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Respiration rate, heart rate, and heart rate variability are some health metrics that are easily mea-
sured by consumer devices and which can potentially provide early signs of illness. Furthermore,
mobile applications which accompany wearable devices can be used to collect relevant self-reported
symptoms and demographic data. This makes consumer devices a valuable tool in the fight against
the COVID-19 pandemic. We considered two approaches to assessing COVID-19 - a symptom-based
approach, and a physiological signs based technique. Firstly, we trained a Logistic Regression clas-
sifier to predict the need for hospitalization of COVID-19 patients given the symptoms experienced,
age, sex, and BMI. Secondly, we trained a neural network classifier to predict whether a person is
sick on any specific day given respiration rate, heart rate, and heart rate variability data for that
day and and for the four preceding days. Data on 1,181 subjects diagnosed with COVID-19 (active
infection, PCR test) were collected from May 21 - July 14, 2020. 11.0% of COVID-19 subjects were
asymptomatic, 47.2% of subjects recovered at home by themselves, 33.2% recovered at home with
the help of someone else, 8.16% of subjects required hospitalization without ventilation support, and
0.448% required ventilation. Fever was present in 54.8% of subjects. Based on self-reported symp-
toms alone, we obtained an AUC of 0.77 ± 0.05 for the prediction of the need for hospitalization.
Based on physiological signs, we obtained an AUC of 0.77 ± 0.03 for the prediction of illness on a
specific day with 4 previous days of history. Respiration rate and heart rate are typically elevated by
illness, while heart rate variability is decreased. Measuring these metrics can help in early diagnosis,
and in monitoring the progress of the disease.

I. INTRODUCTION

The year 2020 has seen the emergence of a global pan-
demic caused by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2) virus. The disease caused
by this virus typically presents as a lower respiratory in-
fection, though many atypical presentations have been
reported. This has caused a major health challenge glob-
ally due to the apparent high transmissibility of this virus
in a previously unexposed population. Of particular con-
cern is that the primary mechanisms by which the disease
is transmitted are still somewhat under debate (e.g., the
importance of airborne transmission)1, and the potential
for infection by asymptomatic and pre-symptomatic pa-
tients (see for e.g., the discussion in Oran & Topol2). The
disease is highly contagious, with transmission possible
2.3 days prior to the onset of symptoms, and peaking
0.7 days prior to the onset of symptoms according to one
model3. As a result, a great deal of effort is underway to
potentially diagnose COVID-19 early.

The popularity and widespread availability of con-
sumer wearable devices has made possible the use of
health metrics such as respiration rate, heart rate, heart
rate variability, sleep, steps, etc in order to predict the
onset of COVID-19 or similar illnesses. A 1◦C rise in
body temperature can increase heart rate by 8.5 beats
per minute on average4. Measuring the resting heart
rate, or heart rate during sleep can therefore be a useful
diagnostic tool. Similarly, the respiration rate is elevated
when patients present with a fever5. Heart rate variabil-
ity is the variability in the time between successive heart

beats (the time between successive heart beats is called
the “RR interval”), and is a valuable, non-invasive probe
of the autonomic nervous system6–8. Lowered values are
indicative of increased mortality9, and may provide early
diagnosis of infection10. A study of heart rate variabil-
ity in critically ill COVID-19 patients showed that the
approximate entropy and the sample entropy were de-
creased in COVID-19 patients compared to critically ill
sepsis patients11.

Zhu et al.12 studied heart rate, activity and sleep data
collected from Huami wearable devices to potentially
identify outbreaks of COVID-19, and concluded that
at a population level an anomaly detection algorithm
provided correlation with the measured infection rate.
Menni et al.13 analyzed symptoms reported through a
smartphone app and developed a model to predict the
likelihood of COVID-19 based on the symptoms. Marin-
sek et al.14 studied data from Fitbit devices as a means
for early detection and management of COVID-19. Miller
et al.15 used the respiration rate obtained from Whoop
devices to detect COVID-19. Mishra et al.16 analyzed
heart rate, steps, and sleep data collected from Fitbit
devices to identify the onset of COVID-19.

In this paper, we consider the correlation between
changes in physiological signs related to respiration rate,
heart rate and heart rate variability, and the correspond-
ing presence of diseases assessed both through confirmed
laboratory testing and self-reported symptoms and the
time-course of the disease. We show that it is possible to
use changes in these physiological metrics to detect ill-
ness, and provide estimates of sensitivity and specificity.
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In addition, given the reporting of symptoms by study
participants, we provide an estimate of predicted disease
severity based solely on symptoms.

II. MATERIALS AND METHODS

A. Data Collection

Fitbit is a global leader in wearable technology since
2007, and has a large established base of users (over 30
million as of 2020). A significant percentage of its devices
are configured to measure heart rate, and the underlying
interbeat intervals (RR) that characterize heart rate vari-
ability. The Fitbit app provides a convenient user-facing
app that can be configured to present user-facing ques-
tions, and to reliably capture responses in a secure and
scalable way. In this study, active Fitbit users in the
USA and Canada were invited to participate in a survey
of whether they have experienced COVID-19 or similar
infections, whether they had been tested, and to report
on symptoms they experienced. They could also option-
ally provide additional demographic data such as age,
sex, body mass index, and relevant background medical
information such as underlying conditions such as dia-
betes, coronary arterial disease, or hypertension. While
the researcher hypothesis was that metrics that could be
generated from heart rate were likely to be most predic-
tive of infectious disease, we did not restrict the survey
to only Fitbit users with heart rate enabled devices (in
practice 95% of survey respondents had heart rate en-
abled devices).

The survey and associated marketing and recruit-
ment materials were approved by an Institutional Re-
view Board (Advarra) and from May 21st 2020, the sur-
vey was available for completion by Fitbit users in the
USA and Canada. The data presented here represent
the analysis on survey results collected up to July 14,
2020. The survey contained the following questions in
relation to COVID-19 and other likely confounding infec-
tious diseases such as influenza, urinary tract infections
etc. - a) have you been tested for COVID-19 (with sepa-
rate sections provided for tests for active infection versus
serological tests for previous infection), b) what were the
symptoms experienced and the dates of onset and disap-
pearance of the symptoms, c) were you tested for other
infectious diseases such as influenza, strep throat etc.

Table I shows the overall breakdown of the survey re-
sponses as well as providing summary demographic in-
formation on the survey respondents. The age distri-
bution of survey respondents was very similar to Fit-
bit users’ overall age distribution. Survey respondents
skewed slightly more female than the corresponding fig-
ure for the overall general Fitbit population.

Table II describes the self-reported major co-
morbidities of the participants who reported a positive
diagnosis of COVID-19, either through a confirmed PCR
test or a serological test (we assume that the vast major-

TABLE I: Breakdown of overall survey results by summary
demographics and test responses

n=132,454 completed survey

Overall Demographics

Age (mean ± std) 43.1 ± 13.9

Sex (M/F/Other) 35,305/95,738/1,271

Active COVID n % of participants

Infection Tests (PCR)

Tests Reported 16,231 12.25%

Positive 1,181 0.89%

Negative 13,662 10.31%

Awaiting Results/Unknown 1,388 1.05%

Serology Tests n % of participants

Tests Reported 8,044 5.12%

Positive 625 0.47%

Negative 6,780 5.12%

Awaiting Results/Unknown 639 0.48%

Flu Tests n % of participants

Tests Reported 3,085 2.33%

Positive Tests 665 0.50%

Negative 2,392 1.81%

Awaiting Results/Unknown 27 0.02%

Other Tested Infections n % of participants

Tests Reported 1,135 0.86%

TABLE II: Self-reported health characteristics of participants
who reported either a positive PCR test or a positive serologi-
cal test. Note that some participants may have received both.

Characteristics of

COVID-19 Participants

Age (mean ± std) 41.9 ± 12.9 yrs

Sex (M/F/Other) 410/1,223/9

Self Reported Health n %

Hypertension 294 17.9%

Asthma 303 18.5%

Diabetes 130 7.9%

Coronary Arterial Disease 22 1.3%

Stroke 19 1.2%

Chronic Lung Disease 21 1.3%

Chronic Kidney Disease 14 0.9%

Congestive Heart Failure 12 0.7%

ity of tests for active COVID-19 infection were done us-
ing PCR-based techniques). Note that participants could
also decline to answer this question, so these numbers are
only indicative of general trends in the disease popula-
tion.

In order to assess some metric of disease severity, we
took the approach of asking about the person’s treatment
rather than through quantification of symptoms. The
options provided to a survey participant were:
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TABLE III: Prevalence of symptoms

Symptom all (%) asx. mild(%) mod(%) sev/crit(%)

Fatigue 72 - 79 87 82

Headache 65 - 72 80 68

Bodyache 63 - 63 82 75

Cough 59 - 57 78 76

Decrease in

taste & smell 60 - 66 72 64

Fever 55 - 50 74 81

Chills 53 - 50 71 67

Shortness of breath 46 - 37 65 80

Congestion 46 - 54 53 38

Loss of appetite 44 - 42 58 70

Chest pain 40 - 37 57 57

Diarrhea 39 - 37 52 48

Sore throat 38 - 43 47 30

Neck pain 22 - 21 31 21

Eye pain 19 - 19 26 22

Hoarse voice 19 - 19 25 24

Stomachache 18 - 17 26 15

Confusion 16 - 12 25 34

Vomiting 10 - 7 13 24

Rash 8 - 8 12 10

Swelling in

fingers & toes 5 - 4 9 11

1. I didn’t experience symptoms.

2. I self-treated alone.

3. I self-treated with someone’s help.

4. I required hospitalization without ventilation sup-
port.

5. I required ventilation.

6. Prefer not to say.

We consider 1 as asymptomatic. 2 is assigned to cat-
egory “mild”. 3 is assigned to “moderate”, 4 is “severe”
and 5 is “critical”. 11.0% of participants were asymp-
tomatic, 47.2% had mild symptoms, 33.2% were moder-
ate, 8.16% severe, and 0.448% critical. Those with mild
symptoms recovered sooner than those with moderate or
severe symptoms. The distribution in the duration of
symptoms is shown in Fig. 1.

B. Making predictions based on health metrics and
symptoms

Firstly, we wished to use the self-reported symptoms
as a classifier of likely need for hospitalization. Using

FIG. 1: Distribution of symptom duration for mild, moder-
ate and severe/critical cases. The median symptom duration
is 8 days for mild cases, 15 days for moderate cases, and 24
days for severe/critical cases.

the symptoms along with the age, sex, and BMI as in-
put features, we trained a logistic regression classifier to
predict the need for hospitalization. We only considered
symptomatic individuals for this analysis.

Secondly, we considered the use of physiological signs
to predict the presence of symptoms associated with
COVID-19. Let us denote the nth day relative to the
start of symptoms as Dn. D0 thus represents the day
when symptoms started. We make the assumption that
individuals are healthy, i.e. class “Negative” from day
Da to day Db where Db < D0. The days between Db

and D0 are treated as a buffer space when subjects may
or may not be sick, and hence, ignored. Subjects are
considered to be sick from day Dc up to day Dd where
Dc ≥ D0. The choices of Da, Db, Dc, and Dd are made
through cross validation. As a guide to choosing the days,
we note the median incubation period is estimated at 5.1
days17. Since we are using the date relative to the start
of symptoms as the ground truth label, we consider only
symptomatic individuals.

The following physiological data was calculated for
each user on a daily basis using the data recorded from
their Fitbit device:

• The estimated mean respiration rate during deep
(slow wave) sleep (we default to light sleep if deep
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sleep data is insufficient).

• The mean nocturnal heart rate during non-Rapid
Eye Movement (NREM) sleep.

• The Root Mean Square of Successive Differences
(RMSSD) of the nocturnal RR series.

• The Shannon entropy of the nocturnal RR series.

Data are collected simultaneously from the PPG sen-
sor and the accelerometer. RR data are only stored when
no motion above a set threshold is detected, and when
the coverage in a 5 minute window exceeds 70%. Data
are only collected when the subjects are at rest. The
RR data are then cleaned to remove noise due to missed
heart beats, motion artifacts, electronic noise, etc. The
Fitbit system estimates periods of light, deep (slow wave)
and REM sleep18 and this is used in deciding which sec-
tions of the overnight data to process. The respiration
rate is obtained by fitting a Gaussian model to the spec-
trum of the interpolated RR intervals as a function of
frequency - this relies on the phenomenon of respiratory
sinus arrhythmia (RSA) to induce a measurable modu-
lation of the RR interval series. In cases where there is
no discernible RSA, we do not estimate the respiration
rate. The RMSSD is a time domain measurement used
to estimate vagally mediated changes8. It is computed
in 5 minute intervals, and the median value of these indi-
vidual measurements over the whole night is calculated.
The Shannon entropy is a non-linear time domain mea-
surement computed using the histogram of RR intervals
over the entire night. The RMSSD and entropy are com-
puted between midnight and 7 am. The sleeping heart
rate is estimated from non-REM sleep only. The respi-
ration rate is computed from deep sleep when possible,
and from light sleep in the case of insufficient deep sleep.

Since health metrics such as respiration rate, heart
rate, and heart rate variability can vary substantially be-
tween users, we use the Z−scored equivalents:

Zx =
x− µx

σx
, (1)

where x could stand for respiration rate, heart rate,
RMSSD, or entropy. µx and σx are the rolling mean
and rolling standard deviation of the metric being mea-
sured. For each day Dn, we construct a 5 × 4 matrix with
the normalized Z−scores corresponding to the 4 health
metrics, measured on days Dn · · ·Dn−4. Each day is rep-
resented by a matrix with that day’s data along with the
previous four days data. Each row of the matrix repre-
sents a day of data, while each column represents a met-
ric. We linearly interpolate missing data, but only do so
if there is a minimum of 3 days of data. We create an
“image” from each matrix by resizing each 5 × 4 matrix
to a 28× 28× 1 matrix, with the last dimension indicat-
ing that there is only one color channel. The pixel values
are rescaled to the range (0,1). We included 673 symp-
tomatic individuals with sufficient data for analysis. 70%
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FIG. 2: The neural network architecture. The nocturnal
respiration rate, heart rate, RMSSD, and entropy for day Dn

along with the previous four days data are Z-scaled, arranged
in the form of a 5×4 matrix and rescaled to 28× 28× 1. This
image is fed to a 1-dim. convolutional layer with m filters.
The first dense layer reduces these m features to a smaller
number of N1 features which are concatenated with an array
of external inputs such as age, gender, BMI, etc. The last
dense layer leads to a softmax filter.

of the subjects were randomly selected to comprise the
training set. The remaining 30% of subjects were split
equally into 2 hold-out sets: one for cross-validation, and
one for testing.

Fig. 2 shows the neural network architecture. Each
image is input to a 1-dim. convolutional stage with m
filters, and a filter size of k. After maxpooling, the convo-
lutional stage produces a set of m features. Non-linearity
in the form of a “Relu” layer is introduced. A dense layer
is used to reduce the m convolutional features to a small
feature set N1. At this stage, an array of n external in-
puts is applied including features such as age, gender,
and BMI that need to bypass the convolutional stage.
We also input the sleep efficiency for day Dn defined as
the ratio of time asleep to the duration between wake
time and bed time. In addition, we also include the Z-
scored respiration rate, heart rate, RMSSD, and entropy
for day Dn as a part of the array. The final dense layer
leads to a softmax layer with two possible output classes.

III. RESULTS

Firstly we report on the prediction of hospitalization
based on symptoms. We trained a logistic regression
model to predict the need for hospitalization with four
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FIG. 3: Predicting the need for hospitalization given the
symptoms. The AUC averaged over 4 folds is 0.77 ± 0.05.

fold cross-validation, using the symptoms as input fea-
tures, along with the age, sex, and BMI. Fig. 3 shows the
ROC curve where “true positive” indicates a prediction
of hospitalization for an individual who indeed required
hospitalization. Averaged over four folds, the Area Un-
der ROC (AUC) is 0.77 ± 0.05. The probability of the
need for hospitalization p may be expressed as:

z = α+
∑
i

wisi

p =
1

1 + e−z
, (2)

where α = −3.3457, si is a symptom (1 if the symp-
tom is present, and 0 otherwise), and wi is the weight
corresponding to symptom si. The weights for the vari-
ous symptoms are shown in Table IV. We rescale the 2
continuous variables (age and BMI) as follows:

xs =
x− µx

σx
, (3)

where xs is the scaled version and x stands for age or
BMI. µx and σx are the respective mean and standard
deviation, which are (41.5 years, 12.5 years) for age and
(30.8, 7.7) for BMI. For the sex, 1 indicates male and 0
indicates female.

Let us now consider the problem of determining
whether an individual is sick or healthy given the phys-
iological metrics. Fig. 4 show the average Z-scores of
symptomatic individuals for the respiration rate, heart
rate, RMSSD, and entropy as a function of day, where

day D0 represents the start of symptoms. The error bars
represent the standard error of the mean. The respi-
ration rate shows the largest effect and also takes the
longest time to return to its base value. The duration
between day ≈ D+7 and ≈ D+21 may be thought of as
a recovery phase during which the health metrics return
to their normal values. It is interesting to note that the
heart rate decreases on average, following day D+7, and
returning to the base value by day D+20. The HRV met-
rics on the other hand, are slightly elevated on average
in the recovery phase. We did not notice a decrease in
respiration rate on average, during this phase.

We trained a convolutional neural network to predict
whether an individual is sick on any specific day given
the Z−scores for respiration rate, heart rate, RMSSD,
and entropy for that day and the preceding four days.
Using the cross-validation set, we obtained the best per-
formance considering negative classes from day D−21 to
day D−8. The days from D−7 to D0 are discarded. Data
for the positive classes come from day D+1 to day D+7.
The filter size k for 1-dimensional convolution was set to
5 pixels, while the number of filters m was set to 64. A
drop-out of p = 0.4 was applied for regularization. The

TABLE IV: Predicting the need for hospitalization: Impor-
tance of symptoms.

Symptom Weight

Shortness of breath 1.1210

Vomiting 1.0784

Loss of appetite 0.7156

Confusion 0.6442

Swelling in the fingers and toes 0.4670

Hoarse voice 0.4520

Fever 0.4374

age (scaled) 0.3558

BMI (scaled) 0.3488

Chest pain 0.2730

Cough 0.1553

Sex (male: yes/no) 0.0750

Chills 0.0654

Body ache 0.0517

Diarrhea 0.0441

Decrease in taste and smell -0.1661

Head ache -0.2261

Eye pain -0.2282

Congestion -0.3258

Neck pain -0.3739

Rash -0.4046

Fatigue -0.4651

Sore throat -0.7454

Stomach ache -0.7575
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FIG. 4: Z-scores for respiration rate, heart rate, RMSSD, and entropy. Day 0 (D0) represents the start of symptoms. The
respiration rate and heart rate are elevated during times of sickness, while the RMSSD and entropy are decreased. These
metrics may change a few days prior to the start of symptoms. The duration from day D+7 to day D+21 may be thought of
as a recovery period during which the heart rate is slightly below the normal value, while the HRV is slightly elevated. The
respiration rate takes the longest time to return to its base value, and does not show a recovery phase unlike the heart rate or
HRV. Shown are the mean and standard error of the mean.

number of neurons in the first dense layer N1 = 12, while
the number of neurons in the second dense layer N2 = 64.
The data are randomly split into training and hold-out
sets, but we do this four times using a different random
seed each time, to reduce the risk of outliers influencing
the results. The AUC for the four folds was found to be
0.81, 0.74, 0.78, and 0.74. The mean AUC over 4 folds is
0.77 ± 0.027. At 95% specificity, the sensitivity averaged
over 4 folds is 44% ± 2.3%.

Having set the network parameters, we retrained the
classifier using all available data up to June 1, 2020. Data
after June 1 was set aside a hold-out set for testing. On
this dataset, the AUC was found to be 0.80, with a sen-
sitivity of 47% at a specificity of 95%. Fig. 6 shows
the fraction of symptomatic users who are classified as
sick, for different days. Day 0 is the start of symp-
toms. Negative numbers indicate days prior to the start
of symptoms, while positive numbers are days following
the start of symptoms. Plot (a) shows the results for 95%
specificity (solid, blue curve) and 90% specificity (dashed,
green curve). Plot (b) shows the results for subjects at
95% specificity, who present with specific symptoms such
as a fever, cough, or congestion. Plot (c) shows the effect
of disease severity on the probability of illness detection,
with a specificity of 95%.

IV. DISCUSSION

In this article, we analyzed data on 1,181 subjects di-
agnosed with COVID-19 using the active infection PCR
swab test, in the time period May 21 - July 14, 2020. All
subjects wore Fitbit devices and resided in the United

FIG. 5: Predicting sickness given the physiological signs.
With 4 fold validation, the AUC is 0.77 ± 0.027. At 95%
specificity, the sensitivity averaged over 4 folds is 44% ± 2.3%.

States or Canada. The overall positivity rate was 7.26%.
11.0% of reported cases were asymptomatic. 8.16% of
subjects required hospitalization without ventilation sup-
port, while 0.448% required ventilation. Fatigue was the
most common symptom, present in 72% of cases. Symp-
toms such as rash and swelling in the fingers and toes
presented rarely in less than 10% of cases.
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FIG. 6: Fraction of users in the test set who predict posi-
tive. The solid, blue curve in (a) shows the predictions for a
95% specificity scenario, while the dashed, green curve shows
the same, for 90% specificity. Plot (b) shows the same pre-
dictions (95% specificity) but for subjects who present with
specific symptoms. The presence of a fever (dashed, green)
or a cough (dot-dashed, red) increases the probability of de-
tection more than some other symptoms such as congestion
(dotted, black). Plot (c) shows the same curves (95% speci-
ficity), but for different severity. As expected, severe (dotted,
black) and moderate (dot-dashed, red) cases are easier to de-
tect than mild (dashed, green) cases.

The duration of symptoms depends on the severity:
Mild cases show a median duration of 8 days, while mod-
erate cases have a median duration of 15 days. The me-
dian duration for cases that required hospitalization was
found to be 24 days with a large spread, with several
cases with duration exceeding 2 months. We provided a
simple formula to estimate the need for hospitalization
given the symptoms, age, sex, and BMI. Shortness of
breath is highly indicative of the need for hospitalization,
while sore throat and stomach ache were the least likely.
Rather surprisingly, gastrointestinal symptoms such as
vomiting and loss of appetite were indicative of severe ill-
ness. Among demographic information, being older and
having a high BMI show higher likelihoods for hospital-

ization.

We showed that respiration rate, heart rate, and heart
rate variability are useful indicators of the onset of ill-
ness. We trained a convolutional neural network to pre-
dict illness on any specific day given health metrics for
that day and the preceding four days. With 95% speci-
ficity, this classifier can detect 40% of cases on day D+1,
where D0 is the date when symptoms present. The clas-
sifier can detect 25% of cases on day D0, and 21% of
cases on day D−1. For the 90% specificity case, the
corresponding numbers are 52% on day D+1, 32% on
day D0, and 29% on day D−1. The peak values for the
95% (90%) specificity scenarios are 52% (59%) on day
D+4 (day D+5). Considering only subjects who present
with a fever, we classify 63% of subjects as positive, on
day D+6, with 95% specificity. The fraction who are
classified positive increases with increased severity, but
this effect is pronounced several days after the start of
symptoms. Considering only subjects who show a moder-
ate/severe/critical presentation, 65% of subjects are clas-
sified positive on day D+4, with 95% specificity.

This study has multiple limitations which may con-
found some of its findings. The survey participants were
all Fitbit users which may not represent the general US
and Canadian population, and were all self-selecting in
responding to the survey. Participants were asked to self-
recall the start-date and end-date of any symptoms they
experienced which may be quite unreliable. Participants
may also confuse active (PCR) tests with serological (an-
tibody) tests. In order to simplify the survey, we did not
ask for a breakdown of symptom presentation and sever-
ity through out the time-course of the disease. For the
prediction of the need for hospitalization, our data con-
sisted of 95 positive cases and 926 negative cases, so it is
possible that our results are potentially affected by the
small number of positive cases, as well as by the class
imbalance.

Nevertheless, we believe this survey provides an
important scientific contribution by suggesting (a)
hospitalization risk can be calculated from self-reported
symptoms, and (b) relevant and predictive physiological
signs related to COVID-19 may be detected by consumer
wearable devices.
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