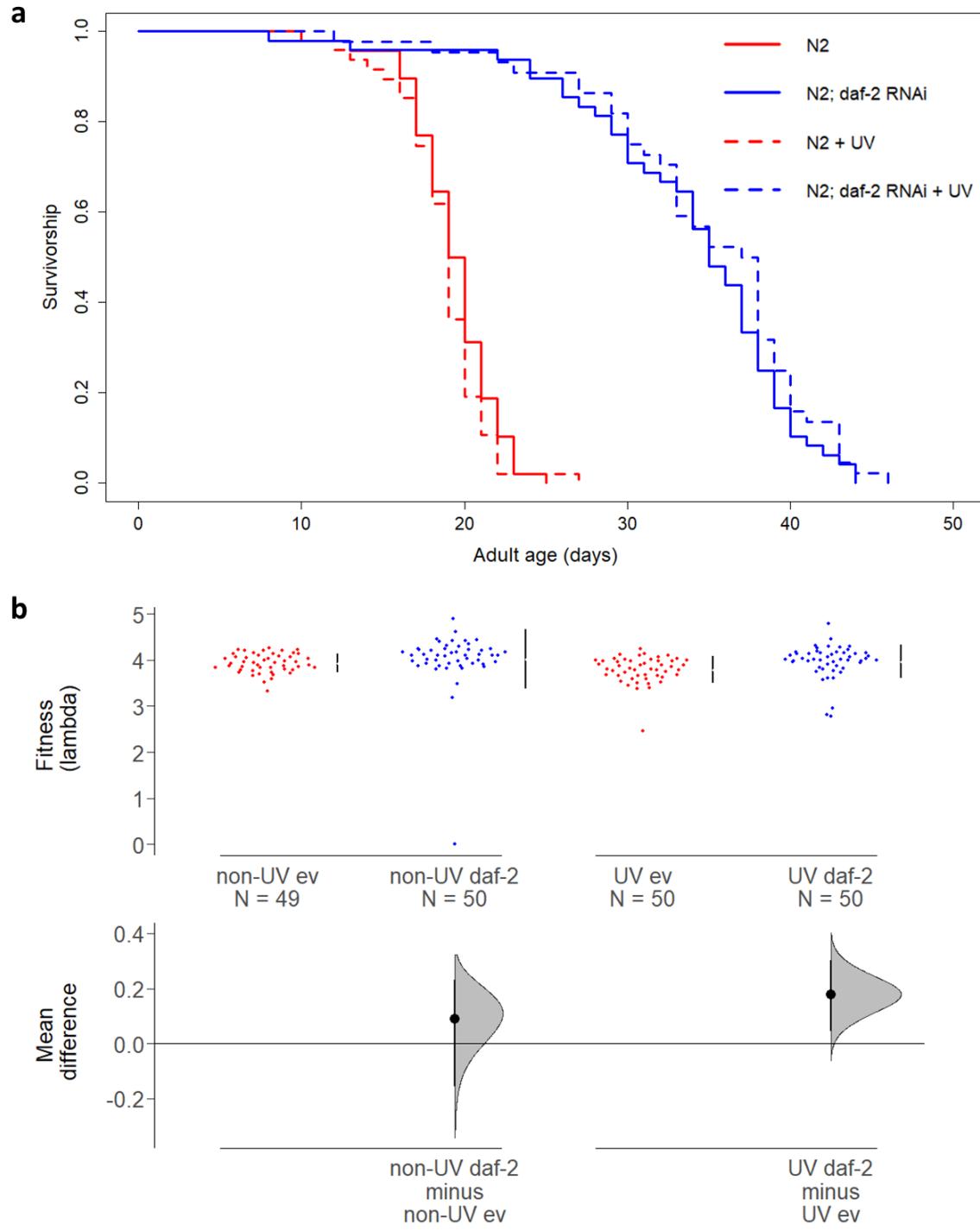
98 RNAi: $t=-0.065$, $df=1$, $p=0.948$; UV: $t=-3.328$, $df=1$, $p=0.0104$; RNAi x UV: $t= 0.159$,

99 $df=1$, $p=0.874$) and as total lifetime reproduction (LRS) (GLM, RNAi: $t=-1.887$, $df=1$,

100 $p=0.0606$; UV: $t=-3.665$, $df=1$, $p<0.001$; RNAi x UV: $t= 0.066$, $df=1$, $p=0.948$).

101 However, *daf-2* RNAi significantly increased offspring fitness both under

102 benign conditions and when parents were UV-irradiated (lambda, GLM: RNAi: $t=-$


103 2.305, $df=1$, $p=0.0222$; UV: $t=-1.625$, $df=1$, $p=0.1059$; RNAi x UV: $t=- 0.772$, $df=1$,

104 $p=0.441$; Fig. 1b). Offspring of UV-irradiated parents did not have significantly lower

105 fitness, even though irradiation reduced fitness and total reproduction of their

106 parents, suggesting effects on offspring may have been buffered to some extent,

107 perhaps via germline repair mechanisms^{18,37,44}.

108 **Fig. 1| Adulthood *daf-2* RNAi in UV-irradiated and non-irradiated parents**

109 **increases parental lifespan and offspring fitness. a,** Parental survival, n=50 per

110 treatment. **b,** Offspring fitness. UV irradiation status and adulthood RNAi treatment

111 (either *daf-2* RNAi, 'daf-2', or empty vector control, 'ev') of parents is indicated.

112 Offspring were maintained on empty vector and were not irradiated. Mean (effect

114 size) and 95% confidence intervals shown were derived using non-parametric
115 bootstrap resampling in ‘dabestr’ R package⁹⁰.

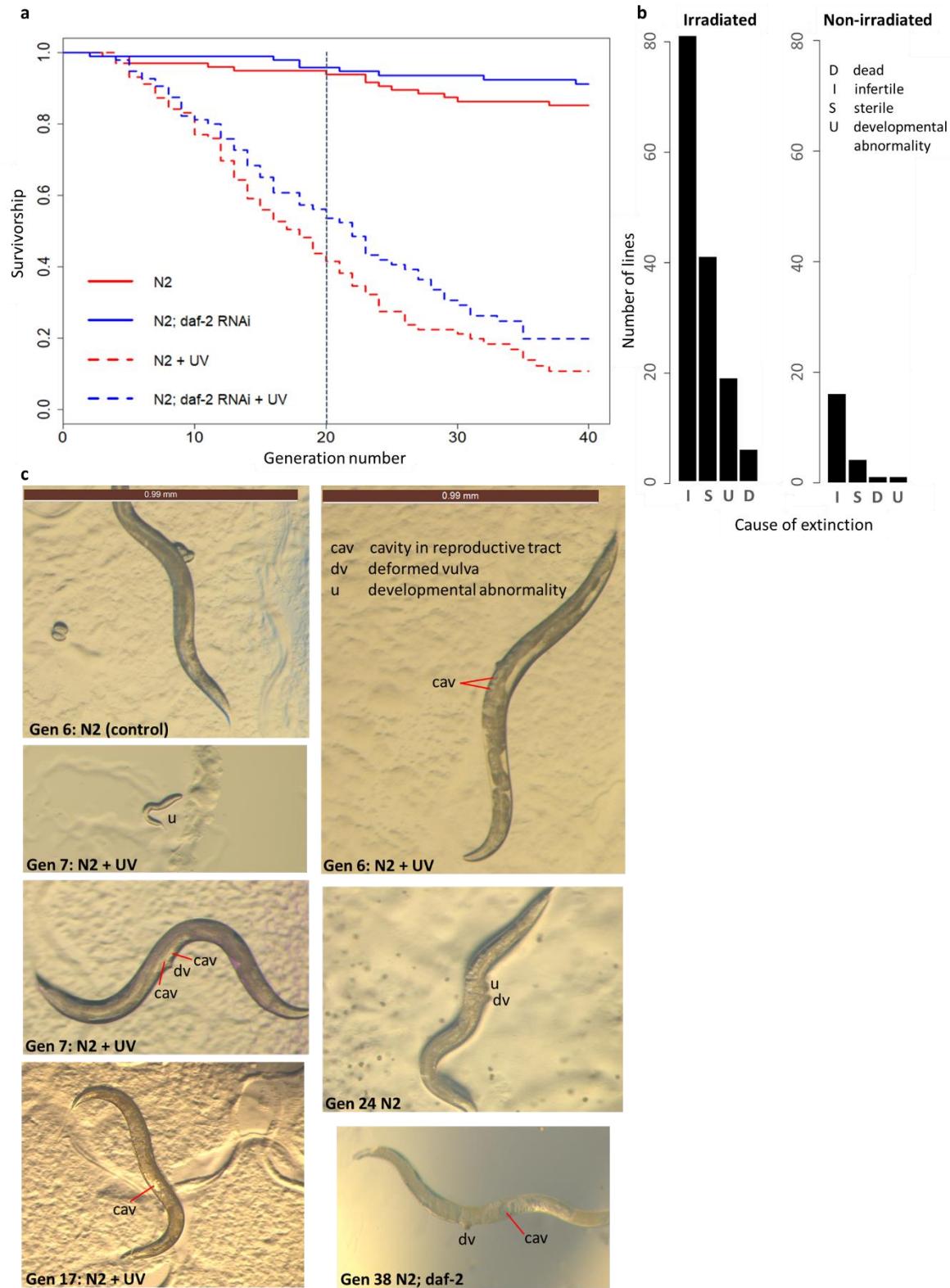
116

117 The impact of parental *daf-2* RNAi and UV treatment on offspring age-specific
118 reproduction varied with offspring age as did the number of offspring with zero
119 fecundity (zero-inflated generalised Poisson, ZIGP, RNAi x age: $z=4.864$, $p<0.001$;
120 UV x age: $z=3.678$, $p<0.001$; RNAi x UV: $z=-0.175$, $p=0.861$; ZI varied with age: $z=-$
121 0.227, $p=0.00656$ and age²: $z=3.301$, $p<0.001$; Fig. S2). There was no effect of
122 parental treatment (neither *daf-2* RNAi, UV irradiation nor their interaction) on
123 offspring total lifetime reproduction (GLM, RNAi: $t=-1.141$, $df=1$, $p=0.255$; UV: $t=-$
124 1.626, $df=1$, $p=0.106$; RNAi x UV: $t= -0.053$, $df=1$, $p=0.958$; Fig. S2).

125 Our findings show that under adulthood-only *daf-2* RNAi, parents increase
126 investment into somatic maintenance resulting in increased lifespan with no cost to
127 themselves or their offspring under benign conditions validating previous work in *C.*
128 *elegans*^{19,20}. Importantly, we reveal that the absence of a longevity-fecundity trade-
129 off in parents persisted under stressful conditions, when organisms have to invest
130 into repairing UV-induced damage.

131 Furthermore, we show that *daf-2* knockdown in adult parents primarily
132 influenced the timing of reproduction in their offspring. Specifically, it caused a shift
133 to increased early life reproduction, improving offspring individual fitness, rather than
134 an increase in total reproduction. Whilst an earlier study found increased total
135 reproduction in the first generation of offspring from *C. elegans* parents treated with
136 *daf-2* RNAi, across N2 wild-type and two other genetic backgrounds, this was also
137 accompanied by increased offspring fitness²⁰, in agreement with our results here.

138 Under UV-induced mutagenesis, the costs of germline maintenance would be
139 expected to become more apparent^{28,37,45}. However we show that adulthood-only
140 *daf-2* RNAi improves fitness of F1 offspring even when parents are under stress.


141

142 **Multigenerational *daf-2* RNAi in adulthood protects against extinction.** To test
143 the effects of *daf-2* RNAi in adulthood for germline maintenance, we conducted a
144 mutation accumulation (MA) experiment for 40 generations in a total of 400 N2 wild-
145 type *C. elegans* MA lines. In 200 of the MA lines, we reduced IIS via *daf-2* RNAi in
146 adult worms in every generation, whereas the other 200 lines served as controls.
147 Mutations were either allowed to accumulate spontaneously or were induced each
148 generation via UV-C irradiation (46 J/m²) (i.e. n=100 MA lines per treatment). We
149 aimed to determine whether an increased investment in somatic maintenance under
150 *daf-2* RNAi would trade off with reduced germline maintenance leading to fitness
151 costs and, consequently, faster MA line extinction.

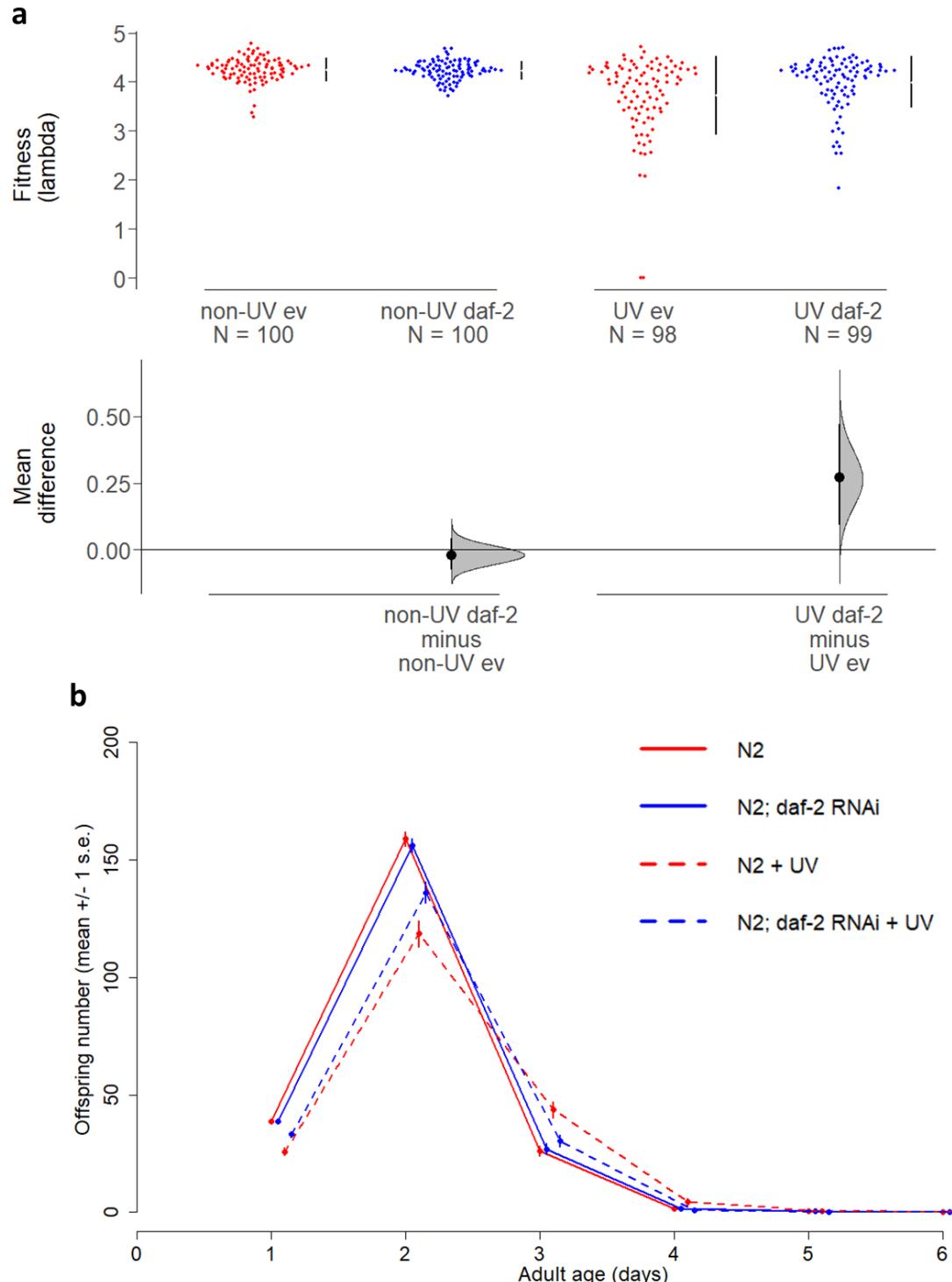
152 We found that *daf-2* RNAi reduced extinction under both UV-induced and
153 spontaneous MA across 40 generations (Cox proportional hazards regression
154 analysis, coxph, RNAi: z=2.159, df=2, p=0.031; UV: z=11.469, df=2, p<0.001; RNAi
155 x UV: z= -0.537, df=4, p=0.591; Fig. 2a). Extinction results did not differ significantly
156 between two independent experimental blocks (coxph, z=-0.942, df=3, p=0.346; Fig.
157 S3). The major causes of MA line extinction (Fig. 2b) were infertility (failure to lay
158 eggs), or sterility (the production of eggs that did not hatch), indicative of the
159 underlying germline damage. Infertility and sterility were likely linked with observed
160 reproductive abnormalities such as a deformed vulva, abnormal external growth
161 close to the vulva (possible tumour) and cavities in the reproductive tract in place of

162 embryos or oocytes (Fig. 2c). It is known that vulva-less *C. elegans* mutants are
163 unable to lay eggs and can die from internal hatching^{46,47}.

164 The reduction in extinction observed in our MA lines with *daf-2* RNAi shows
165 the benefits of increased investment into germline maintenance that became more
166 pronounced across multiple generations of UV-induced and spontaneous MA.

168 **Fig. 2| Reduced adulthood IIS, via *daf-2* RNAi, protects against N2 wild-type**
169 **extinction under mutation accumulation. a,** Transgenerational survival in N2
170 under spontaneous and UV-induced mutation accumulation. Vertical dotted line at

171 generation 20 indicates timing of life history assay. Sample size of 100 lines per
172 RNAi strain by irradiation treatment combination. **b**, Causes of extinction of N2 wild-
173 type MA lines indicate germline damage. **c**, Representative images of germline
174 damage. Brown scale bar of 0.99 mm for all images.


175

176 **Multigenerational *daf-2* RNAi increased fitness of surviving MA lines.** We next
177 tested for the effects of *daf-2* RNAi on the life history traits of surviving MA lines. We
178 were interested in how IIS influences potentially detrimental effects of MA that are
179 not sufficiently severe to cause line extinction. We assayed age-specific
180 reproduction, egg size, male production and adult heat shock resistance in grand-
181 offspring from the spontaneous and UV-induced MA lines on *daf-2* RNAi versus
182 control treatments, at generation 20 of MA, following two generations of rearing
183 under common garden conditions (no irradiation, on empty vector control) to
184 attenuate direct effects of irradiation and RNAi. Generation 20 was a point at which
185 there was a pronounced benefit of *daf-2* RNAi for protection against extinction in the
186 UV-induced MA lines, but no clear difference in extinction trajectories for the
187 spontaneous (non-irradiated) MA lines (Fig. 2a).

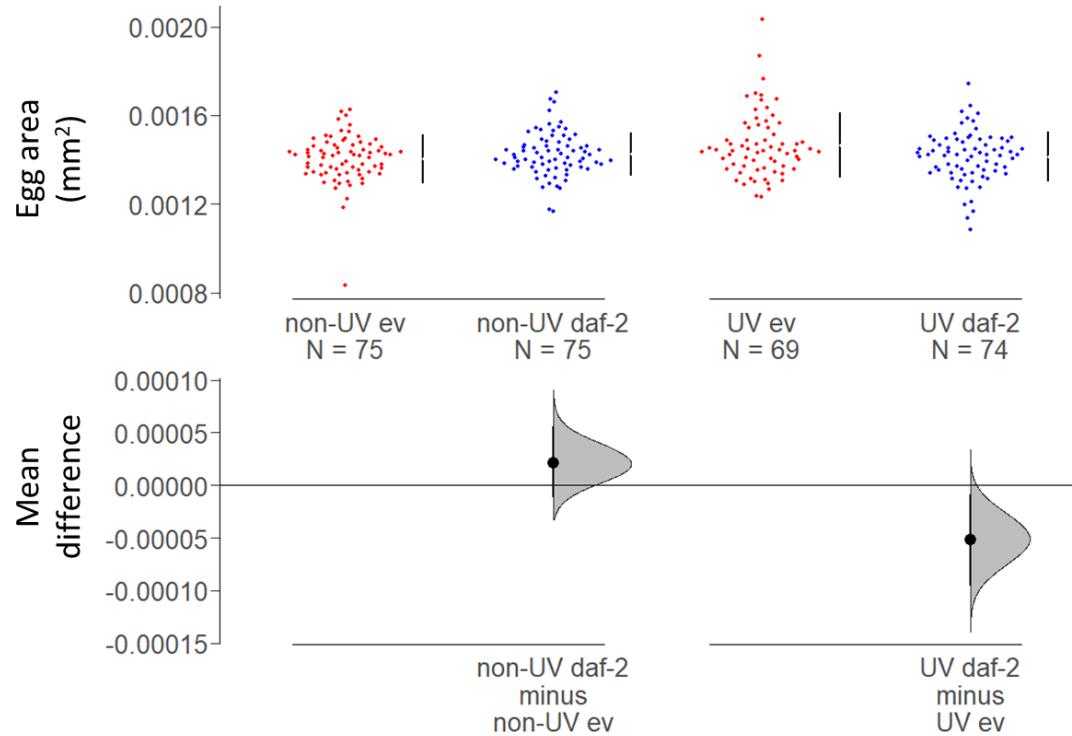
188 Adulthood-only *daf-2* RNAi across 20 generations of mutation accumulation
189 significantly increased individual fitness in the surviving irradiated MA lines, but there
190 was no effect of *daf-2* RNAi on the fitness of non-irradiated lines (GLM, irradiated,
191 RNAi: $t=-2.804$, $p=0.006$; non-irradiated, RNAi: $t=0.647$, $p=0.518$; all data, RNAi x
192 UV: $t=-2.886$, $p=0.004$; Fig. 3a), in agreement with the results on line extinction at
193 generation 20 (Fig. 2a).

194 The increased fitness of irradiated *daf-2* RNAi MA lines was driven by their
195 improved early life fecundity (Day 1 and Day 2 offspring production), relative to
196 irradiated controls (ZIGP, RNAi x age: $z=-1.981$, $p=0.0475$; RNAi x age 2 : $z=3.334$,
197 $p<0.001$; Fig. 3b), an effect absent in the non-irradiated lines (ZIGP, non-UV, RNAi:
198 $z=0.05$, $p=0.963$; all data: RNAi x UV x age: $z=-2.50$, $p=0.0125$; RNAi x UV x age 2 :
199 $z=3.58$, $p<0.001$; ZI intercept: $z=-18.27$, $p<0.001$). There was no effect on total
200 reproduction (GLM, UV: $t=-0.811$, $p=0.419$; non-UV: $t=0.875$, $p=0.383$; UV x RNAi:
201 $t=-1.138$, $p=0.256$; Fig. S4).

202 We suggest that the fitness benefits of *daf-2* RNAi for irradiated MA lines were
203 most likely due to genetic differences between the treatments, as the benefits
204 persisted after two generations of common garden rearing and therefore were not
205 due to the direct exposure of offspring to RNAi (neither as adults nor as eggs). This
206 conclusion is reinforced by the finding that parental *daf-2* RNAi effects on offspring
207 fitness do not persist beyond F1 (see below, Fig. 5). Such genetic differences have
208 likely arisen from the lower rate of MA in *daf-2* RNAi lines leading to lower fitness
209 costs. Variation in fitness was considerably greater across irradiated than across
210 non-irradiated MA lines (Fig. 3a), suggesting that irradiation-induced *de novo*
211 mutations generated greater genetic and phenotypic variation compared to
212 spontaneous MA. The spontaneous mutation rate in N2 wild type *C. elegans* is
213 estimated as one *de novo* mutation per individual per generation, under standard
214 conditions^{48,49}. The close association between extinction trajectories during the first
215 20 generations of MA (Fig. 2a) and the fitness of the surviving MA lines (Fig. 3a)
216 suggests that a threshold of accumulating deleterious mutations needs to be crossed
217 before the effect size is sufficiently severe to result in extinction.

218

219 **Fig. 3| The effect of *daf-2* RNAi on fitness and age-specific reproduction after**
220 **20 generations of MA. a,** Individual fitness (lambda) of the grand-offspring of N2
221 wild-type MA lines at generation 20. Fitness was assayed in a standard common
222 garden environment, on the empty vector control and no irradiation; following two


223 generations of rearing under standard conditions, from MA generation 20. Mean and
224 95% confidence intervals shown. **b**, Age-specific reproduction in the grand-offspring
225 of N2 MA lines at generation 20.

226

227 To determine if increased offspring fitness in the surviving *daf-2* RNAi-treated
228 MA lines, was associated with greater parental resource allocation into their eggs,
229 we measured egg size, as a proxy for parental investment (n=75 eggs measured,
230 one per individual taken from the Generation 20 fitness assay). Previous work has
231 shown that reduced IIS, either via dietary restriction or via *daf-2* RNAi, increases
232 mean egg size^{20,50}.

233 We found that grandparental *daf-2* RNAi resulted in grand-offspring (F2) that
234 laid smaller eggs if their grand-parents from the MA lines had been irradiated, but
235 there was no significant effect on the size of eggs laid by F2 offspring descended
236 from non-irradiated grandparents treated with *daf-2* RNAi following 20 generations of
237 MA (GLM, UV lines, RNAi: $t=2.362$, $df=1$, $p= 0.0195$; non-UV lines, RNAi: $t=-1.246$,
238 $df=1$, $p=0.215$; all data, RNAi x UV: $t=2.642$, $df=1$, $p=0.00869$; RNAi x UV x Block:
239 $t=-0.774$, $df=1$, $p=0.440$; Fig. 4). This is contrary to the increase in F1 egg size under
240 reduced parental IIS found in previous work under benign conditions^{20,50}.

241

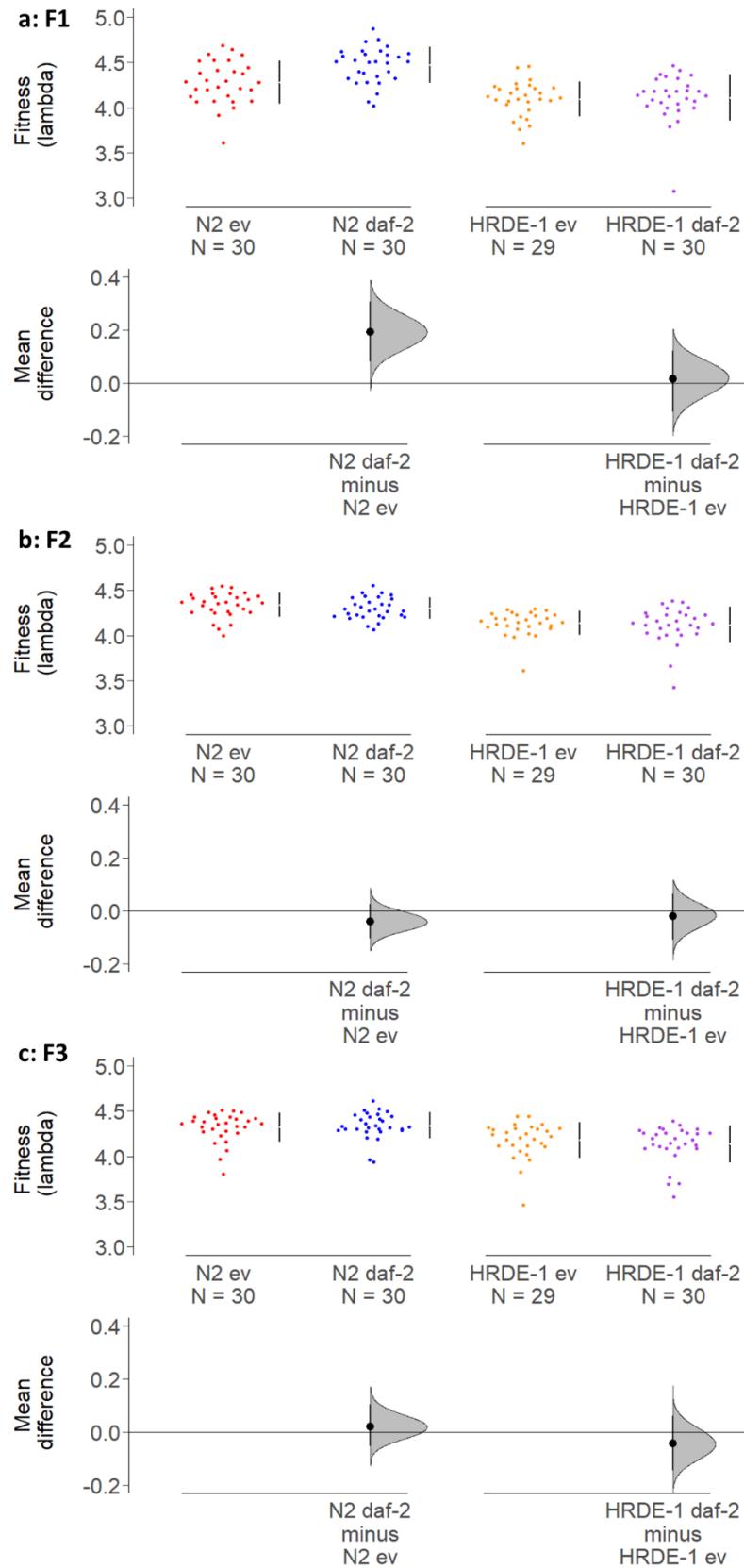
242

243 **Fig. 4| The effect of *daf-2* RNAi on egg size after 20 generations of**
244 **spontaneous or UV-induced MA.** Egg size (area, mm^2) was reduced in the grand-
245 offspring of UV-induced MA lines on *daf-2* RNAi ('daf-2') relative to those from UV-
246 irradiated MA lines on empty vector control ('ev'). However, this difference in egg
247 size was absent from the spontaneous ('non-UV') MA lines, following 20 generations
248 of MA. Grand-offspring were all non-irradiated and kept on ev. Mean and 95%
249 confidence intervals are shown.

250

251 Our results indicate that even though F2 offspring from irradiated *daf-2* RNAi
252 MA lines laid smaller eggs, this did not seem to impact negatively on the quality
253 (fitness) of offspring they produced. It is possible that a smaller egg size could be a
254 phenotypically plastic response to UV radiation, perhaps to improve stress
255 resistance to irradiation. Alternatively, it could be the result of a trade-off between

256 improved investment into germline genetic quality and egg size. At present, it is
257 unclear why grandparental *daf-2* RNAi resulted in smaller eggs in F2.


258 Exposure to certain environmental stresses (e.g. high temperature⁵¹,
259 starvation⁵², increased mutation rate⁵³), increases male production and outcrossing
260 in *C. elegans*. However, we found no increase in the proportion of males produced
261 by the grand-offspring in irradiated MA lines. Only one male developed from the 293
262 eggs assayed.

263 Reduced IIS increases the activity of heat shock factor 1 which mediates
264 lifespan extension^{54,55}. Heat shock responses are conserved across diverse taxa and
265 positively associated with lifespan (as reviewed by^{56,57}). To test the stress resistance
266 of post-reproductive (Day 7) adults, we assayed survival and locomotion under acute
267 heat shock for 1 hour and 45 minutes at 37°C (following⁵⁸). We found no effect of MA
268 line treatment (neither UV irradiation nor *daf-2* RNAi) on the survival of untreated F2
269 offspring following heat shock. Only 4% of the 371 individuals were dead by 24 hours
270 after heat shock. However F2 offspring from non-irradiated *daf-2* RNAi MA lines
271 recovered normal locomotion faster following heat shock than F2 from non-irradiated
272 MA control lines, but this benefit was not seen in descendants from irradiated MA
273 lines (Binomial GLM, 3h post-heat shock, RNAi: $z=-2.274$, $df=1$, $p=0.0229$; UV: $z=-$
274 2.078 , $df=1$, $p=0.0377$; RNAi x UV: $z=2.304$, $df=1$, $p= 0.0212$; 24h post-heat shock,
275 UV: $z=-0.206$, $df=1$, $p=0.837$; RNAi: $z=-0.045$, $df=1$, $p=0.964$; RNAi x UV: $z=1.347$,
276 $df=1$, $p=0.178$; Fig. S5). This is in line with previous work, which found survival after
277 heat shock to more than double with age, from the first to the fourth day of adulthood
278 in *C. elegans*⁵⁸.

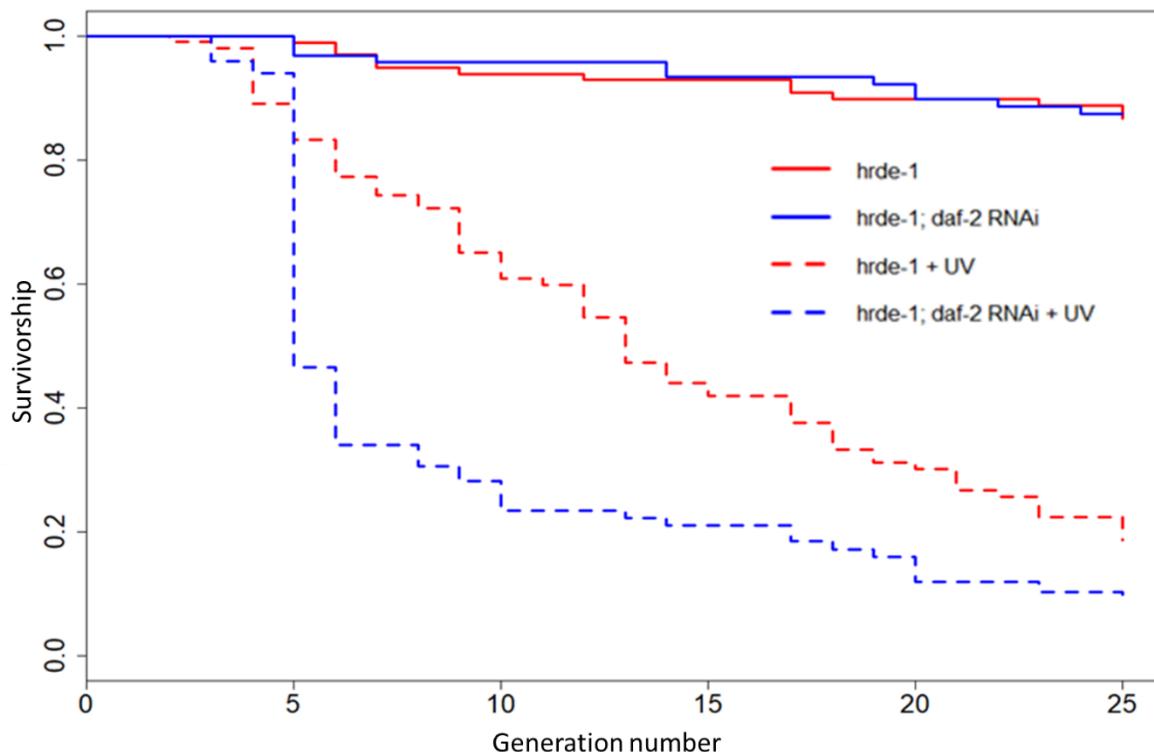
279 **Parental *daf-2* RNAi does not affect offspring fitness transgenerationally.**

280 Transgenerational epigenetic inheritance of RNAi can occur in *C. elegans* via
281 transmission of small interfering RNAs^{59,60}. This transgenerational inheritance of
282 RNAi can last for several generations⁶⁰⁻⁶² and requires the germline argonaut
283 protein, HRDE-1, that is absent in *hrde-1* (heritable RNAi defective- 1) mutants⁶³. To
284 determine whether there was direct transgenerational transfer of *daf-2* RNAi via the
285 germline and thus for how many generations the effects of parental *daf-2* RNAi could
286 persist, we assayed the fitness effects of three generations of offspring (F1, F2 and
287 F3) from *daf-2* RNAi treated versus control parents. Two genetic backgrounds were
288 used: *C. elegans* N2 wild-types, and *hrde-1* mutants that did not transfer RNAi
289 transgenerationally.

290 Parental effects of *daf-2* RNAi on the fitness of descendants, were absent
291 after the first generation of offspring in the N2 wild-types and absent across all
292 generations of offspring in the *hrde-1* mutants (GLM, F1, RNAi x genotype: $t=-2.160$,
293 $df=1$, $p=0.0329$; F2, RNAi x genotype: $t=0.372$, $df=1$, $p=0.711$; RNAi: $t=1.090$, $df=1$,
294 $p=0.278$; genotype: $t=7.044$, $df=1$, $p<0.001$; F3, RNAi x genotype: $t=-0.973$, $df=1$,
295 $p=0.332$; RNAi: $t=0.359$, $df=1$, $p=0.721$; genotype: $t=5.302$, $df=1$, $p<0.001$; all data:
296 RNAi x generation: $F=4.450$, $df=2$, $p=0.0124$; Fig. 5). Furthermore, there was no
297 effect of *daf-2* RNAi on age-specific reproduction after the first generation of
298 offspring, for either N2 or *hrde-1* backgrounds (Fig. S6; Table S1). There was also
299 no *daf-2* RNAi effect on total reproduction for F2 and F3 offspring generations (Fig.
300 S7; Table S1).

301

302 **Fig. 5| The effects of *daf-2* RNAi on offspring fitness do not persist beyond the**
303 **first offspring generation.** Fitness of the: **a**, first (F1); **b**, second (F2) and **c**, third


304 (F3) generation of offspring from parents treated with *daf-2* RNAi ('*daf-2*') or an
305 empty vector control ('ev'), in N2 wild-type and RNAi inheritance deficient *hrde-1*
306 mutant backgrounds. All offspring generations were untreated (kept on ev).

307

308 The absence of fitness benefits in the second and third generations of
309 offspring from *daf-2* RNAi parents strongly suggests that the life-history differences
310 between the *daf-2* RNAi and control irradiated MA lines at generation 20 in the
311 common garden experiment were due to genetic differences and not the direct
312 effects of RNAi. These results also imply a lack of transgenerational inheritance of
313 *daf-2* RNAi beyond the first generation of offspring. Interestingly, the heritable RNAi
314 deficiency 1 (*hrde-1*) gene was required for the fitness benefits of parental *daf-2*
315 RNAi in irradiated offspring, as these offspring fitness benefits were absent in the
316 *hrde-1* mutant background. The *hrde-1* mutants had overall lower fitness and total
317 reproduction than N2 wild-type.

318 ***hrde-1* is required for *daf-2* RNAi to confer germline protection under MA.** *hrde-*
319 1 encodes an Argonaut protein that plays a key role in nuclear RNAi, RNAi
320 inheritance and promoting germline immortality⁶⁴. To determine if functional *hrde-1*
321 was necessary for the protective effects of *daf-2* RNAi under spontaneous and UV-
322 induced MA, we ran 400 MA lines in parallel to the N2 MA experiment, using the *C.*
323 *elegans* *hrde-1* mutant background and reduced IIS, via *daf-2* RNAi, in half of the
324 MA lines. The heritable RNAi deficiency (*hrde-1* mutant) resulted in the rapid
325 extinction of irradiated MA lines and the loss of the protective effects of *daf-2* RNAi
326 under UV-induced MA, across 25 generations (RNAi: $z=-4.016$, $df=2$, $p<0.001$; UV:
327 $z=12.370$, $df=2$, $p<0.001$; RNAi x UV: $z=-1.758$, $df=3$, $p=0.079$; Fig. 6). In fact,

328 irradiated *daf-2* RNAi lines went extinct faster than controls, in the *hrde-1* mutant
329 background. The major cause of extinction in irradiated *hrde-1* mutant MA lines was
330 developmental arrest, followed by infertility (Fig. S8). This strongly suggests that
331 functional RNAi is required for *daf-2* RNAi protection against extinction, and for
332 normal development and reproduction under UV-induced MA.

333

334 **Fig. 6| The effect of *daf-2* RNAi on *hrde-1* mutant multigenerational survival**
335 **under mutation accumulation.** Sample size of 100 MA lines for each RNAi by UV
336 irradiation treatment combination.

337 We show the important role of *hrde-1* in the *daf-2* RNAi-mediated protection of
338 irradiated offspring under mutation. Our results suggest that the interaction between
339 UV-induced germline damage and a deficiency in transgenerational inheritance of
340 RNAi reverses the protective benefits of *daf-2* RNAi. This supports previous work
341 suggesting that *hrde-1* mutants suffer from progressive sterility under high

342 temperatures implying their increased sensitivity to environmental stresses driven in
343 part by defects in gametogenesis⁶³.

344

345 **Conclusion**

346 We found that reduced insulin signalling in adulthood, via *daf-2* RNAi, protects
347 against extinction under both UV-induced and spontaneous mutation accumulation in
348 *C. elegans*. Furthermore, the fitness of the surviving UV-irradiated MA lines was
349 higher under *daf-2* RNAi. Most extinctions occurred because of infertility, egg
350 hatching failure and developmental abnormalities suggesting that mutation
351 accumulation directly contributed to the observed differences between the RNAi
352 treatments. Germline protection under *daf-2* RNAi requires nuclear argonaut *hrde-1*
353 because fitness of *hrde-1*; *daf-2* RNAi worms was reduced both in one-generation
354 and in multi-generation experiments. This is in line with previous work suggesting
355 that *hrde-1* is required for transgenerational inheritance and germline immortality^{63,64}.
356 We set out to test whether adulthood-only *daf-2* RNAi, known to extend lifespan
357 without an obvious cost to parental fecundity^{19,20}, trades-off with germline
358 maintenance, resulting in the accumulation of germline mutations and detrimental
359 fitness effects across multiple generations. Positive effects on F1 offspring fitness
360 observed in previous work²⁰ are likely driven by parental effects because we showed
361 here that they disappear after one generation. However, we found that
362 multigenerational downregulation of *daf-2* via adulthood-only RNAi has positive
363 effects on germline maintenance and protects mutation accumulation lines from
364 extinction. This was particularly so when germline mutation rate was increased by

365 low-level UV radiation. Our results therefore suggest that wild-type level of *daf-2*
366 expression is sub-optimally high in adulthood.

367 Antagonistic pleiotropy theory of ageing (AP) maintains that genes that
368 increase fitness in early life at the expense of fitness late in life can be overall
369 beneficial for fitness and go to fixation⁶. In line with AP, downregulation of *daf-2*
370 expression during development reduces fitness¹⁹, but what is the physiological basis
371 of the putative trade-off? Our findings that adulthood-only downregulation of *daf-2*
372 expression protects both the germline and the soma under benign conditions and
373 under UV-induced stress, argue against the idea that resource allocation underlies
374 this trade-off. However, the results are in line with the hypothesis that selection
375 optimises gene expression for development and early-life reproduction but fails to
376 optimise gene expression later in life^{2,10,22-24}. This could be either because selection
377 on insulin signalling in adulthood is too weak in *C. elegans*⁶⁵ or because of
378 constraints that prevent the evolution of age-specific gene expression^{66,67}. Future
379 studies should focus on investigating the relative importance of trade-offs and
380 constraints in the evolution of ageing across taxa. Our findings support the idea that
381 insulin signalling is directly linked with the repair and maintenance of the germline
382 and the soma, and highlight reduced insulin signalling as an important target for
383 potentially cost-free extension of healthy lifespan.

384

385 **Methods**

386 We conducted four experiments to test our main hypotheses about the effects of
387 reduced insulin/IGF-1 signalling (IIS) in adulthood, via adult-only *daf-2* RNAi, on the
388 soma and the germline:

389 1. Inter-generational effects of reduced IIS in parents under UV-induced stress, on
390 parental and offspring fitness and reproduction.

391 2. Effects of reduced IIS on 40 generations of spontaneous and UV-induced
392 mutation accumulation, in N2 wild-type and RNAi inheritance deficient (*hrde-1*)
393 mutant backgrounds.

394 3. Life history and fitness effects of 20 generations of spontaneous and UV-induced
395 mutation accumulation, on the surviving MA lines.

396 4. Transgenerational effects of *daf-2* RNAi on offspring fitness in N2 and *hrde-1*
397 mutant backgrounds.

398 **Nematode stocks and culture.** The nematode (roundworm) *Caenorhabditis*
399 *elegans* N2 wild-type (Bristol) and heritable RNAi deficiency 1 (*hrde-1*) mutant
400 strains were defrosted from stocks acquired from Caenorhabditis Genetics Center
401 (University of Minnesota, USA, funded by NIH Office of Research Infrastructure
402 Programs, P40 OD010440) and from the lab of Prof. Eric Miska (Gurdon Institute,
403 University of Cambridge, UK), respectively, and stored at -80°C until use. All
404 experimental lines were kept at 20°C, 60% relative humidity and in darkness,
405 consistent with standard *C. elegans* rearing protocol⁶⁸. *C. elegans* is a valuable
406 model system due to its short life cycle, ease of genetic manipulation and its normal
407 reproductive state as self-fertilising hermaphrodites. Males were excluded from our
408 experiments and occur at a very low frequency of approximately 0.3% under benign
409 lab conditions and in nature^{69,70}.

410 Defrosted *C. elegans* strains were reared through two generations prior to set-up, on
411 NGM agar supplemented with the fungicide nystatin and antibiotics streptomycin and
412 ampicillin, to prevent infection (each at 100 µg/ml, as standard recipes, e.g.⁷¹) and

413 seeded with the antibiotic-resistant *Escherichia coli* bacterial strain OP50-1 (pUC4K,
414 from J. Ewbank at the Centre d'Immunologie de Marseille-Luminy, France). We
415 bleached eggs from the grandparents of experimental individuals, to standardise
416 parental age and remove any infection or temperature effects from defrosting, prior
417 to experiments.

418 **Reducing IIS via *daf-2* RNAi feeding in adulthood.** To downregulate adulthood
419 expression of the insulin-like sensing signalling receptor homolog, *daf-2*, we fed late-
420 L4 larvae with *Escherichia coli* bacteria expressing *daf-2* double-stranded RNA
421 (dsRNA), that decreases mRNA levels of the complementary transcribed *daf-2*
422 systemically^{59,72}. The *daf-2* gene is upstream of and inhibits the action of master
423 regulator daf-16/FOXO. RNase-III deficient, IPTG-inducible HT115 *E. coli* bacteria
424 with an empty plasmid vector (L4440) was used as the control (as^{19,20,72}). As RNAi
425 treatment was started from the late-L4 stage, immediately prior to the onset of adult
426 sexual maturity, all individuals developed on empty vector (e.v.) control *E. coli* prior
427 to this stage. Normal development, which requires functional *daf-2*, was therefore
428 unaffected^{19,30}. RNAi clones were acquired from the Vidal feeding library (Source
429 BioScience, created by M. Vidal lab, Harvard Medical School, USA) and tested for
430 efficacy, prior to delivery.

431 During all experiments, worms were kept on 35mm NGM agar plates (supplemented
432 with 1mM IPTG and 50µg/mL of antibiotic ampicillin, to inhibit the growth of bacteria
433 other than our antibiotic resistant *E. coli*) and seeded with 0.1mL of the e.v. control or
434 *daf-2* RNAi bacteria, 24 to 48 hours before use, for *ad libitum* bacterial growth.
435 Bacterial cultures were prepared prior to the experiments, by growing in LB
436 supplemented with 50µg/mL ampicillin (as⁷³).

437 **Ultraviolet wavelength C (UV-C) irradiation.** To induce mutations we UV-irradiated
438 Day 2 adults, with a calibrated ultraviolet-C (UV-C) radiation dose of 46J/m²
439 (wavelength 254nm), via 20 second exposure to the UV-C radiation emitted from the
440 lamp of a Thermo Scientific Heraguard ECO Safety Cabinet (calibration details in
441 Supplementary Methods). This dose is in the range of previous UV-C irradiation
442 doses for *C. elegans* adults or eggs⁷⁴⁻⁷⁷. Our pilot work showed that this dose
443 reduced the fecundity of Day 2 adults laying at 20°C by 61% compared with un-
444 exposed sham controls (data not shown). Non-irradiated control worms received a
445 sham-irradiation, by being positioned in identical orientation under the UV-C lamp for
446 20 seconds, while it was switched off.

447 UV irradiation was timed at exactly 24 hours (+/- 30 minutes) after the RNAi
448 treatment began at the onset of adulthood and prior to peak reproduction, to allow
449 time for reduced IIS in individuals on *daf-2* RNAi^{72,78}. This timing allowed us to
450 induce germline mutagenesis, as adult somatic tissue in *C. elegans* is post-mitotic
451 and very resistant to irradiation, whereas germline tissue (eggs, developing oocytes
452 and germline stem cells) is still actively dividing (undergoing meiosis and mitosis)
453 and so is more sensitive to UV irradiation³⁵. As spermatogenesis is completed during
454 the late-L4 stage⁷⁹, it would not have been directly affected by irradiation.

455 Nematodes were transferred to new seeding immediately after UV irradiation, in
456 case the seeding or plate was affected by UV irradiation, and worms were placed
457 just outside the seeding on the new plate, to minimise contamination with mutated
458 bacteria (as^{80,81}). UV-irradiated worms were allowed 8 hours (+/- 30 minutes)
459 recovery, to provide sufficient time for expulsion of irradiated embryos, before
460 starting egg laying^{76,82}. Eggs laid were therefore most likely irradiated either as
461 oocytes, or as germline stem cells^{79,82}.

462 **Inter-generational effects of UV irradiation and reduced IIS in parents on**
463 **parental and offspring fitness and reproduction.** Wild-type N2 parents were
464 either UV-irradiated or not as Day 2 adults and maintained on *daf-2* RNAi or an
465 empty vector control for the whole of adulthood, in fully factorial design. Offspring
466 were all non-irradiated and maintained on empty vector throughout life. We assayed
467 the daily offspring production from unmated, singly-held hermaphrodite parents, for
468 their entire reproductive period (first six days of adulthood) and also from the first
469 generation of their offspring, by daily transfers to fresh plates. To assess parental
470 survival, daily mortality checks were made, with death being defined as no observed
471 movement after gentle prodding. Worms were grouped as ten worms per plate after
472 the six-day reproductive period, for logistical reasons and these groups were
473 maintained as independent non-mixing units, for daily transfers across lifetime so
474 that plate identity could be included as a random effect in analysis.

475 **Mutation accumulation (MA) lines.** To determine the effects of reduced adulthood
476 IIS, via *daf-2* RNAi, on spontaneous and UV-induced mutation accumulation, we
477 established 800 MA lines, across two genetic backgrounds. The eight experimental
478 treatments were the full-factorial combinations of genotype (N2 or *hrde-1* mutant),
479 RNAi treatment (empty vector or *daf-2* RNAi) and irradiation (UV or sham), with 100
480 MA lines per treatment. We ran each of the eight treatments in parallel, divided into
481 two time-staggered independent blocks of 50 lines per treatment, for logistical
482 reasons and to capture any between-block variation.

483 Each MA line was propagated as a single individual hermaphrodite per generation,
484 to create successive genetic bottlenecks, allowing *de novo* deleterious mutations to
485 accumulate in the relative absence of selection⁴⁰⁻⁴², if they had no effect on
486 developmental viability, and in the absence of mating. MA is common approach used

487 in several species, to study the evolutionary genetics of *de novo* mutation rates⁴³. In
488 wild type *C. elegans*, the spontaneous mutation rate in MA lines is positively
489 correlated with the rate of fitness decay⁸³.

490 Each generation, we allowed mid-day 2 to mid-day 3 adults to lay eggs onto empty
491 vector plates, from which we picked a single late-L4 larva per line to form the next
492 generation of MA. The late-L4 stage is easily identifiable in *C. elegans* (vulva cells
493 are visible in the vulva lumen and prior to vulval protrusion at sexual maturity), which
494 allowed repeatable and consistent age-controlled set-up of each generation. The
495 duration of the egg lay period was optimised, to account for differences in
496 developmental timing between treatments. Age of parental egg lay was alternated
497 between mid-Day 2 and mid-Day 3 every second generation, to limit selection on
498 parental age at reproduction and so the offspring forming each new MA generation
499 came from parents during their period of peak reproduction.

500 We recorded the generation at which extinction occurred and the cause of extinction
501 (death, failure to produce viable eggs or failure to reach sexually mature adult).
502 Individuals that were lost, underwent matricide (internal hatching that killed the
503 parent) prior to the Day 2 egg lay, died from the expulsion of internal tissue, became
504 infected or desiccated on the plate wall were censored. We photographed a sample
505 of Day 1 adult worms with visible developmental or reproductive abnormalities under
506 light microscopy (camera specifications in egg size measurement section below),
507 including worms with stunted growth, apparent aberrant external growth (tumour),
508 deformed vulva, or abnormal cavities in the reproductive tract in place of oocytes or
509 embryos.

510 **Effect of 20 generations of spontaneous and UV-induced mutation**
511 **accumulation on fitness and life history of surviving MA lines.** To test for life
512 history differences between the N2 wild-type MA lines after 20 generations of MA,
513 we assayed age-specific reproduction, egg size, male production and adult heat
514 shock resistance, in all remaining UV-irradiated N2 MA lines and an equally-sized
515 random sample of the non-irradiated N2 MA lines. In total we assayed 100 grand-
516 offspring from each of the four N2 MA treatments, equally from the two independent
517 experimental blocks. Prior to the life history assay, individuals taken from MA lines at
518 generation 20 were reared for two subsequent generations under common garden
519 conditions (no irradiation, on empty vector control), to reduce direct parental effects
520 from exposure to RNAi and UV, and hence look for genetic differences between MA
521 treatments. The life history assay was conducted in the common garden
522 environment.

523 Individual age-synchronised, late-L4 hermaphrodites were set up on separate e.v.
524 plates, labelled with a unique identifier, to blind experimenters to treatment identity,
525 and thus avoid bias. The two experimenters conducted the life history assay in two
526 simultaneous time blocks and each block had an identical and equal representation
527 of individual worms from all four treatments (n=50 per treatment per block).

528 **Age-specific reproduction, fitness and total lifetime reproduction assays.** For
529 all experiments, we assayed age-specific offspring production (fecundity) over the
530 first 6 days of adult life (the reproductive window for *C. elegans* hermaphrodites), by
531 transferring to fresh plates every 24h, to acquire daily reproduction counts. Plates
532 were scored for viable adult offspring 2.5 days later. Individual fitness (λ) was
533 calculated- a measure weighted by early reproduction and analogous to the intrinsic
534 rate of population growth^{15,20,84,85}. The first 4 days of adult reproduction were used to

535 calculate fitness and to analyse age-specific reproduction, as day 5 and 6
536 reproduction was zero for almost all individuals. Parental fitness and age-specific
537 reproduction were analysed for day 2 to 4 inclusive, for the first intergenerational
538 experiment, as UV-irradiation was administered at the start of day 2 of adulthood.
539 Total lifetime reproduction (lifetime reproductive success) was calculated for each
540 individual as the sum of age-specific offspring counts across the first 6 days of
541 adulthood.

542 **Egg size measurement.** To determine if reduced IIS influenced parental resource
543 allocation into eggs, under MA, we measured the area of a single egg (in mm²)
544 produced by 75 individuals per treatment in the generation 20 age-specific
545 reproduction assay (half of Block 1 and all of Block 2 individuals), at peak
546 reproduction (Day 2). Egg size is commonly used as a proxy for parental
547 investment^{20,50}. We photographed eggs, within 2 hours of lay, under 12x
548 magnification light microscopy (Leica M165C with Lumenera Infinity 2-7C digital
549 microscope camera). Only eggs laid at the normal gastrula (approximately 30-cell)
550 stage of development were photographed, as egg shape and size can vary after 9
551 hours of ex-utero development. Egg size (area in mm² enclosed within a free-drawn
552 ellipse around the egg perimeter) was calculated from photos using *Image J Fiji*
553 program v.1.51⁸⁶, whilst blind to treatment identity. To minimise experimenter error,
554 each measurement was taken twice and an average taken, and the same
555 experimenter measured all eggs. Egg measurement was completed across three
556 measurement days, using identical ImageJ settings and scale calibration.
557 Treatments and blocks were stratified across measurement days and randomly
558 dispersed within each day, to avoid bias. Egg area measurements were strongly
559 repeatable between replicate measurements on the same egg (Spearman's rank

560 correlation coefficient, rho= 0.899), there was no temporal autocorrelation between
561 measurement days (Kruskal-Wallis rank sum test, $\chi^2=299$, df=314, p=0.721) and only
562 weak temporal autocorrelation on the first measurement day (Spearman's rank,
563 rho=0.398).

564 **Male production.** We determined the percentage of eggs that developed into adult
565 males (n= 75 eggs assayed/treatment), one egg per individual Day 2 worm, as
566 above, to determine if the stress induced by irradiation or mutation accumulation
567 would increase male production above standard N2 wild-type levels, as seen
568 previously for heat stress and starvation in *C. elegans*^{51,52}.

569 **Adult heat shock resistance.** To test the stress resistance of post-reproductive
570 (Day 7) adults, we assayed survival following acute heat shock of 1 hour and 45
571 minutes at 37°C (following⁵⁸), in the same individuals used for the Generation 20
572 age-specific reproduction assay. At 3 and 24 hours post-heat shock we recorded any
573 individuals that had died and categorised locomotion as normal movement (crawling
574 spontaneously or when gently prodded), uncoordinated movement of head and tail
575 with no forward or backward trajectory, or just head movements; following^{87,88}.
576 Previous work confirmed that from 12 hours after heat shock is a reliable time point
577 to score long-term survival in *C. elegans* adults⁵⁸. All worms were heat-shocked
578 simultaneously, grouped by treatment, five worms per plate and the positions of
579 plates in the oven were stratified by treatment, to control for any positional
580 differences in heat exposure.

581 **Transgenerational effects of *daf-2* RNAi on offspring fitness in N2 and *hrde-1***
582 **mutant backgrounds.** To determine whether *daf-2* RNAi was transferred
583 transgenerationally via the germline, we assayed, in a separate experiment, whether

584 offspring fitness benefits persisted across three generations of offspring (F1, F2 and
585 F3) from Day 2 parents treated with *daf-2* RNAi or empty vector control throughout
586 adulthood, in N2 wild-type and *hrde-1* mutant backgrounds. Offspring of each
587 generation were maintained on empty vector (n=30 individuals per treatment and per
588 genotype) and assayed for daily reproduction (fecundity). Offspring generations were
589 produced from day 2 parents and set-up as late-L4 larvae across all treatments.

590 **Statistical analyses.** All analyses were conducted in R version 4.0.0⁸⁹. Fitness and
591 total lifetime reproduction data were plotted using the R package ‘dabestr’ (data
592 analysis using bootstrap-coupled estimation⁹⁰). The ‘dabest’ Cummings estimation
593 plots display all datapoints from each treatment as a swarm-plot, with the mean ±
594 standard deviation of treatment as a gapped line adjacent to the points. The mean
595 difference (effect size) and its 95% confidence interval (CI) is estimated for pairwise
596 comparisons of treatments via non-parametric bootstrap resampling (n=5000) and
597 displayed below the main plots. When the 95% CI vertical bar does not cross the x-
598 axis (mean difference equal to zero), there is a significant difference between the
599 pairwise treatment comparison.

600 Parental survival in the intergenerational (first) experiment was analysed using a Cox
601 proportional hazards mixed effects model⁹¹ (‘coxme’), fitting RNAi, UV and their
602 interaction as fixed effects and plate as a random effect. Separate analyses were
603 conducted with matricides either classed as deaths or as censors. The age at death
604 response variable contained a coding variable to distinguish deaths from censored
605 individuals (due to accidental losses). Extinction (survival trajectories) under
606 mutation accumulation was analysed using Cox proportional hazards regression
607 analysis (‘coxph’ function in ‘survival’ package). A maximal model was fitted using a
608 three-way RNAi x UV x block interaction and step-wise model simplification

609 conducted⁹². Block was included as a fixed effect to test for repeatability between
610 blocks.

611 Age-specific reproduction was analysed using generalised linear mixed effects
612 models to account for temporal pseudoreplication of repeated measures on the
613 same individuals across lifetime, with the template model builder package
614 ('glmmTMB' in R^{93,94}). Models fitted with Poisson, Zero-Inflated Poisson, Generalised
615 Poisson and Zero-Inflated Generalised Poisson error structure were compared using
616 AIC values of model fit ('AICtab' function in 'bbmle' package), following⁹⁴, to account
617 for under- or over-dispersion and for zero-inflation, when it was found to occur in
618 simulated residuals generated with the 'DHARMA' package⁹⁵. Age and a quadratic
619 form of age (age²) were fitted as fixed effects in both the conditional and zero-
620 inflation model formula, and significance assessed in each case. The age² term
621 controlled for the curved (non-linear) trajectory of reproduction across age⁹⁶. UV
622 irradiation, RNAi treatment and their three-way interaction with age or age² were
623 fitted as fixed effects, and experimental block, observer and a unique plate identifier
624 as random effects. Genotype was substituted with UV as a fixed effect to assess the
625 transgenerational effects of *daf-2* RNAi on N2 versus *hrde-1* mutants. Models that
626 did not converge were not included in model comparison, and the converging model
627 with best AIC fit was presented (as⁹⁴).

628 Fitness (lambda) was calculated using the 'lambda' function in the 'popbio' package.
629 Fitness, total reproduction and egg size data were analysed using a generalised
630 linear model (GLM) with Gaussian error structure ('lm' function in 'stats' package).
631 Locomotion was coded as a binary response variable (normal or abnormal
632 movement, as defined above) and analysed using a GLM with binomial error
633 structure.

634 **Data availability.** The data will be made freely available on Figshare upon
635 publication.

636 **Code availability.** The code for analyses will be made freely available on GitHub
637 upon publication.

638 **References**

- 639 1. Flatt, T. & Partridge, L. Horizons in the evolution of aging. *BMC Biol.* **16**, 93
640 (2018).
- 641 2. Maklakov, A. A. & Chapman, T. Evolution of ageing as a tangle of trade-offs:
642 energy versus function. *Proc. R. Soc. B* **286**, 20191604 (2019).
- 643 3. Regan, J. C., Froy, H., Walling, C. A., Moatt, J. P. & Nussey, D. H. Dietary
644 restriction and insulin-like signalling pathways as adaptive plasticity: a synthesis
645 and re-evaluation. *Functional Ecology* **34**, 107-128 (2019).
- 646 4. Gaillard, J-M & Lemaître, J-F. An integrative view of senescence in nature. *Funct.*
647 *Ecol.* **34**, 4–16 (2020).
- 648 5. Medawar, P. B. *An Unsolved Problem of Biology* (H. K. Lewis, 1952).
- 649 6. Williams, G. C. Pleiotropy, natural selection, and the evolution of senescence.
650 *Evolution* **11**, 398–411 (1957).
- 651 7. Hamilton, W. D. The moulding of senescence by natural selection. *J. Theor. Biol.*
652 **12**, 12-45 (1966).
- 653 8. Day, T. & Abrams, P. Density dependence, senescence, and Williams'
654 hypothesis. *Trends Ecol. Evol.* **35**, P300-302 (2020).
- 655 9. Caswell, H. & Shyu, E. in *The Evolution of Senescence in the Tree of Life* (eds.
656 R. P. Shefferson, O.R. Jones, & R. Salguero-Gomez) 56-82 (Cambridge
657 University Press, 2017).
- 658 10. Gems, D. & Partridge, L. Genetics of longevity in model organisms: debates and
659 paradigm shifts. *Annu. Rev. Physiol.* **75**, 621-644 (2013).
- 660 11. Flatt, T. Life-history evolution and the genetics of fitness components in
661 *Drosophila melanogaster*. *Genetics* **214**, 3-48 (2020).
- 662 12. Kirkwood, T. B. L. Evolution of ageing. *Nature* **270**, 301–304 (1977).
- 663 13. Kirkwood, T. B. L. & Holliday, R. The evolution of ageing and longevity. *Proc. R.*
664 *Soc. B* **205**, 531–546 (1979).
- 665 14. Kirkwood, T. B. L. in *Evolution of Longevity in Animals: A Comparative Approach*
666 (eds. A. D. Woodhead & K. H. Thompson). Immortality of the germ-line versus
667 disposability of the soma 209-218 (Plenum Press, 1987).
- 668 15. Stearns, S. C. *The evolution of life histories* (Oxford Univ. Press, 1992).
- 669 16. Roff, D. *Life History Evolution* (Sinauer Associates, 2002).
- 670 17. Edward, D. A. & Chapman, T. in *Mechanisms of Life History Evolution: The*
671 *Genetics and Physiology of Life History Traits and Trade-Offs* (eds. T. Flatt & A.
672 Heyland). Mechanisms underlying reproductive trade-offs: Costs of reproduction
673 137-152 (Oxford Univ, Press, 2012).
- 674 18. Maklakov, A. A. & Immler, S. The expensive germline and the evolution of
675 ageing. *Curr. Biol.* **26**, R577-R586 (2016).

676 19. Dillin, A., Crawford, D. K. & Kenyon, C. Timing requirement for insulin/IGF-1
677 signalling in *C. elegans*. *Science* **298**, 830-834 (2002).

678 20. Lind, M. I. L., Ravindran, S., Sekajova, Z., Carlsson, H., Hinas, A. & Maklakov, A.
679 A. Experimentally reduced insulin/IGF-1 signalling in adulthood extends lifespan
680 of parents and improves Darwinian fitness of their offspring. *Evol. Lett.* **4**, 737-
681 744 (2019).

682 21. Flatt, T. Survival costs of reproduction in *Drosophila*. *Exp. Gerontol.* **46**, 369-375
683 (2011).

684 22. de Magalhaes, J. P. & Church, G. M. Genomes optimize reproduction: aging as a
685 consequence of the developmental program. *Physiology* **20**, 252-259 (2005).

686 23. de Magalhaes, J. P. Programmatic features of aging originating in development:
687 aging mechanisms beyond molecular damage? *FASEB J.* **26**, 4821-4826 (2012).

688 24. Blagosklonny, M. V. Ageing is not programmed. *Cell Cycle* **12**, 3736-3742 (2013).

689 25. Ezcurra, M. et al. *C. elegans* eats its own intestine to make yolk leading to
690 multiple senescent pathologies. *Curr. Biol.* **28**, 2544-2556 (2018).

691 26. Wang, H. et al. A parthenogenetic quasi-program causes teratoma-like tumors
692 during aging in wild-type *C. elegans*. *npj Aging Mech Dis* **4**, 6 (2018).

693 27. Sala, A. J., Bott, L. C., Brielmann, R. M. & Morimoto, R. I. Embryo integrity
694 regulates maternal proteostasis and stress resilience. *Genes Dev.* **34**, 1-10
695 (2020).

696 28. Berger, D., Stangberg, J., Grieshop, K., Martinossi-Allibert, I. & Arnqvist, G.
697 Temperature effects on life-history trade-offs, germline maintenance and
698 mutation rate under simulated climate warming. *Proc. R. Soc. B* **284**, 20171721
699 (2017).

700 29. Labbadia, J. & Morimoto R. I. Repression of the heat shock response is a
701 programmed event at the onset of reproduction. *Mol. Cell* **59**, 639-650 (2015).

702 30. Kenyon, C. J. The genetics of ageing. *Nature* **464**, 504-512 (2010).

703 31. Flatt, T. et al. *Drosophila* germ-line modulation of insulin signalling and lifespan.
704 *PNAS* **105**, 6368-6373 (2008).

705 32. Hsin, H. & Kenyon C. Signals from the reproductive system regulate the lifespan
706 of *C. elegans*. *Nature* **399**, 362-366 (1999).

707 33. Arantes-Oliveira, N., Apfield, J., Dillin, A. & Kenyon, C. Regulation of life-span by
708 germ-line stem cells in *Caenorhabditis elegans*. *Science* **295**, 502-505 (2002).

709 34. Shemesh, N., Shai, N. & Ben-Zvi, A. Germline stem cell arrest inhibits the
710 collapse of somatic proteostasis early in *Caenorhabditis elegans* adulthood.
711 *Aging Cell* **12**, 814-822 (2013).

712 35. Ermolaeva, M. A. et al. DNA damage in germ cells induces immune response
713 triggering systemic stress resistance. *Nature*, **501**: 416-420 (2013).

714 36. Antebi, A. Regulation of longevity by the reproductive system. *Exp. Gerontol.* **48**,
715 596-602 (2013).

716 37. Chen, H-y., Jolly, C., Bublys, K., Marcu, D. & Immler, S. Trade-off between
717 somatic and germline repair in a vertebrate supports the expensive germ line
718 hypothesis. *PNAS* **117**, 8973-8979 (2020).

719 38. Thondamal, M., Witting, M., Schmitt-Kopplin, P. & Aguilaniu, H. Steroid hormone
720 signalling links reproduction to lifespan in dietary-restricted *Caenorhabditis*
721 *elegans*. *Nat Commun.* **5**, 4879 (2014).

722 39. Fontana, L., Partridge, L. & Longo, V. Extending healthy life span- from yeast to
723 humans. *Science* **328**, 321-326 (2010).

724 40. Vassilieva, L. L., Hook, A. M. & Lynch, M. The fitness effects of spontaneous
725 mutations in *Caenorhabditis elegans*. *Evolution* **54**, 1234-1246 (2000).

726 41. Keightley, P. D. & Bataillon, T. M. Multigeneration maximum-likelihood analysis
727 applied to mutation-accumulation experiments in *Caenorhabditis elegans*.
728 *Genetics* **154**, 1193-1201.

729 42. Ajie, B. C., Estes, S., Lynch, M., Phillips, P.C. Behavioral degradation under
730 mutation accumulation in *Caenorhabditis elegans*. *Genetics* **170**, 655-660 (2005).

731 43. Halligan, D. L. & Keightley, P.D. Spontaneous mutation accumulation studies in
732 evolutionary genetics. *Annu. Rev. Ecol. Evol. Syst.* **40**, 151-172 (2009).

733 44. Smelick, C. & Ahmed, S. Achieving immortality in the *C. elegans* germline.
734 *Ageing Res. Rev.* **4**, 67-82 (2005).

735 45. Sniegowski, P. D., Gerrish, P. J., Johnson, T. & Shaver, A. The evolution of
736 mutation rates: separating causes from consequences. *BioEssays* **22**, 1057-
737 1066 (2000).

738 46. Ferguson, E. L. & Horvitz, H. R. Identification and characterization of 22 genes
739 that affect the vulval cell lineages of the nematode *Caenorhabditis elegans*.
740 *Genetics* **110**, 17-72 (1985).

741 47. Sternberg, P. W. & Horvitz, H. R. The combined action of two intercellular
742 signalling pathways specifies three cell fates during vulval induction in *C.*
743 *elegans*. *Cell* **58**, 679-693 (1989).

744 48. Meier, B. et al. *C. elegans* whole-genome sequencing reveals mutational
745 signatures related to carcinogens and DNA repair deficiency. *Genome Res.* **24**,
746 1624-1636 (2014).

747 49. Denver, D. R. et al. Variation in base-substitution mutation in experimental and
748 natural lineages of *Caenorhabditis* nematodes. *Genome Biol Evol.* **4**, 513-522
749 (2012).

750 50. Hibshman, J. D., Hung, A. & Baugh, L. R. Maternal diet and insulin like signaling
751 control intergenerational plasticity of progeny size and starvation resistance.
752 *PLoS Genet.* **14**, e1007639 (2016).

753 51. Nigon, V. & Dougherty, E. C. Reproductive patterns and attempts at reciprocal
754 crossing of *Rhabditis elegans* Maupas, 1900, and *Rhabditis briggsae* Dougherty
755 and Nigon, 1949 (Nematoda: Rhabditidae). *J. Exp. Zool.* **112**, 485-503 (1949).

756 52. Morran, L. T., Cappy, B. J., Anderson, J. L. & Phillips, P. C. Sexual partners for
757 the stressed: facultative outcrossing in the self-fertilizing nematode
758 *Caenorhabditis elegans*. *Evolution* **63**, 1473-1482 (2009).

759 53. Cutter, A. Mutation and the experimental evolution of outcrossing in
760 *Caenorhabditis elegans*. *J. Evol. Biol.* **18**, 27-34 (2005).

761 54. Hsu, A. L., Murphy, C. T. & Kenyon, C. Regulation of aging and age-related
762 disease by DAF-16 and heat-shock factor. *Science* **300**, 1142-1145 (2003).

763 55. Seo, K. et al. Heat shock factor 1 mediates the longevity conferred by inhibition of
764 TOR and insulin/IGF-1 signaling pathways in *C. elegans*. *Aging Cell* **12**, 1073-
765 1081 (2013).

766 56. Åkerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell
767 stress, development and lifespan. *Nat. Rev. Mol. Cell. Biol.* **11**, 545-555 (2010).

768 57. Muñoz M. J. Longevity and heat stress regulation in *Caenorhabditis elegans*.
769 *Mech. Ageing Dev.* **124**, 43-48 (2003).

770 58. Zevian S. C. & Yanowitz, J. L. Methodological considerations for heat shock of
771 the nematode *Caenorhabditis elegans*. *Methods* **68**, 450-457 (2014).

772 59. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in
773 *Caenorhabditis elegans*. *Nature* **391**, 806-811 (1998).

774 60. Posner, R. et al. Neuronal small RNAs control behaviour transgenerationally. *Cell*
775 **177**, 1814-1826 (2019).

776 61. Rechavi, O. et al. Starvation-induced transgenerational inheritance of small RNAs
777 in *C. elegans*. *Cell* **158**, 277-287.

778 62. Ni, J. Z. et al. A transgenerational role of the germline nuclear RNAi pathway in
779 repressing heat stress-induced transcriptional activation in *C. elegans*. *Epigenet.*
780 *Chromatin* **9**, 3.

781 63. Buckley, B. et al. A nuclear Argonaute promotes multigenerational epigenetic
782 inheritance and germline immortality. *Nature* **489**, 447–451 (2012).

783 64. Spracklin, G. et al. The RNAi inheritance machinery of *Caenorhabditis elegans*.
784 *Genetics* **206**, 1403-1416 (2017).

785 65. Chen, J., Lewis, E. E., Carey, J. R., Caswell, H. & Caswell-Chen, E. P. The
786 ecology and biodemography of *Caenorhabditis elegans*. *Exp. Gerontol.* **41**, 1059-
787 1065 (2006).

788 66. Bonsall, M. B. Longevity and ageing: appraising the evolutionary consequences
789 of growing old. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* **361**, 119-135 (2006).

790 67. Cohen, A. A., Coste, C. F. D., Li, X.-Y., Bourg, S. & Pavard, S. Are trade-offs
791 really the key drivers of ageing and life span? *Funct. Ecol.* **34**, 153-166 (2020).

792 68. Brenner S. The genetics of *Caenorhabditis elegans*. *Genetics* **77**, 71-94 (1974).

793 69. Teotónio, H., Manoel, D. & Phillips, P. C. Genetic variation for outcrossing among
794 *Caenorhabditis elegans* isolates. *Evolution* **60**, 1300-1305 (2006).

795 70. Barriere, A. & Felix, M.-A. High local genetic diversity and low outcrossing rate in
796 *Caenorhabditis elegans* natural populations. *Curr. Biol.* **15**, 1176-1184 (2005).

797 71. Lionaki, E. & Tavernarakis, N. in *Cell senescence* (eds. L. Galluzzi, I. Vitale, O.
798 Kepp & G. Kroemer) High-throughput and longitudinal analysis of aging and
799 senescent decline in *Caenorhabditis elegans* 485–500 (Humana Press, 2013).

800 72. Timmons, L., Court, D. L. & Fire, A. 2001. Ingestion of bacterially expressed
801 dsRNAs can produce specific and potent genetic interference in *Caenorhabditis*
802 *elegans*. *Gene* **263**, 103–112 (2001).

803 73. Hinas, A., Wright, A. J. & Hunter, C. P. SID-5 is an endosome-associated protein
804 required for efficient systemic RNAi in *C. elegans*. *Curr. Biol.* **22**, 1938–1943
805 (2012).

806 74. Hyun et al. Longevity and resistance to stress correlate with DNA repair capacity
807 in *Caenorhabditis elegans*. *Nucleic Acids Res.* **36**, 1380-1389 (2008).

808 75. Boyd et al. Nucleotide excision repair genes are expressed at low levels and are
809 not detectably inducible in *Caenorhabditis elegans* somatic tissues, but their
810 function is required for normal adult life after UVC exposure. *Mutat. Res.* **683**, 57-
811 67.

812 76. Stergiou, L., Doukoumetzidis, K., Sendoel, A. & Hengartner, M. O. The nucleotide
813 excision repair pathway is required for UV-C-induced apoptosis in *Caenorhabditis*
814 *elegans*. *Cell Death Differ.* **14**, 1129-1138 (2007).

815 77. Meyer et al. Decline of nucleotide excision repair capacity in aging
816 *Caenorhabditis elegans*. *Genome Biol.* **8**, R70.

817 78. Conte Jr, D., MacNeil, L. T., Walhout, A. J. M., Mello, C. C. RNA interference in
818 *Caenorhabditis elegans*. *Curr. Protoc. Mol. Biol.* **109**, 1-30 (2015).

819 79. Kimble, J. E. & White, J. G. On the control of germ cell development in
820 *Caenorhabditis elegans*. *Dev. Biol.* **81**, 208–219 (1981).

821 80. Stewart, H. I., Rosenbluth, R. E. & Baillie, D. L. Most ultraviolet irradiation
822 induced mutations in the nematode *Caenorhabditis elegans* are chromosomal
823 rearrangements. *Mutat. Res.* **249**, 37-54 (1991).

824 81. Coohill, T., Marshall, T., Schubert, W. & Nelson G. Ultraviolet mutagenesis of
825 radiation-sensitive (rad) mutants of the nematode *Caenorhabditis elegans*. *Mutat.*
826 *Res.* **209**, 99-106 (1988).

827 82. Sakashita, T. et al. Radiation biology of *Caenorhabditis elegans*: germ cell
828 response, aging and behaviour. *J. Radiat. Res.* **51**, 107-121 (2010).

829 83. Baer, C. F. et al. Comparative evolutionary genetics of spontaneous mutations
830 affecting fitness in rhabditid nematodes. *Proc. Natl. Acad. Sci. U. S. A.* **102**,
831 5785-5790 (2005).

832 84. Brommer, J. E., Merila, J. & Kokko, H. Reproductive timing and individual fitness.
833 *Ecol. Lett.* **5**, 802–810 (2002).

834 85. Lind, M. I., Zwoinska, M. K., Meurling, S., Carlsson, H. & Maklakov, A. A. 2016.
835 Sex-specific trade-offs with growth and fitness following lifespan extension by
836 rapamycin in an outcrossing nematode, *Caenorhabditis remanei*. *J. Gerontol.*
837 *Ser. A Biol. Sci. Med. Sci.* **71**, 882–890 (2016).

838 86. Schindelin J. et al. Fiji: an open-source platform for biological-image analysis. *Nat*
839 *Methods*. **9**, 676-682 (2012).

840 87. Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific
841 decline in ageing *C. elegans*. *Nature* **419**, 808-814 (2002).

842 88. Jovic, K. et al. Temporal dynamics of gene expression in heat-stressed
843 *Caenorhabditis elegans*. *PLoS ONE* **12**, e018944 (2017).

844 89. R Core Team. R: A Language and Environment for Statistical Computing (R
845 Foundation for Statistical Computing, 2020).

846 90. Ho, J., Tumkaya, T., Aryal, S., Choi, H. & Claridge-Chang, A. Moving beyond p
847 values: everyday data analysis with estimation plots. *Nat. Methods* **16**, 565-566
848 (2019).

849 91. Therneau, T. M. coxme: Mixed Effects Cox Models. R package version 2.2-14
850 (2019).

851 92. Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology
852 and evolution. *TREE* **24**, 127–135 (2009).

853 93. Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for
854 zero-inflated generalized linear mixed modeling. *R Journal* **9**, 378–400 (2017).

855 94. Brooks, M. E. et al. Statistical modelling of patterns in annual reproductive rates.
856 *Ecology* **100**, e02706 (2019).

857 95. Hartig, F. DHARMA: residual diagnostics for hierarchical (multi-level/mixed)
858 regression models. R package version 0.2.0. <https://cran.r-project.org/web/packages/DHARMA/vignettes/DHARMA.html> (2020).

859 96. Bates, D., Machler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects
860 models using lme4. *J. Stat. Softw.* **67**, 1-48 (2015).

861 97. Lawal, O. et al. Method for the measurement of the output of monochromatic
862 (254nm) low-pressure UV lamps. *IUVA News* **19**, 9-16 (2017).

863

864

865

866

867 **Acknowledgements**

868 The authors thank M. Lind and E. Ivimey-Cook for statistical discussions, and T. van
869 Baalen and A. Dehem for experimental help. This study was funded by an ERC
870 Consolidator Grant (GermlineAgeingSoma/724909) to A.A.M.

871 **Author contributions**

872 E.D., A.A.M. and H.C. conceived and designed the study, with T.C. and S.I.
873 providing additional advice. E.D., H.C. and K.S. performed the experiments and
874 collected the data, which E.D. and K.S. analysed. E.D. and A.A.M. wrote the
875 manuscript, with comments from all authors.

876 **Competing interests**

877 The authors declare no competing interests.