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ABSTRACT

Emerging class of context-aware mobile applications, such as Google

Now and Foursquare require continuous location sensing to deliver
different location-aware services. Existing research, in finding lo-
cation at higher abstraction, use GPS and WiFi location interfaces
to discover places, which result in high power consumption. These
interfaces are also not available on all feature phones that are in
majority in developing countries.

In this paper, we present a framework PlaceMap that discov-
ers different places and routes, solely using GSM information, i.e.,
Cell ID. PlaceMap stores and manages all the discovered places
and routes, which are used to build spatio-temporal mobility pro-
files for the users. PlaceMap provides algorithms that can comple-
ment GSM-based place discovery with an initial WiFi-based train-
ing to increase accuracy. We performed a comprehensive offline
evaluation of PlaceMap algorithms on two large real-world diverse
datasets, self-collected dataset of 62 participants for 4 weeks in
India and MDC dataset of 38 participants for 45 weeks in Switzer-
land. We found that PlaceMap is able to discover up to 81% of the
places correctly as compared to GPS. To corroborate the potential
of PlaceMap in real-world, we deployed a life-logging application
for a small set of 18 participants and observed similar place discov-
ery accuracy.

Categories and Subject Descriptors

C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems

Keywords

Place discovery; GSM; Energy-efficient; Places of Interest; GPS;
WiFi

1. INTRODUCTION

Mobile applications consider user context to provide personal-
ized services to the mobile users. For instance, Google Now tracks
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user’s location continuously to push information such as weather,
traffic, bus arrival time, etc. A user location context is high level in-
formation, e.g., places visited by users in their day-to-day lives and
routes taken by users between the places, more than fine-grained
latitude and longitude. Accurately finding everyday places from a
user’s mobility has critical importance for many context aware ap-
plications, as people spend about 80—90% of the time indoors [12].
For example, many context-aware applications make use of place
information to enable geo-reminders [9], participatory sensing [7],
content-sharing decisions [21], advertisements [8], etc. Popular so-
cial networks, such as Foursquare and Facebook Places, also use
place information for automatic checkins. Similarly, there are ser-
vices, which need path travelled by a user. These include pollution
exposure estimation [7], healthcare (i.e. activity logging), traffic
estimation, ride-sharing, and advertisements.

A mobility profile for a user consists of all the places visited by
her with accurate arrival and departure time for those places. Much
of the current work use GPS and WiFi [17, 12, 13] to continuously
track user’s locations and find places by applying different clus-
tering algorithms on those location coordinates. Current research
work on finding places have limited impact in developing countries
due to following reasons.

1. Constrained by Feature Phones A large number of phones
are feature phones, especially in developing countries, which
have limited capabilities, e.g., they lack location interfaces
of GPS and WiFi [31, 14]. Due to their limited capabilities,
feature phones are unable to use context aware applications,
which require user context.

2. High Energy Consumption Finding place information us-
ing GPS and WiFi requires continuous tracking of location,
which drains the phone battery. Yohan et al [10] observed
that the reduction of battery life for GPS, WiFi, and GSM
was 72%, 45%, and 18% respectively in comparison to base-
line for 1400 mAh battery, while location information was
sampled every minute.

3. Limited Coverage GPS is not available indoors. Further,
there is a lack of city-scale WiFi infrastructure in many de-
veloping countries and hence, it is not possible to discover
places or routes using WiFi data alone.

Due to above-described limitations, there is a need to design new
ways of finding places. Many applications do not require high ac-
curacy in case of place discovery. A place is inherently bigger
than a location coordinate. Therefore, use of GSM information
is a deserving alternative. In this paper, we propose a framework



PlaceMap to discover places and routes visited by mobile users us-
ing only GSM information. In a nutshell, our framework keeps
track of Cell IDs continuously and then uses a clustering algorithm
to segregate Cell IDs according to physical places. One of the main
challenges encountered by Cell ID clustering is that Cell IDs keep
on changing even if user stays at a same place. Our clustering al-
gorithm is able to deal with this noisy data. Apart from finding
places, PlaceMap finds routes between two different places taken
by mobile user with Cell ID information only.

We provide a version of PlaceMap with WiFi, if high accuracy
in finding places is needed. Even in that case, PlaceMap uses WiFi
only for the initial training. After the training is over, WiFi is not
needed. For the initial training, PlaceMap compares places resulted
from GSM-based place discovery with the more accurate informa-
tion generated using WiFi and corrects its mistakes, such as merged
or divided places. WiFi in itself is not used for finding location. Un-
like traditional approaches, PlaceMap uses WiFi only to improve
accuracy of locating places, which are found using GSM-based al-
gorithms. If a user has repeated visits to same places, WiFi is not
needed after the initial training. GSM-based place discovery algo-
rithms suffices. The collected place signature information is used
to track revisits to places and movements between different places.
This signature information can also be shared with feature phone
users to increase the accuracy of place discovery. This way, the
phones without WiFi also provide high accuracy in finding places.
The contribution of this paper are as follows:

1. A graph-based clustering algorithm GCA to discover places
solely from Cell ID information across different users. To
further improve accuracy of GCA for indoors, we developed
an algorithm, which uses an initial training of WiFi data to
learn places and later uses Cell ID data only. Based on ex-
tracted places using GSM data, we estimate the arrival and
departure time as well as the routes that she takes between
two places.

2. Evaluation of the proposed algorithms on two publicly avail-
able large mobility datasets both from developed country and
developing country. We found that PlaceMap can discover
nearly 69% places correctly using only GSM data in the
Indian dataset as compared to that using WiFi. In MDC
dataset, we found that PlaceMap was able to discover nearly
81% of the places correctly with the initial training of WiFi.
PlaceMap records 80% of arrival and departure times to the
revisited places with in a delay of 10 minutes. Further, it
estimates the distance and duration of routes travelled by
users with a median error of 1.47Km and 6.71minutes re-
spectively.

3. We implement proposed framework PlaceMap as a Cloud
service, which uses the above-mentioned algorithms. The
cloud service is used to discover all the places visited by
a user, arrival/departure time at those places, and frequent
routes undertaken by her. As a proof-of-concept, we de-
signed and deployed a life-logging mobile application which
uses PlaceMap cloud service to 18 student participants for 2
weeks and observe that, it provides similar aggregate accu-
racy as when evaluated for the two large datasets.

In essence, the current focus of PlaceMap is to enable discov-
ery of places using low energy location interfaces and not neces-
sarily tagging them with their semantic labels. There are various
approaches proposed by researchers, which can take place infor-
mation from PlaceMap and assign semantic labels to each one of
them [29].
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2. DEFINITIONS

In this section, we define Place, Route, and Mobility Profile.

e Place A Place is defined as a location, where a user stays for
non-trivial amount of time, e.g., “Home" and “Workplace".
Burbey et al [19] considered a location as a place if the user
has spent more than 10 minutes at that location. Depending
on different location interfaces, a place can constitute a set of
Cell IDs (i.e. c;) or a set of WiFi APs (i.e. w;), or a pair of
GPS coordinates.

P; = {c1,c2,¢3,c4,¢5) Or P = {w1,w2,w3,w4} or
P; = {latitude, longitude}

e Route A Route is defined as a travel path taken by a user
between two places. In the context of this paper, a route con-
stitutes of a series of timestamp ordered GPS coordinates or a
set of time ordered Cell IDs observed during travel duration.

R; = {(017 tl)7 (027 t2)7 Tty (ck?7tk)} or

Ri={(g1,t1), (g92,t2), -~ , (g, tr)}

where {latitude, longitude} € g; and t; represents times-
tamp, when Cell ID or GPS coordinates is recorded.

Mobility Profile A Mobility Profile is defined as a set con-
taining (a) visited places along with their respective arrival
and departure timestamps and (b) routes taken with their start
times and end times. Mobility profile for a user X is repre-
sented as follows:

Mx = {(P17(L1,d1)7 (P2>a27d2)7' o 7(Pn7an>dn)} )
{(R1751561)7(R2732762)7"' 7(Rm75m76m)}

PLACEMAP ALGORITHMS

In this section, we describe algorithms for building mobility pro-
file, which is combination of places, their respective arrival and
departure time, and route information.

3.

3.1 Place Discovery

GSM APIs in majority of phones provide access to only one Cell
ID to which the phone is connected and its corresponding RSSI
(Received signal strength indication) [11]. WiFi-based place dis-
covery methods assume access to multiple base stations or access
points [17]. Hence, the signal fingerprinting method that works in
case of WiFi does not work for majority of GSM phones. Previous
work [16] has shown that even if a user stays at the same place, the
Cell ID may change due to reasons, such as network load, small
time signal fading, and inter-network (2G to 3G or vice versa)
handoffs. We call this change in Cell ID while the user is at the
same place as “oscillating effect". To deal with this effect, we need
a place discovery algorithm to cluster oscillating Cell IDs.

PlaceMap organizes GSM information, which is a tuple of MCC',
MNC?, LAC?, and Cell ID, with timestamps. LAC is an identi-
fier assigned to a group of nearby cell base stations. This tuple
can uniquely identify a cell base station globally. To simplify de-
scription of algorithms, henceforth we will represent every base
station only with its Cell ID and the corresponding timestamp. As
an example, if a user’s movement pattern in terms of Cell IDs is
{ci,c2,c2,c1,c1} at time {t1,t2,t3,t4,t5} respectively, the informa-
tion is represented as set of cell records, {(c1, ¢1), (c2,t2), -,
(c1,t5)}. The process of discovering places in PlaceMap is di-
vided into two phases, the first is construction of clusters from day-
specific cell records and the second is to map clusters to places
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and keep learning this mapping as each day is passed. As part
of first phase, we present three potential clustering algorithms for
PlaceMap, which can cluster Cell IDs observed in a day’s time pe-
riod according to places. As a user’s movement pattern is likely to
be redundant across days, we consider a day’s data as an input for
clustering algorithms. Second phase involves continuous place dis-
covery process, which utilizes day-specific clustering algorithms’
output to maintain a global list of all discovered places of a user.

3.1.1 LAC-based Clustering Algorithm (LCA)

Cellular network provides same LAC identifier to a set of co-
located cell base stations [18]. Therefore, the most naive approach
is to use LAC to cluster oscillating Cell IDs. Cell ID clusters are
produced from the given cell records, where each cell cluster con-
tains Cell IDs belonging to the same LAC. Each of the LAC-based
clusters (C'C)) can have one or more Cell IDs.

3.1.2  Graph-based Clustering Algorithm (GCA)

Let {(c1,t1), (c2,t2),- -, (ck, tx)} be distinct time-ordered Cell
IDs observed in a day. From the given day specific cell records,
we build an undirected graph, called as movement graph G(V, E),
where V;c g1 3¢ € V and there exist an edge e(c;, ¢;) between ¢;
and c¢; if ¢; and ¢; are contiguous in time ordered cell records and
time difference between start time of ¢; and end time of ¢; is less
than o

As an example, in step 1 of Figure 1, ¢1 and ¢z occurred con-
tiguously and ¢2-t1 <, so there will be an edge between c; and c2
in the corresponding movement graph of the user. Multiple edges
between c; and c; are merged into a single edge with weight equal
to that of number of edges between ¢; and c;. « ensures that an
edge occurs only across successive Cell IDs. There are scenarios,
in which two Cell IDs are contiguous, but the time difference be-
tween them is high due to switching off of the phone, unavailability
of the network, or loss of location updates. Such Cell IDs may not
be close to each other. In those scenarios, « is able to prune them
effectively. An example of a representative movement graph cre-
ated from given cell records is shown in step 2 of Figure 1.

| Timestamp | Cell info_| 2 - =
T, Cy T,, T, are
5 & contiguou
Rl tubidy
Ts < T-Ti<a S
Tis Cis
Step 1
Clustering Metrics Step 2
- Edge Weight
- Node Degree
{C4, G5, G35, Ca}
Py {C1, Ca, 10:00 — 17:00 B —— {C12, C13}
Cs, Ca}
{Ca1}
P, {Ci2, €33} 19:00 — 23:59 A

Figure 1: Various steps to discover places from the raw cell records
and subsequently, building mobile profile using the place informa-
tion.

We observed that Cell IDs, which belong to same cluster have
high number of oscillations and thus high edge weight between
them or forms a star like topology as shown in step 2 of figure
Figure 1. We propose a three phase algorithm as described in Al-
gorithm 1, which uses a oscillation threshold parameter 7 to cluster
Cell IDs based on edge weight and an another threshold parameter
7’ to identify star topology in movement graph. GCA takes move-
ment graph as an input and produces Cell ID clusters as an output,
where each cluster of Cell IDs represents a different place as shown
in step 3 of Figure 1.

1. In the first phase of GCA , we start with initializing a cluster
set CG to ¢. All edges in the movement graph G(V, E) are
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Algorithm 1: Pseudocode of GCA
1 Algorithm: Graph-based Clustering Algorithm (GCA)

Input: Movement Graph G(V, E') where V is set of vertices
and F is the set of edges
Output: Set of Cell ID Clusters CG

2 begin

3 /* First Phase */

4 Rank all the edges in E into decreasing order of their
weight;

5 CG=¢;

6 while (Ve € E) AND w(e) > 1 do

7 ifv; € CGj where v; € e, i € (1,2), CG; € CG

then

8 h CG]=CG] U’Ukl kag;

9 else

10 Create new cluster CG,, = vi1 U vko and add it to

CG

1 /* Second Phase */
12 while (Vv; € CGy) where CGy, € CG do

13 if (A(v;) > n’) then

14 L CGy = CGy U neighbors(v;) ;

15

16 /* Third Phase */

17 CG' = (;5 5

18 while (VCG; € CG) do

19 isExist = false ;

20 while (VCG; € CG’) do

21 if (CG; NCGj) # ¢ then

22 L CG»L'=CG»;UCGJ';

23 isExist = true ;

u break ;

25 if —(isExist) then

26 L Add CG; to CG’;

% while (Vv; € V) do

2 if (v; ¢ 3CGy) where CGj, € CG' then
29 L Create new cluster CG,, = v; and add it to CG" ;

3 Copy CG" into CG ;
31 return CG ;

then sorted in descending order according to their weights.
After sorting, GCA selects one edge at a time which has edge
weight equal or more than 7. If at least one of its two vertices
is already in one of the cluster sets, say CG; € CG. If it is
found, both the vertices of that edge are merged into CG,.
Otherwise, a new cluster is created containing only those two
vertices and added to C'G.

2. A(v) represents the degree of an vertex. In the second phase,
we consider each vertex within the set of clusters (CG) and
if A(v) is higher than or equal to 7', all the neighboring ver-
tices of v are also added to the cluster, which contains v, if
they are not already included. We use 1" as a threshold to
classify vertices, which are central to different Cell ID tran-
sitions as compared to others. As an example, vertex repre-
sented by Cell ID ¢; in Figure 1 is central to Cell ID transi-
tions with co, ¢z and c4.

3. In the third phase, to create distinct and non-overlapping
clusters, we combine all the clusters from C'G, with a com-
mon vertex, to produce a new set of clusters CG’ that does
not have any common vertices across different clusters. All
the left over vertices are added as a separate cluster in CG’.
For instance, if a vertex v; does not belong to any of the



clusters in CG’, we create a new cluster CG,, that contains
v; and add it to set of clusters CG’. Finally, all clusters in
CG’ are added to CG.

As defined earlier, each vertex in every cluster CG; € CG cor-
responds to a unique Cell ID and each cluster in C'G represents a
different place visited by the user in a day. We compare the accu-
racy of GCA with ground truth as well as LCA-based clustering in
evaluation section.

3.1.3  WiFi Trained Cell ID Clustering Algorithm
(WTCA)

GCA and LCA work on an assumption that a user will see dif-
ferent Cell IDs at different places. However, multiple places can
be in close proximity, e.g., a student staying in a dorm that is close
to academic building. If coverage of some cellular towers encom-
pass both the dorm and the academic building, the user’s phone
may see overlapping set of Cell IDs in both the buildings. The
cluster produced by GCA are mutually exclusive. In other words,
the algorithm will merge the two nearby but different places and
show them as one, even if there exists a single common Cell ID
observed at each of the two places. This merging effect of GCA is
also observed in our collected data as some of the participants live
in dorms, which are close to academic building. For instance, if
a user’s phone observes Cell IDs {c1,c2,c3,c4} at P and Cell IDs
{ca,c5,c6} at place P, Cell ID ¢4 is common across places P and
Ps.

While such geographically close places may have overlapping
Cell IDs, it is unlikely that they will have overlapping WiFi APs due
to latter’s comparatively smaller coverage. In the afore-mentioned
example, if the WiFi APs seen at P; are disjoint from that seen at
P, this information can be used to associate APs seen at P; with
{c1,c2,c3,c4} and those seen at P» with {c4,c5,c6}. In this case, we
can take into account disjoint Cell IDs {c1,c2,c3} and {cs,c6} to
distinguish between different places. We use this insight to extend
GCA by training it with cell clusters found using mobility profile
created using WiFi data. Building mobility profile using WiFi data
has been extensively studied in previous research work [12, 17, 13].
‘We have used the UIM clustering algorithm [17] to discover places
using WiFi data. This knowledge is then used to cluster Cell IDs.
In particular, PlaceMap performs the following steps:

1. Use UIM clustering algorithm to build mobility profile M P,
using WiFi data. The resulting profile has all the places with
their respective arrival and departure time information for a
given day d. MPwd = {(P1, ai, d1), (Pz, a2, dz), ey, (Pn,
Qn, dn)}

2. For each place P; in M P,,, find all the Cell IDs observed by
the user and create a cluster with all those Cell IDs. If a user
visits the same place at two different time intervals, we take
a union of Cell IDs seen in both of these time intervals, to
create a single Cell ID cluster corresponding to P;.

3. For a given day d, once a cell cluster is found for each place
in M P, all of them are put into a set of clusters CTV.

After, PlaceMap collects WiFi data for d number of days, it com-
putes WiFi-based Cell ID clusters observed for each day, say CW
={CW1,CWs,, ---, CW4}. A Cell ID is said to be conflicting if
it belongs to two different Cell ID clusters for the same day. Such
conflicting Cell IDs essentially belong to two different places and
hence can not be relied upon when performing clustering. We cre-
ate a separate conflicting set, Cc, that contains all such conflicting
Cell IDs, which exist in CTW.
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Now, we have to cluster remaining non-conflicting Cell IDs in
C'W according to unique places. We define a support metric s(c;, ¢;)
for every non-conflicting Cell ID pair ¢;,c; € CW as s(¢;, ¢j) =
#M’ where O(c;, ¢;) denotes the number of joint oc-
currences in days of ¢; and ¢; within the same cluster and O(c¢;)
denotes all the occurrences in days of c;, irrespective of whether c;
was in the same cluster as ¢; or not. Two Cell IDs ¢; and c; are
strongly connected and are in the same cluster, if s(ci,¢;) > 7,
where v is system defined threshold. The high value of support
metric i.e. s(c;i,c;) indicates that ¢; and ¢; are observed together
in the same cluster for a large number of days. For instance, if we
find s(c;, ¢;) = 0.5, it means that a pair of Cell IDs were observed
in the same cluster in half of the total number of days in training pe-
riod. On the same lines, if we use value of ~y equal to 0.5, it means
that a pair of Cell IDs belong to the same cluster more than half
the total number of days. In that case, they are termed as strongly
connected.

Once, support metric is computed for each non-conflicting Cell
IDs using WiFi-based cell clusters. After that, GCA-based Cell ID
clusters C'G are refined to remove the merging effect with the help
of following steps:

1. For each cluster CG; € C'G, remove the Cell IDs that over-
lap with the conflicting set Cc and insert them into a separate
cluster Cs. Correspondingly, CG is modified to a cluster
set CG’ for which Cell IDs across all the clusters are non-
overlapping.

2. Correspondingly, for each cluster CG; € CG’, if it was
modified in the previous step then it is taken out from CG’
and all its Cell IDs are added into a single cluster C'G,.
Thereafter, Algorithm 2 is used to return one or more strongly
connected clusters in CG,, called SC.

3. Further, for each of the strongly connected clusters, add back
the corresponding conflicting Cell IDs from C's to each of its
components, to create the modified strongly connected clus-
ters SC'.

4. Final modified cluster set C'G is obtained by combining clus-
ters in SC’ and CG'.

Using the WiFi training data, WTCA corrects the merging er-
rors of GCA and subsequently forms a new set of Cell ID clusters,
which minimize the number of merged places.

3.1.4 Continuous Place Discovery

One of the clustering algorithms i.e. LCA, GCA, or WTCA can
be used to discover places from single day’s cell records. Since,
most of the time user visit same places, PlaceMap needs to have
a continuous process to discover new places across different days
and for different users. On the first day, PlaceMap initializes a list
of places CC' with the places discovered on that day using one of
aforementioned clustering algorithms. After that, PlaceMap keeps
using clustering algorithms to discover new day-specific places CG
and updates existing list of places C'C' using them. PlaceMap per-
forms the update using two different operations merge and add.

In merge operation, similarity between newly discovered places
in CG is measured with existing places in C'C. Here, similarity
check is performed to find out whether a place has already been
discovered or not. To compare similarity between places, we de-
fined a metric, i.e.. cluster similarity index, which is computed as
ratio of number of common Cell IDs to minimum size of among the
two clusters. Size of a Cell ID cluster is equal to number of Cell



Algorithm 2: Pseudocode of Strongly Connected Clustering
Algorithm

Algorithm: Strongly Connected Clusters Algorithm

Input: C'G; is a cluster of Cell IDs
Output: Strongly connected clusters set SC

-

2 begin

3 SC=¢;

4 while (VC]' c CGZ) do

5 while (Vck S CGi) do

6 if s(cj, cx) >  then

7 if (¢; € SCr OR ¢, € SC, where
SCy, € SC) then

8 SCmZSCmUCjUCk;

9 else

10 Create a new cluster with (¢;, ¢ ) and add

itto SC';
1 return SC';

IDs contained in it. For any two places in CG and CC, it is com-
puted as follows: Cluster Similarity Index (CG;,CCj) =

#ﬁ%@l)’ where CG; € CG and CC; € CC If cluster
similarity index is greater than p, it signifies that there is high sim-
ilarity between cell clusters and C'G; is removed from C'G and it
is merged with C'C;. This process is followed for all the places,
which are part of CG. In case of WI'CA , conflicting Cell IDs are
removed from both the clusters before measuring their mutual sim-
ilarity.

PlaceMap bootstraps add operation after merge operation and
all the leftover places of C'G are added to C'C. Essentially, CC'
contains all the discovered places at a given time in PlaceMap and
it can be used for finding other information, such as arrival time
discussed in subsequent subsection.

3.2 Measurement of Place Arrival and Depar-
ture Times

For creation of mobility profile of a user, PlaceMap needs to
track her arrival and departure time information for every discov-
ered place. In case of GSM-based place recognition, signature in-
formation consists of a set of Cell IDs. This signature information
can be used to detect arrival and departure time of a user from a
given place in real time. PlaceMap stores all the visited places’
signatures and continuously tracks Cell ID information with sam-
pling interval of 1 minute. If currently sensed Cell ID information
belongs to one of the places’ signature information for continuously
t, minutes, it records arrival at that place. PlaceMap uses a thresh-
old of ¢, minutes to reduce effect of occasional fluctuation among
Cell IDs.

To detect departure from a place, PlaceMap keeps track of cur-
rent Cell ID information to see if it belongs to a place signature,
where it has recorded last arrival. Once, it detects a Cell ID, which
does not belong to the last recorded place’s signature information
for consecutive t; minutes, departure is recorded for that place.
In the same way, arrival and departure time information of all the
places are recorded in mobility profile of a user. Stay time of a
user at a given place is the time difference between her arrival and
departure times at that place.

3.3 Route Discovery

Route taken by a user to travel between a set of places is an im-
portant information for applications, e.g., PIER [7]. PlaceMap’s
route finding algorithm takes help of arrival and departure time in-
formation to extract route information from mobility data. PlaceMap

gives a flexibility to specify granularity of route tracking to mobile
applications. Based on the application requirements, PlaceMap has
two modes of route tracking, low accuracy mode and high accuracy
mode. In low accuracy mode, once a user departs from a source
place, PlaceMap starts tracking of current Cell ID information at a
sampling interval of 1 minute. Route tracking will be on till user ar-
rives at destination place and it will result in a sequence of Cell IDs.
Apart from Cell IDs, route information will consist of start time of
the route, which is equal to departure time of source place, and end
time of route, which is equal to arrival time at destination place.
Low accuracy route information is sufficient for applications, such
as route based advertisements.

Some applications, such as crowd-sourced traffic information,
need highly accurate route information, which can only be obtained
by GPS. While working with such applications, PlaceMap oppor-
tunistically activates GPS, i.e., whenever a person departs from
place, to obtain highly accurate tracking information similarly to
approach presented in SenseLoc [12]. A high accuracy mode con-
sumes higher energy as compared to that of low accuracy mode.

4. DATASETS FOR EVALUATION OF AL-
GORITHMS

We have used two large datasets to evaluate accuracy of PlaceMap
algorithms. Both the datasets are publicly available.

1. Self-collected Dataset: We developed a data collection
app for Android phones and deployed it on 62 participants’s
phones in New Delhi, India. The participants include stu-
dents and staff members of our institute and they were made
to sign a consent form before their participation in the study.
The participants were selected using convenience sampling
and only criteria used for recruitment was availability of An-
droid phones.

Our data collection app scans and logs GSM information ev-
ery 1 minute and visible WiFi APs information every 10 min-
utes. Scanning intervals for WiFi is more than that of scan-
ning GSM information because it results in higher energy
consumption. GPS data was not collected due to higher en-
ergy consumption as compared to WiFi. Table 1 shows de-
scriptive statistics about the dataset. To the best of our knowl-
edge, it is first of its kind of data collection in India [15]. We
have made the dataset publicly available after anonymization
of personally identifiable information®. Spatial diversity of
the dataset is high as it contains 11847 unique Cell IDs and

7717 unique WiFi APs.
Data Self Dataset MDC Dataset
Total GSM records 1,131,509 8,029, 388
Total WiFi records 109, 286 2,856, 858
Total GPS records 1,553,154

Table 1: Descriptive statistics about both the datasets.

2. MDC Dataset: It is also a publicly available dataset, which
was released as part of Nokia’s Mobile Data Challenge (MDC)
2012 [26]. This dataset was collected in Switzerland from
2009 to 2011 using Nokia N95 smartphones and they have
publicly released data of 38 participants. Dataset contains
following different types of data, mobility data in terms of
GPS, WiFi, and GSM interfaces, social interactions in terms
of SMS and Bluetooth connections and application usage
data.

“http://muc.iiitd.edu.in/datasets/



We only considered mobility data for our analysis. GSM in-
formation was scanned every 1 minute, WiFi scanning was
performed every 2 minutes, and GPS coordinates were sam-
pled every 10 seconds. Descriptive statistics of the dataset is
given in Table 1. Spatial diversity of the dataset was high
due to large duration of data collection and large number of
participants. There were 18,321 unique observed Cell IDs
and 126, 968 unique WiFi APs.

S. EVALUATION OF ALGORITHMS

In this section, we evaluate algorithms for finding each of the
mobility profile constituents using the aforementioned datasets. The
output of proposed algorithms are compared against ground truth.
Previous studies used manual inputs to collect baseline (ground
truth), which is then compared with the outputs of the place dis-
covery algorithms. However, most of those studies were for a short
duration with a few participants. Due to limited scale of their data,
it was feasible to collect diary based manual inputs from partici-
pants [12]. However in our datasets, given the number of partici-
pants and duration of the data collection, it is not scalable to collect
human inputs.

In order for a scalable comparison, we derive the baseline using
GPS and WiFi because they are considered more accurate com-
pared to GSM [17, 25, 13]. The necessary condition is that the data
from the two interfaces are collected simultaneously with GSM
data. PlaceMap has two different type of algorithms, i.e., one
which uses only GSM data and other one uses GSM with an initial
training from WiFi data. Due to absence of GPS data, we evaluate
our GSM-only algorithms with the baseline generated using WiFi
data for self collected dataset. However, we use GPS data as base-
line to evaluate both types of algorithms in case of MDC dataset.

5.1 Evaluation of Place Discovery Algorithms

Place discovery algorithms of PlaceMap have two phases, day-
specific clustering and continuous place discovery mechanism. We
perform evaluation for both of these phase separately. However,
accuracy of continuous place discovery mechanism is directly pro-
portional to the accuracy of clustering algorithms LCA, GCA, and
WTCA. For creating baseline, we implemented UIM algorithm [17]
to build WiFi-based mobility profile and found corresponding day-
based Cell ID clusters as presented in WT'CA description. The set of
clusters originated using WiFi are called as WiFi-based cell clusters
and are used for evaluation of clustering algorithms.

In case of GPS, we use Kang et al [25] algorithm for cluster-
ing of GPS coordinates according to physical places. Kang et al’s
algorithm needs a time ¢ and distance d threshold parameter for
clustering, we use t=5 minutes and d = 200 meters in our settings.
Similar to WiFi, we build GPS-based mobility profile and compute
Cell ID cluster corresponding to each place in GPS based mobility
profile. The set of Cell ID clusters computed using GSM based mo-
bility profile are called as GPS-based cell clusters and are used to
evaluate our clustering algorithms. The evaluation results of both
the phases of the place discovery mechanism are as follows:

5.1.1 Evaluation of Clustering Algorithms

We represent Cell ID clusters produced using LCA, GCA, and
WTCA algorithms as CL, CC, CW'T respectively. For baseline,
we represent WiFi-based and GPS-based Cell ID clusters as CW
and CG. As shown in Table 2, we empirically find 7 and 1’ to be
equal to 3 and use it for performing all experiments related to GCA.
We define a metric correct pair for comparison between baseline
and clusters produced by different clustering algorithms. A Cell ID
pair C; and C} is counted as Correct Pair, if their occurrence within
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Figure 2: Accuracy of clustering algorithms for all the participants
in self and MDC datasets. GCA outperformed LCA by giving more
correct pairs. WT'CA improved upon GCA by correcting merged
places.

the same or across different clusters in CW is reflected accordingly
in the Cell ID based clustering approach evaluated. For instance, if
C; and Cj belongs to same cluster in C'W then they should be in
same cluster for the scheme under evaluation.

It is common to have holes in mobility data. For instance, WiFi
may not be available at some places especially in developing coun-
tries. For fairness, we take precaution that comparison is done only
when there is sufficient baseline data available for the day. Percent-
age of correct pairs found in evaluated scheme, say C'C, is com-
puted out of total pairs of Cell IDs in baseline CW for every day.
After that, we compute average % correct pairs that is an average
of all days of % correct pairs. Average % correct pairs depicts the
final accuracy of an evaluated clustering algorithm and it is calcu-
lated for each participant separately. Similar process is followed to
compute the accuracy of all clustering algorithms.

Figure 2 presents the distribution of all clustering algorithms’
performance across all participants. Mobility characteristics of each
participant is different, therefore, accuracy of clustering algorithms
for users is likely to differ. As shown in box plot of Figure 2a,
GCA produced 84.93% average correct pairs, while LCA produced
62.23% average correct pairs. For few participants, LCA provided
good accuracy up to 90.75%. It is when a person visits places that
are in distinct LAC areas. Errors in GCA occurred due to merging
of places that are geographically close to each other. We did not
evaluate WT'CA clustering algorithm on self dataset due to unavail-
ability of GPS data.

In case of MDC dataset, GCA produced 85.72% average cor-
rect pairs, while LCA produced 60.24% average correct pairs. Al-
though both of these datasets were collected in two different coun-
tries and varied demographics, we find that improvement in clus-
tering accuracy with GCA 1is consistent across both the datasets.
This shows the generalizability of the GCA algorithm. WTCA is
designed to correct the errors in GCA by identifying merged places
and segregating those with the initial d days of training provided
by WiFi-based cell clusters. We empirically found that d = 8
gives maximum possible accuracy as shown in Table 2 and used
this value for all experiments. For calculating strongly connected
components in WI'CA , we empirically find that v = 0.5 provides
maximum possible accuracy. v = 0.5 for each Cell ID pair means
that they should be seen together in same cluster for at least half
the number of training days. While calculating correct pairs using
WTCA , we ignore Cell ID pairs containing conflicting Cell IDs
because they can belong to any of those places. As shown in Fig-
ure 2b, WTCA provided 90.66% average correct pairs compared to
85.72% of GCA in MDC dataset. This improvement was recorded
because WT'CA split places, which GCA wrongfully merged, and
put them into different clusters using the WiFi-based training. We



observe that WTCA fails to correct some of merged places, when
there is no distinct Cell ID for those places, i.e., all the Cell IDs are
observed at both the places belongs to conflicting set.

From the evaluation of PlaceMap clustering algorithms, we find
that GCA was able to build day-specific Cell ID clusters, which
can distinguish between places visited by a user. However, GCA
is prone to merge nearby places which are corrected using WiFi
training by WTCA .

Algorithm Parameter Values
GCA n=3m1n =3
WTCA d=8,7v=0.5
Continuous Place Discovery p=0.55
Measurement of Place Arrival | t,=3,t5 =3

and Departure Time

Table 2: Consolidated list of tunable parameters and their values
used for evaluation of PlaceMap algorithms

5.1.2  Evaluation of Continuous Place Discovery Mech-

anism

Here, we evaluate PlaceMap’s performance in discovering places
for complete data collection duration unlike day-specific evaluation
presented earlier. The places, which are discovered by PlaceMap ,
are called as discovered places and those discovered by GPS/WiFi
baseline are called as baseline places. Baseline places, which are
also discovered by PlaceMap are baseline-discovered places and
the places which could not be discovered by PlaceMap are missed
places as shown in Figure 3.

Baseline- Discovered Places (BDP)

{_ Correct )

Baseline
Places (BP)

Discovered
Places (DP)

 oided
Figure 3: Relationship between different places discovered by
baseline and PlaceMap

For comparison purpose, we build a mapping between baseline
places and discovered places. For each place in baseline, we find
a set of corresponding Cell IDs observed by user during her stay
at that place across all days. The set of Cell IDs for each place in
baseline produces a Cell ID cluster. We find a mapping between
these two sets of clusters, i.e., one that is built using baseline called
CW and second that is discovered using PlaceMap called CC.
For every Cell ID cluster in baseline, we find all the corresponding
similar clusters from C'C' using cluster similarity index described
earlier. We consider two Cell ID clusters to be similar if value of
Cluster Similarity Index is greater than a threshold . In case of
WTCA , we remove conflicting Cell IDs before computing cluster
similarity index score to minimize their impact. We define a map-
ping of places, between those found by baseline and PlaceMap.
Following is an example of such mapping.

Place Mapping = {CW; — (CC;); CW,, — (CCh);

CW; — (CC;,CC); CWy, — (CCy); CW, — ()}

The place mapping is used to further classify baseline-discovered
places into following different categories. These categories help in
building evaluation metrics as mentioned in [12, 22].
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e Missing Place A baseline place is said to be missed if it
does not have any corresponding mapping found in discov-
ered places, i.e., CW; in above example.

e Merged Place A place is said to be merged if two different
baseline places point to a single discovered place, i.e., CW;
and C'W}, maps to the single place C'C; in above example.

e Divided Place A place is said to divided if a baseline place
maps to two or more discovered places, i.e., CW; represents
a divided place in above example.

e Correct Place A place is called as correct if there is a single
mapping of baseline place to discovered place, i.e., CWy,
represents correct place in above example.

The value of p is crucial in continuous place discovery mecha-
nism as lower value results in divided places where as higher value
will result in merged places. Using empirical analysis, we derived
p = 0.55 as shown in Table 2 and used the same value for all
the experiments. For both the datasets, we build mapping between
baseline and discovered places for each participant and then find in-
stances of missing, correct, merged, and divided places. We do not
find any instances of missing place in both the datasets as all the
baselines places existed in some form among discovered places.
The places, which were discovered by PlaceMap but did not exist
in baseline, are called extra places. Extra places are due to holes
in the baseline data, i.e., some locations may not have GPS/WiFi
coverage.

In total, number of baseline places were 228 in self dataset and
1123 in MDC dataset. In self dataset, while using PlaceMap’s GCA
clustering, about 69% places were found to be correct and 24%
places were merged when compared with the baseline. For some
participants (nearly 26%), correct places were over 90% because
the mutual distance between their places was high and PlaceMap
could easily distinguish them with the Cell IDs. As described ear-
lier, range of cellular tower is large and therefore nearby places
may observe similar Cell IDs. Hence, there were high instances of
merged places in the self dataset. There were only 6.11% number
of places, which were divided by PlaceMap. A division of a place
happens primarily due to clustering errors.

For MDC dataset in comparison to the self dataset, there were
only 20% merged places even while using GCA as shown in Fig-
ure 4. This is one of side effect of using GPS for baseline because
place clustering using GPS can not distinguish between places,
which are close by [12]. However, the number of correct places in-
creased to 81% from 75%, while using WT'CA clustering. Our place
evaluation results demonstrate that PlaceMap with WTCA is able to
discover up to 81% of places correctly. In case of MDC dataset too,
for some of the participants (nearly 31%), correct places were over
90% due to high mutual distance between their visited places.
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Figure 4: Places discovered by GCA and WT'CA in MDC dataset
across all participants; Nearly 81% places were found to be correct
using WTCA as compared to baseline (GPS)

We find that PlaceMap with GCA clustering leads to merging
of nearby places. Some of these merged places are corrected by
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Figure 5: (a) Distribution of arrival detection delay; (b): Distribu-
tion of departure detection delay

WTCA clustering however, we conclude that PlaceMap is effec-
tive in discovering places with a granularity of a building and not
necessarily room level granularity provided by WiFi-based tech-
niques [12].

5.2 Evaluation of Arrival and Departure Time
Estimation

We find arrival and departure time of a user for each visited place
using baseline data. The baseline mobility profile of a user for a day

isrepresented as My, = {(P1, a1, d1), (P, a2,dz2), -, (Pn, an,dn)},

whereas mobility profile created by PlaceMap is represented as M,
= {(]317 ai, d1)7 (Pz, az, dz), ety (Pk, Qg ., dk)}

After that, Place M apping(P M) is built between places in M
and M, as described in Section 5.1.2. Assuming, P; € Mj; and
P; € M, are found to be same, we use following two metrics to
evaluate accuracy of PlaceMap.

Arrival Detection Delay = Baseline Arrival Time (F;) - PlaceMap
Arrival Time (P;)

Departure Detection Delay = Baseline Departure Time (F;) - PlaceMap

Departure Time (P;)

For every place in M; and M), which is discovered correctly,
we find out the arrival detection delay and departure detection de-
lay. For the places, which are merged in PlaceMap due to cluster-
ing, we assume those as a single place in baseline too and subse-
quently, compute their arrival and departure detection delays. Fig-
ure Sa shows the distribution of arrival detection delay for the all
the participants in both the datasets. The negative values represents
that PlaceMap detected the place after arrival of a user at a place.
Nearly 80% of total place arrivals were detected within a delay of
10 minutes by PlaceMap for both the datasets. In nearly 20% of
the cases, arrival detection delay is more than 10 minutes, which is
due to clustering errors or missing data. As we considered merged
places by PlaceMap service as single place for this evaluation, we
did not see any noticeable difference among PlaceMap variants i.e.
GCA and WTCA in estimating arrival and departure times.

Departure detection delay for 76% of the total departures was
less than 10 minutes in case of self dataset. In MDC dataset, nearly
83% place departures had a detection delay of less than 10 minutes.
The median stay duration across all places were around 60 minutes.
Hence, we believe that PlaceMap can be used in application sce-
narios, which can tolerate inaccuracy of few minutes in detecting
and arrival of a user at a place.

5.3 Evaluation of Route Discovery

Using baseline of GPS, PlaceMap records information about the
route. The route information consists of series of time-sorted GPS
geo-coordinates, the first being start time and the last being end
time of the route. The process for finding routes from GPS data
works exactly opposite to the process of finding stay points [25].
‘We compute the total distance travelled and time duration from for
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Figure 6: (a) Distribution of arrival detection delay; (b): Distribu-
tion of departure detection delay

each route. In PlaceMap, a route consists of time-ordered Cell IDs
observed during the travel. We convert these Cell IDs into corre-
sponding geo-coordinates with the help of Cell ID databases [5]
and compute the distance traveled for each route. Routes found
by PlaceMap are then compared with baseline using two metrics
i.e. route distance error which is absolute difference between route
distance measured by baseline and that estimated using PlaceMap
and route duration error which is absolute difference between route
duration measured by baseline and that estimated using PlaceMap

In total, we find non-distinct 7, 258 routes using baseline data for
all the participants in MDC dataset. The median route duration is
17.58 minutes and median route distance is 8.03 Km. We observe
that whenever a user travels between nearby places, path tracking is
not enabled by PlaceMap due to failure of departure time detection,
possibly because of place merging effect originated from clustering
errors described in Section 5.1.2. The routes, which are missed
by PlaceMap are called missing routes. We find that PlaceMap
missed nearly 35% of routes as compared to the baseline. As the
routes are not distinct, we observe that most of these routes are for a
short distance (90% percentile of route distance was 2.52 Km.)and
they occur very frequently given redundancy in user’s mobility.

For the routes, which are detected by PlaceMap and existed in
baseline, we compute the route distance error and route duration er-
ror as shown in Figure 6. As shown in Figure 6a, median route dis-
tance error is 1.47 Km and 75th percentile error is 2.83 Km. Route
distance error is introduced by crowdsourced geo-coordinates of
Cell IDs because range of a Cell ID in urban area could be up to
few Kms. As shown in Figure 6b, PlaceMap has median route
duration error of 6.71 minutes and 75th percentile error is 12.44
minutes. Route duration error in PlaceMap is introduced by errors
in detecting departure and arrival time based only on Cell ID. We
do not provide any evaluation results on self dataset due to lack
of GPS data. Based on our evaluation results on two datasets, we
conclude that PlaceMap can make errors of few Kms in distance es-
timation and several minutes in case of estimating route duration.
Most of these errors are induced by inaccuracies in place arrival
and departure detection.

6. CASE STUDY

There are a set of mobile applications, which automatically log
personal mobility history using location interfaces, such as WiFi
and GPS [3, 1]. For instance, LifeMap [1] provides a visualization
of places visited by a person, average time spent on those places,
etc. However, LifeMap primarily takes help of WiFi APs to learn
places in a user’s mobility profile. A continuous scans of WiFi APs
consume significant energy, a limitation observed by many of re-
viewers of LifeMap application. We implemented PlaceMap as an
Azure cloud service and subsequently, designed and developed a
mobile application for personal mobility history logging that uses



PlaceMap cloud service. A beta version of the application is pub-
licly available on Google Play[2]. We have extended this applica-
tion to add day-to-day diary logging features. The modified mo-
bile application was deployed with 18 student participants and they
were asked to use it for history logging of their personal mobility.

Figure 7 presents snapshots of aforementioned mobile applica-
tion. Apart from automatic place discovery, participants were ad-
vised to tag their places. For every place tag, participants need to
record arrival and departure time from a place. We requested par-
ticipants to provide human inputs to capture their perception about
places and to understand semantic meaning of places using their
tags. As shown in Figure 7a, user is able to visualize all the visited
places on a map interface. She has flexibility to tag a place with
a customized name and icon, which appears into list of places as
shown in Figure 7b. PlaceMap has a capability to store and man-
age long-term mobility history of a user. Our mobile application
uses that capability to present fine-grained information to the user
about her stay time at visited places and visiting days. Figure 7c
presents a snapshot of context-based advertisements pushed to the
user’s device based on her mobility profile and preferences.
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Figure 7: Snapshots of mobility history logging mobile application
that uses PlaceMap cloud service.

Out of 18 participants, we ignore data of 2 participants as they
did not tag even a single place in the given duration of 2 weeks.
There were total 123 places discovered by PlaceMap from rest
of the participants. In total, participants tagged 85 places. How-
ever, some of the tagged places did not contain departure informa-
tion. From the rest of the 62 places, we found that PlaceMap using
WTCA was able to correctly discover 79.03% of the places, merged
14.52% of places, and divided 6.45% of places. From this user
study evaluation, we conclude that PlaceMap has shown effective-
ness in discovering places in the wild. These results are comparable
to the earlier analysis done on large datasets. Further, we observed
that most of merged places in PlaceMap were very close to each
other i.e. academic building and library. We are planning large-
scale deployment going forward. We will also be taking help of
users in reducing percentage of merged places.

7. RELATED WORK

In this section, we describe related work, which deals with energy-
efficient continuous location sensing and finding mobility profile in
terms of places and routes. In continuous location sensing, many

mobile systems adaptively duty cycle GPS using different approaches

i.e. with the help of movement detection using sensors such as ac-
celerometer [11, 24], Cell ID sequencing [27], pre-assessment of
different application requirements [24] and by incorporating street
segment data [23].

Some approaches use GPS, WiFi, and GSM data individually
or collectively to discover places for a user. Kang et al [25] de-
signed a clustering algorithm to find places using GPS coordinates
based on temporal and spatial stay threshold. Zhou et al [22] uses
Density and Join (DJ) clustering algorithm to discover places using
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GPS coordinates. In earlier section, we used algorithm proposed
by Kang et al [25] as baseline for comparing PlaceMap place dis-
covery algorithms. Jyotish [17] proposes an algorithm that clus-
ters WiFi APs into physical places. We use Jyotish to cluster WiFi
APs according to places for creating baseline and compare it with
places generated using PlaceMap. Senseloc [12] uses repetitive
WiFi scans to learn about arrival and departure from a place. To
track travel paths, Senseloc uses GPS whenever it detects that user
is traveling. SmartDC [13] uses a three level triggered sensing
scheme to discover places in a user’s mobility profile. The lev-
els are LAC, WiFi, and GPS. Unlike Sensloc, SmartDC duty cycles
location sensors based on the past mobility, thereby saving energy.
However, there are large number of phones, which do not have GPS
and WiFi sensors. WiFi-based place sensing schemes require WiFi
APs infrastructure, which is not widely available in many parts of
the world.

Demirbas et al [16] uses GSM data to generate spatio-temporal
mobility profile in reality mining dataset [4]. Most of the Cell IDs
in reality mining dataset have a place label attached, provided by
the participants during data collection process. Place labels have
been used for clustering Cell IDs with respect to different places
along with a circular subsequence algorithm to recognize oscil-
lating Cell IDs. In practice, it is infeasible to get place labels in
large scale deployments and also, Demirbas et al did not provide
any evaluation of the produced clusters. Lassonen et al [28] pre-
sented a Cell ID clustering algorithm based on cell graph. The
algorithm is similar to movement graph in PlaceMap without any
edge weights. Their cluster merging algorithm combines Cell ID
clusters with even one common Cell ID. This may unnecessarily
merge distinct places.

Our work differs from these work in several aspects.

First, PlaceMap uses a novel clustering approach that creates a
edge weighted movement graph to model Cell ID fluctuations and
subsequently discovers clusters of Cell IDs. Second, we provide al-
gorithms for identifying and segregating nearby places, which oth-
erwise can get merged due to large coverage of cell towers, with
the help of training provided by WiFi. Third, we define metrics
to compare Cell ID clusters with baseline and presents evaluation
results on two diverse long duration datasets.

8. CONCLUSION AND DISCUSSION

Many context-aware mobile applications and services require
continuous location sensing to infer person-specific mobility pro-
file. Currently available solutions, based on GPS and WiFi, are
limited in their reach to people and result in high energy consump-
tion. Further, for discovering places, a significant number of mo-
bile applications do not require fine-grained accuracy, such as at the
room-level, as provided by WiFi. This paper tries to fill this gap and
proposes PlaceMap, which uses widely available GSM interface to
discover places and routes to build a users’ mobility profiles.

As part of PlaceMap, we propose a graph-based clustering al-
gorithm GCA to discover places visited by a person solely from
Cell ID information. If an application wants accuracy at the room
or floor level, PlaceMap can use limited duration of WiFi-based
initial training to learn the places. Further, PlaceMap has mecha-
nism to keep discovering new places along with tracking revisits to
existing places with their arrival and departure times. PlaceMap
provides an algorithm to discover routes travelled by users and
estimates routes’ durations and distances. We performed a com-
prehensive evaluation of PlaceMap algorithms using two publicly
available large datasets collected in diverse settings. Our evaluation
results show that PlaceMap is able to correctly discover up to 81%
of total places visited by users and detects nearly 80% of place vis-



its as compared to GPS within 10 minutes of arrival at the place.
Also, for nearly one third of users in both the datasets, PlaceMap
provides more than 90% of the correct places. PlaceMap provides
high accuracy whenever mutual distance between places visited by
a user is relatively high. In case of routes, we found that PlaceMap
can estimate route distance and duration with a median error of
1.47Km and 6.71 minutes respectively.

PlaceMap has a modular architecture and can adapt according
to different applications’ requirements. For instance, applications
can use only GSM-based place discovery, if they are executing on
feature phones. We also envision that the WiFi-based initial train-
ing can be crowdsourced to share it with features phone users who
visits same places. As part of this work, we present a life logging
application, which uses PlaceMap to discover and manage user’s
mobility profiles. We believe that PlaceMap can help in bootstrap-
ping several of these applications, which need to track user’s con-
text continuously. Also, we are working to provide privacy guar-
antees to the users of PlaceMap by designing a privacy preserving
matching service.
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