

A subgroup has equally many left and right cosets

Open Mathematics Collaboration*[†]

August 7, 2020

Abstract

We prove that a subgroup has the same number of left and right cosets.

keywords: left and right cosets, group theory, abstract algebra

Theorem

1. *Any subgroup H of an arbitrary group G has equally many left and right cosets, whether or not the group is finite [1–3].*

*All authors with their affiliations appear at the end of this paper.

[†]Corresponding author: mplobo@uft.edu.br | Join the Open Mathematics Collaboration

Proof

2. $\mathcal{L} = \{gH = \{gh : h \in H\} : g \in G\}$ is the family of **all left cosets** of H in G .
3. $\mathcal{R} = \{Hg = \{hg : h \in H\} : g \in G\}$ is the family of **all right cosets** of H in G .
4. Let's define the function $f : \mathcal{L} \rightarrow \mathcal{R}$ such that $f(gH) = Hg^{-1}$.
5. Proposition 1: $(rH = sH) \leftrightarrow (s^{-1}r \in H)$.
6. Proposition 2: $(Hr^{-1} = Hs^{-1}) \leftrightarrow (s^{-1}r \in H)$.
7. $f(rH) = Hr^{-1} = \{hr^{-1} : h \in H\}$
8. $f(sH) = Hs^{-1} = \{hs^{-1} : h \in H\}$
9. Let's check that f is *well defined*.
10. Suppose $rH = sH$.
11. From (5) and (10), $s^{-1}r \in H$.
12. From (6) and (11), $Hr^{-1} = Hs^{-1}$, which means that $f(rH) = f(sH)$.
13. $(rH = sH) \rightarrow (f(rH) = f(sH))$, so f is **well defined**.
14. Now, we will prove that there is a **bijection** between \mathcal{L} and \mathcal{R} .
15. Suppose $f(tH) = Ht^{-1} = Hu^{-1} = f(uH)$.
16. Similarly, from (6) and (15), $tH = uH$.
17. From (15) and (16), $(f(tH) = f(uH)) \rightarrow (tH = uH)$
18. So, f is *injective*.
19. Let Hr and Hs be arbitrary right cosets.

20. $f(sH) = Hs^{-1}$
21. For $s^{-1} = r$, $f(sH) = Hr$.
22. So, f is *surjective*.
23. From (18) and (22), f is **bijective**.
24. Therefore, any subgroup H of an arbitrary group G has equally many left and right cosets. \square

Open Invitation

*Review, add content, and **co-author** this paper [4, 5]. Join the **Open Mathematics Collaboration** (<https://bit.ly/ojmp-slack>). Send your contribution to mplobo@uft.edu.br.*

Open Science

The **latex file** for this paper together with other *supplementary files* are available [6].

Acknowledgement

- + **Center for Open Science**
<https://cos.io>
- + **Open Science Framework**
<https://osf.io>

References

- [1] UAb. Universidade Aberta de Portugal. <https://uab.pt>

- [2] Dummit, David Steven, and Richard M. Foote. *Abstract algebra*. Vol. 3. Hoboken: Wiley, 2004.
- [3] Lobo, Matheus P. “Open Mathematics Knowledge Base.” *OSF Preprints*, 13 May 2020. <https://doi.org/10.31219/osf.io/evq8a>
- [4] Lobo, Matheus P. “Microarticles.” *OSF Preprints*, 28 Oct. 2019. <https://doi.org/10.31219/osf.io/ejrct>
- [5] Lobo, Matheus P. “Simple Guidelines for Authors: Open Journal of Mathematics and Physics.” *OSF Preprints*, 15 Nov. 2019. <https://doi.org/10.31219/osf.io/fk836>
- [6] Lobo, Matheus P. “Open Journal of Mathematics and Physics (OJMP).” *OSF*, 21 Apr. 2020. <https://doi.org/10.17605/osf.io/6hzyp>

The Open Mathematics Collaboration

Matheus Pereira Lobo (lead author, mplobo@uft.edu.br)^{1,2}
<https://orcid.org/0000-0003-4554-1372>

¹Federal University of Tocantins (Brazil)

²Universidade Aberta (UAb, Portugal)