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ABSTRACT

Music is a universal non-verbal human language, built on logical structures and articulated in
balanced hierarchies between sounds, offering excellent opportunities to explore how the
brain creates meaning for complex spatiotemporal auditory patterns. Using the high temporal
resolution of magnetoencephalography in 70 participants, we investigated their unfolding
brain dynamics during the recognition of Johann Sebastian Bach’s original musical patterns
compared to new variations thereof. Remarkably, the recognition of Bach’s original music
ignited a widespread music processing brain network comprising primary auditory cortex,
superior temporal gyrus, insula, frontal operculum, cingulate gyrus, orbitofrontal cortex,
basal ganglia and hippocampus. Furthermore, both activity and connectivity increased over
time, following the evolution and unfolding of Bach’s original patterns. This study shed new
light on brain activity and connectivity dynamics underlying auditory patterns recognition,
highlighting the crucial role of fast neural phase synchronization underlying meaningful,

complex cognitive processes.
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Introduction

Higher human brain function crucially depends on advanced pattern recognition and
prediction of complex information [1,2]. This fast, seemingly effortless processing of
information available in the present moment and its relation to the past and future is anything
but effortless [3,4]. It depends on a complex chain of events, including stimulus
identification, extraction of meaningful features, comparison with memory representation and
prediction of upcoming stimuli [5,6].

For instance, a sequence of images, sounds, or words can be stored at several levels of
detail, from specific items and their timing to abstract structure. Then, revisiting successfully
the neural pathways formed during the encoding phase is crucial to properly predict and
recognise the information conveyed by the constantly incoming external stimuli [7].
Neuroscientific research has widely investigated this central topic, focusing especially on
processing and recognition of images and words [8,9]. Additionally, in the auditory domain,
patterns have been extensively studied in the context of prediction error and automatic
detection of environmental irregularities, as indexed by event-related components such as
N100 and mismatch negativity (MMN) [10,11]. Indeed, this literature has highlighted that the
brain is remarkably capable of recognising patterns and detecting deviations; key capacities
to accomplish any complex cognitive function.

However, even if the interest for pattern recognition has increased across scientific fields
and neuroscience, the brain mechanisms responsible for recognition of patterns acquiring
meaning over time are not yet fully understood. Indeed, a recent paper by Stanislas Dehaene
and colleagues [12] explicitly pointed out that future neuroscientific studies are called for to
reveal the role of different brain areas in extracting and retrieving temporal sequences.

Thus, in this study, we focused on music, the human art that mainly acquires meaning
through the combination of its constituent elements extended over time [13,14]. Indeed,
beyond the strong emotional content evoked, music contains complex logical structures,
articulated in carefully balanced hierarchies between sounds [14,15], yielding to meaningful
messages and information that can be processed and recognised. Therefore, music is a great
tool for investigating higher human brain processes implicated in the recognition of patterns
unfolding over time.

In this regard, throughout music history, a unique place has been occupied by Johann
Sebastian Bach’s compositions that have stood the test of time. Bach’s contrapuntal patterns,

said to represent an ideal combination of refined logical structures and deeply emotional
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melodies [16], have been crystallised into generations of minds, emerging as some of the
most iconic and memorable artworks in human history.

Indeed, the interest for Bach’s work has transcended the musical domain and inspired
scientists. A famous example is represented by the acclaimed book entitled Gédel, Escher,
Bach: An Eternal Golden Braid by Douglas Hofstadter [17]. This work highlighted
similarities, common patterns and logical schemas of the outstanding creations of the
composer J.S. Bach, the mathematician K. Godel, and the artist M.C. Escher. While the
necessary tools for studying brain responses were not available at the time, Hofstadter was
very interested in discovering the commonalities that allow the brain to be able to understand
the shared logical schemas and patterns, which ultimately makes music, arts and mathematics
meaningful. Nowadays, with the advent of high temporal resolution whole-brain
neuroimaging, we are finally in a position to study the music composed by Bach as a way to
better understand the spatiotemporal dynamics of higher brain functions.

Here we thus used state-of-the-art neuroscientific techniques to study the brain activity
elicited by musical sequences from the prelude in C minor BWV 847 by J.S. Bach and
compared this to the response to musical variations, which were carefully matched to the
original sequences in terms of information content and entropy. This allowed us to reveal the
fundamental brain mechanisms underlying the recognition of musical patterns evolving over

time.
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Results

Experimental design and data analysis overview

In this study, we wanted to characterise the fine-grained spatiotemporal dynamics of the brain
activity and connectivity during recognition of the musical patterns by Johann Sebastian
Bach. During a session of magnetoencephalography (MEG), 70 participants listened to a
musical instrumental digital interface (MIDI) version of the full prelude in C minor BWV
847 composed by Bach. As described in the Methods and depicted in Figure 1A, participants
were then presented with short musical melodies corresponding to original excerpts of the
Bach’s prelude and carefully matched variations (in terms of information content and
entropy, see Methods). Participants were asked to indicate whether each musical excerpt was
an original Bach’s pattern or a variation.

The analysis pipeline used in this study is illustrated in Figure 1B (and described in
details in the Methods). This focused on extracting results using four main measures of brain
activity: 1) sensor space, 2) beamformed source localised activity, 3) static source localised
connectivity and 4) dynamic source localised connectivity.

First, we used multivariate pattern analysis and Monte Carlo simulations (MCS) on
univariate tests of MEG sensor data. Second, we were interested in finding the brain sources
of the observed differences and therefore we reconstructed the sources of the signal using a
beamforming algorithm (Figure 1C) to track the brain activity related to each tone of the
musical sequences (Figure 1D). Third, complementing our brain activity results, we
computed the functional connectivity between different brain regions. We computed the
static functional connectivity by computing Pearson’s correlation between the envelopes of
each pair of brain areas. Fourth, we investigated the functional connectivity dynamics.

Figure 2A depicts the Hilbert transform used to estimate the instantaneous phase
synchronization between brain areas, while Figure 2B and 2C illustrate the instantaneous
functional connectivity matrices showing the connectivity patterns characterizing the brain at
each time point. Similar to our analysis of brain activity, we analysed the brain connectivity
patterns related to each tone of the musical sequences, as shown in Figure 2D. Here, we

assessed both whole brain connectivity and degree centrality of brain regions.
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Figure 1. Experimental design and analysis methods.

a - Graphical schema of the old/new paradigm. The paradigm consisted of presenting one excerpt at a time that
could be a Bach’s original pattern taken from the whole Bach’s prelude that participants previously listened to
(old) or a Bach variation pattern (new). In this figure, we depicted at first an example of Bach’s original (‘old’)
pattern (left, 2 square) with the relative response pad that participants used to state whether they recognised
the excerpt as ‘old’ or ‘new’ (left, 3" square). Then, we depicted an example of Bach variation (‘new’) pattern
(right). The total number of trials was 80 (40 Bach’s original and 40 Bach variation) and their order was
randomized. b — We collected, pre-processed and analysed MEG sensor data by employing multivariate pattern
analysis and MCS on univariate tests. ¢ — We beamformed MEG sensor data into source space, providing time-
series of activity originating from brain locations. d — We studied the source brain activity underlying the

processing of each tone of the musical sequences for both experimental conditions.
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Figure 2. Overview of the analysis pipeline. a - We computed the Hilbert transform of the envelope of each
AAL parcellation ROI and estimated the phase synchronization by calculating the cosine similarity between the

instantaneous phases of each pair of ROIs. b — We obtained for each time-point two IFC matrices for the task:
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one for Bach’s original and one for Bach variation, plus an additional one for resting state that was used as
baseline in the following steps. ¢ — We contrasted the task matrices vs the average of the baseline matrix to
isolate the brain activity specifically related to the pattern recognition brain processes. d — We investigated the
brain connectivity for each tone forming the musical sequences. First, we showed an illustration of the whole
brain connectivity dynamics. Then, we depicted the significantly central ROIs within the whole brain network,
estimated by applying MCS on the ROIs degree centrality calculated for each tone composing the musical

sequences.

MEG sensor data

Our first analysis was conducted on MEG sensor data and focused on the brain activity
underlying the recognition of Bach’s original musical patterns and variations. Specifically,
we prepared 80 homo-rhythmic musical fragments lasting 1250 ms each (40 Bach’s original
and 40 Bach variations). On average participants correctly identified the 78.15 + 13.56 % of
the Bach’s original excerpts (mean reaction times (RT): 1871 £ 209 ms) and the 81.43 +
14.12 % of the Bach variations (mean RT: 1915 + 135 ms). Successive MEG sensor data

analysis was conducted on correct trials only.

Multivariate pattern analysis

As depicted in Figure 3A, we conducted a multivariate pattern analysis using a support
vector machine (SVM) classifier (see details in the Methods section) to decode different
neural activity associated with the recognition of Bach’s original and variation. This analysis
resulted in a decoding time-series showing how neural activity differentiated the two
experimental conditions. The decoding time-series was significantly different from chance
level in the time range 0.8 - 2.1 seconds from the onset of the first tone (p < .026, false-
discovery rate (FDR)-corrected, Figure 3A, top left).

To evaluate the persistence of discriminable information over time, we applied a temporal
generalisation approach by training the SVM classifier at a given time point t, as before, but
testing across all other time points. Intuitively, if representations are stable over time, the
classifier should successfully discriminate signals not only at the trained time t, but also over
extended periods of time that share the same neural representation. FDR-corrected (p < .005)
results are depicted in Figure 3A (top right) showing that performance of the classifier was

significantly above chance even a few hundreds of milliseconds beyond the diagonal.
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Figure 3. Bach’s original vs variation neural activity: cluster I. a — Multivariate pattern analysis decoding the
different neural activity associated to Bach’s original vs variation. Decoding time-series (left), spatial patterns
depicted as topoplot (middle left), temporal generalization decoding accuracy (middle right) and statistical
output of significant prediction of training time on testing time (right). b — The left plot shows the amplitude
associated to Bach’s original (red) and variation (blue). The right plot illustrates the t-statistics related to the
contrast between Bach’s original vs variation. Thinner lines depict standard errors. Both plots represent the
average over the gradiometer channels forming the significant cluster outputted by MEG sensor MCS. ¢ — Three
couples of topoplots showing brain activity for gradiometers (left of each pair, fT/cm) and magnetometers (right
of each pair, fT) within the significant time-window emerged from MCS. First couple of topoplots depicts
Bach’s original neural activity, second couple refers to Bach variation, while the third one represents the
statistics (t-values) contrasting Bach’s original vs variation brain activity. d — Neural sources of Bach’s

original (left), variation (middle) and their contrast (right). The values are t-statistics.
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Univariate tests and Monte Carlo simulations

The multivariate pattern analysis is a powerful tool that requires relatively few pre-processing
steps for returning an estimation of neural activity that discriminates two or more
experimental conditions. However, this technique does not provide directional information,
that is, it does not identify which experimental condition yields a stronger neural signal. To
answer this question, we performed independent univariate t-tests between conditions for
each time-sample and each MEG channel and then corrected for multiple comparisons using
a cluster-based Monte Carlo simulation (MCS) approach.

First, we contrasted Bach’s original vs variation (t-test threshold = .01, MCS threshold =
.001, 1000 permutations), considering the positive t-values only (which is when Bach’s
original was associated to a stronger brain activity than Bach variation). We performed this
analysis in the time-range 0 — 2.5 seconds by using combined planar gradiometers only. This
procedure yielded the identification of one main significant cluster, as depicted in Figure 3B
and 3C and reported in details in Tables 1 and ST2. Then, on the basis of the significant
cluster appearing, we computed the same algorithm one more time for magnetometers only,
within the significant time-range emerged for the first MCS (0.547 — 1.180 seconds, p <
.001). This two-step procedure was necessitated by the sign ambiguity typical of
magnetometer data (see Methods for details).

Then, the same procedure was carried out by considering the results where the brain
activity associated to Bach variation exceeded the one elicited by Bach’s original phrase.
This analysis returned eight small significant clusters (size range: 6 — 14, p <.001) shown in

Table ST1.

Cluster number | Size Channels Time-range (s) | p

Gradiometers (Bach’s original vs Bach variation)

1 2117 90 0.547-1.180 <.001

Magnetometers — positive (Bach’s original vs Bach variation)

1 817 24 0.627 —1.180 <.001

Magnetometers — negative (Bach’s original vs Bach variation)
1 190 18 0.727 - 0.880 <.001
2 168 15 0.960 — 1.133 <.001

10
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Table 1. Significant clusters of MEG sensors emerged from MCS contrasting Bach’s original vs
variation. The table depicts these clusters independently for gradiometers and positive and negative

magnetometers.

Source reconstructed data
To identify the neural sources of the signal, we employed a beamforming approach and
computed a general linear model (GLM) for assessing, at each time-point, the independent

neural activity associated to the two conditions as well as their contrasts.

Main cluster of Bach’s original vs variation

We identified the neural sources of the gradiometer significant cluster emerging from the
MEG sensor data when contrasting Bach’s original vs variation. Here, we performed one
permutation test in source space, with an o level of .05, which, in our case, corresponds to a
cluster forming threshold of # = 1.7. As depicted in Figure 3D, results showed a strong
activity originating in the primary auditory cortex, insula, hippocampus, frontal operculum,

cingulate cortex and basal ganglia. Detailed statistics are provided in Table ST3.

Dynamic brain activity during development of musical patterns

Then, to reveal the specific brain activity dynamics underlying the recognition of the musical
sequence, we carried out a further analysis for each musical tone forming the pattern. Here,
we adopted a cluster forming threshold of # = 2.7 (see Methods for details). As depicted in
Figure 4A and 4B, we found significant activity within primary auditory cortex and insula,
especially in the right hemisphere, for both experimental conditions. This activity decreased
over time, following the unfolding of the musical sequences. Conversely, the contrast
between Bach’s original vs variation gave rise to a burst of activity for Bach’s original
increasing over time, especially with regards to the last three tones of the musical sequences,
as shown in Figure 4C. This activity was mainly localised within hippocampus, frontal
operculum, cingulate cortex, insula and basal ganglia. We report detailed clusters statistics in

Table ST4.
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Figure 4. Brain activity over time. a — Brain activity (localized with beamforming) associated to the
recognition task for Bach’s original (top row) and musical notation of one example trial for Bach’s original
pattern (bottom row). Red tones illustrate the dynamics of the musical excerpt. b — Brain activity concerning
Bach variation (top row) and musical representation of one example trial for Bach variation (bottom row). ¢ —

Contrast (t-values) over time between brain activity associated to Bach’s original vs Bach variation.
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Functional connectivity
In order to obtain a better understanding of the brain dynamics underlying recognition, we
complemented our brain activity results with an investigation of the static and functional

connectivity.

Static functional connectivity

MEG pre-processed data was constrained to the 90 non-cerebellar parcels of the automated
anatomic labelling (AAL) parcellation and corrected for source leakage. First, we computed
Pearson’s correlations between the envelopes of the time-series of each pair of brain areas.
This procedure was carried out for both task (in this case without distinguishing between
Bach’s original and variation) and resting state (used as baseline) for each participant and
five frequency bands: delta, theta, alpha, beta and gamma. Then, we tested the overall
connectivity strengths of the five frequency bands during auditory recognition by employing
analysis of variance (ANOVA). The test was significant (F(4,330) = 187.02, p < 1.0e-07). As
depicted in Figure SA and 5B, post-hoc analysis highlighted especially that theta band had a
stronger connectivity profile than all other frequency bands (p < 1.0e-07).

To detect the significance of each brain region centrality within the whole brain network
for the auditory recognition task, we contrasted the brain connectivity matrices associated to
the task vs baseline by performing a Wilcoxon signed-rank test for each pair of brain areas.
Then, the resulting z-values matrix was submitted to a degree MCS (see Methods for details).
We computed this analysis independently for the five frequency bands and therefore we
considered significant the brain regions whose p-value was lower than the o level divided by
5 (2.0e-04). The results for theta band are depicted in Figure SF1 and reported as follows:
left Rolandic operculum (p < 1.0e-07), insula (p < 1.0e-07), hippocampus (p = 5.5e-05),
putamen (p < 1.0e-07), pallidum (p < 1.0e-07), caudate (p = 1.1e-05), thalamus (p < 1.0e-07),
Heschl’s gyrus (p < 1.0e-07), superior temporal gyrus (p < 1.0e-07), right superior temporal
gyrus (p = 1.1e-06), Heschl’s gyrus (p < 1.0e-07), thalamus (p < 1.0e-07), parahippocampal
gyrus (p = 4.3e-05), pallidum (p < 1.0e-07), putamen (p < 1.0e-07), amygdala (p < 1.0e-07),
insula (p < 1.0e-07) and Rolandic operculum (p < 1.0e-07). Additional results related to the
other frequency bands are reported in Supplementary Materials (SR1).

Conversely, the degree MCS of the contrasts between Bach’s original vs variation yielded

no significant results.
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Figure 5. Static functional connectivity. a — Contrast between recognition task (Bach’s original and
variation averaged together) and baseline SFC matrices calculated for five frequency bands: delta (0.1 — 2 Hz),
theta (2 — 8 Hz), alpha (8 — 12 Hz), beta (12 — 32 Hz), gamma (32 — 74 Hz). b — Violin-scatter plot showing the
average of the SFC matrices over their two dimensions for all participants. ¢ — Averaged MEG gradiometer
channels waveform of the brain activity associated to the recognition task. d — Power spectra for all MEG
channels associated to the recognition task. The first power spectra matrix reflects the analysis from 1 to 74 Hz

in 1-Hz intervals, while the second from 0.1 to 10 Hz in 0.1-Hz intervals.

Dynamic functional connectivity

Expanding on the analysis of static functional connectivity, we focused on the brain
connectivity patterns evolving dynamically over time. Thus, by employing Hilbert transform
and cosine similarity, we computed the phase synchronization between each pair of brain
areas, obtaining one instantaneous functional connectivity (IFC) matrix for each musical tone
(see Methods for details). Then, we calculated the contrast between the IFC matrices
associated to the two conditions vs the baseline (illustrated in the top rows of Figure 6A and
6B, and in Figure SF2). Subsequently, as reported in the middle rows of Figure 6A and 6B,
we computed the significantly central brain regions within the whole brain network for each
tone forming the musical pattern and both Bach’s original and variation. We tested statistical
significance by using MCS. Since we repeated this test 10 times (two conditions and five

tones), we used a threshold = 1.0e-04, obtained dividing the o level (.001) by 10. Detailed
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statistics are reported in Table ST5. Finally, as depicted in Figure 6C (top row), we
contrasted the IFC matrices for Bach’s original vs variation and then we estimated the
correspondent significantly central brain regions (Figure 6C, bottom row). These results are

reported in details in Tables 2 (Bach’s original) and ST6 (Bach variation).
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Figure 6. Dynamic functional connectivity. a — DFC calculated for each tone composing Bach’s original
musical pattern. The top row depicts the whole brain connectivity in a brain template (each pair presents the
left hemisphere and a posterior view of the brain). Values refers to Wilcoxon sign-rank test z-values computed
for Bach’s original vs baseline DFC matrices. The bottom row illustrates the significantly central ROIs within
the whole brain network over time, as assessed by MCS. Values show the average z-value between the
significant ROIs and the rest of the brain regions. b — DFC calculated for Bach variation. The depiction is

analogous to the one described for point a). ¢ — DFC computed by contrasting Bach’s original vs variation. The
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depiction is analogous to the one described for point a). d — Kuramoto order parameter calculated for each

time-point for both Bach’s original (red line) and variation (blue line). Grey areas show the significant time-

windows emerged by MCS.
Tone 1
Left central ROIs )4 Right central ROIs )4
Tone 2
Middle frontal orbital cortex < 1.0e-07 | Superior orbitofrontal cortex | < 1.0e-07
Hippocampus < 1.0e-07 | Middle cingulate gyrus < 1.0e-07
Middle frontal gyrus < 1.0e-07
Caudate < 1.0e-07
Fusiform gyrus 8.8e-05
Tone 3
Fusiform gyrus <1.0e-07 | Angular < 1.0e-07
Hippocampus 2.2e-05 | Superior temporal gyrus < 1.0e-07
Ventro-med prefrontal cortex | 2.2e-05
Fronto-superior medial cortex | 1.0e-04
Tone 4
Caudate < 1.0e-07 | Anterior cingulum gyrus < 1.0e-07
Precentral gyrus 2.2e-05 | Inferior temporal gyrus < 1.0e-07
Fusiform gyrus 1.1e-05
Middle cingulum gyrus 6.6e-05
Tone S
Parahippocampal gyrus < 1.0e-07 | Parietal inferior lobule < 1.0e-07
Fronto-medial orbital cortex < 1.0e-07
Calcarine < 1.0e-07
Parietal superior lobule < 1.0e-07
Thalamus < 1.0e-07
Temporal pole middle < 1.0e-07
Rolandic operculum 5.5e-05
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Table 2. Significantly central ROIs for Bach’s original vs variation contrast of DFC matrices. The

calculation has been done independently for each tone forming the musical patterns.

Kuramoto order parameter

Finally, to obtain a global measure of instantaneous connectivity within the brain over time,
we computed the Kuramoto order parameter (see Methods) for the two experimental
conditions and each time-point of the recognition task, obtaining two time-series. We
contrasted them by performing t-tests and corrected for multiple comparisons through a 1-
dimensional (1D) MCS. Results, depicted in Figure 6D, showed a significant difference for
the following time-ranges: 0.793 — 0.820 seconds (p = 4.5e-05), 0.327 — 0.340 seconds (p =
.01) and 0.433 — 0.447 seconds (p = .01). In all three cases, Bach’s original was characterized

by a significantly higher Kuramoto order parameter than Bach variation.
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Discussion

In this study, we were able to detect the fine-grained spatiotemporal dynamics of the brain
activity and connectivity during recognition of the musical patterns by Johann Sebastian
Bach compared to carefully matched variations.

First, by using a multivariate pattern analysis and MCS of massive univariate data, we
found that the brain activity elicited by Bach’s original music compared to the variations
gave rise to significant changes in widespread regions including primary auditory cortex,
superior temporal gyrus, cingulate gyrus, hippocampus, basal ganglia, insula and frontal
operculum.

Second, we investigated this important finding further by estimating static and dynamic
functional brain connectivity evolving over time. Here, the recognition of the musical
patterns was accompanied by significant centrality within the whole brain network of a
number of brain regions including the insula, hippocampus, cingulate gyrus, auditory cortex,
basal ganglia, frontal operculum, subgenual and orbitofrontal cortices. Notably, these
connectivity patterns emerged more clearly for the last three tones of the five tones of the
musical patterns and, even if similar across conditions, they were found to be stronger for
Bach’s original phrases than for the variations. This finding lends strong support to the
intriguing proposal by Changeux that recognition of meaningful art has the ability to ignite
large brain networks [18]. As such, our results also make a significant contribution to
identifying the brain networks engaged in eudaimonia, the meaningful pleasure evoked by

music [19].

Brain activity dynamics of auditory pattern recognition

The brain activity recorded during the recognition of the musical sequences was coherent
with a large number of studies showing auditory processes associated to primary auditory
cortex and insula [20,21]. Remarkably, contrasting Bach’s original phrases versus variations,
we observed stronger activity underlying the recognition of original patterns in brain areas
related to memory recognition such as hippocampus, medial temporal cortices [22,23] and
cingulate cortices [24]. Additionally, the recognition of Bach’s original was associated to a
stronger activity of brain regions previously related to evaluative processes [25,26] and
pleasure [27,28] such as cingulate gyrus, subgenual cortices as well as parts of the basal

ganglia. Finally, recognition of Bach’s original was accompanied by stronger activity in brain
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regions responsible for fine-grained auditory elaboration and prediction error such as the

inferior temporal cortex [29] and insula [30,21].

Brain functional connectivity dynamics of auditory patterns recognition

In addition, to investigating the significant differences in brain activity ignited by Bach’s
original patterns compared to the variations, we conducted detailed functional connectivity
analyses. Since music is a language that acquires meaning over time, we mainly focused on
dynamic functional connectivity analyses to assess whether different connectivity patterns
were associated to different parts of the musical sequence. Remarkably, our connectivity
analysis revealed both important similarities and differences within the evolving brain
activity over time.

A key relevant difference was that while the activity of the brain areas decreased over
time, the degree centrality and connectivity between brain regions became clearer with the
temporal development of the auditory patterns. Moreover, primary auditory cortex did not
play a crucial role, while the main connectivity patterns emerged for brain regions related to
higher sound and linguistic elaborations such as insula, inferior temporal cortex [30,29] and
frontal operculum [31]. Furthermore, we also observed other central brain areas that have
been previously related to evaluative processes such as orbitofrontal and subgenual cortices
[32,25] and memory such as hippocampus [33] and basal ganglia [34]. Notably, the
connectivity patterns and centrality of brain regions were stronger for Bach’s original phrases
than the variations. This evidence suggests the relevance of the synchronization between
brain areas over their mere activation to understand the brain networks underlying complex
memory processes.

Conversely, a crucial similarity between brain activity and connectivity analyses was that
compared to the variations, the recognition of Bach’s original patterns ignited the shared
common music processing brain network in terms of both activity and connectivity. As
mentioned earlier, Changeux [18] proposed that processing and recognition of certain
privileged classes of stimuli including meaningful artistic works can ignite the brain areas
forming the global workspace [18]. Authors defined the global workspace as a privileged
network of brain areas, where conscious information is processed in terms of memory,
attention and valence, and subsequently broadcast and made available to the whole brain
[35,36,37]. As predicted by Changeux’s hypothesis, the recognition of Bach’s original

patterns — over and above the variations — led to stronger ignition of putative regions in the

20


https://doi.org/10.1101/2020.06.23.165191
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2020.06.23.165191. this version posted June 24, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. It is made available under a CC-BY-ND 4.0 International license.

global workspace such as hippocampus, cingulate gyrus, orbitofrontal cortex and frontal
operculum, perhaps reflecting the unique nature of that meaningful music.

A further central theory in the neuroscientific field that can be related to our results is
predictive coding. In this framework, the brain is considered a generator of models of
expectations of the incoming stimuli. Recently, this theory has been linked to complex
cognitive processes, finding a remarkable example in the neuroscience of music [2]. In their
work, Koelsch and colleagues suggested that the perception of music is the result of an active
listening process where individuals constantly formulate hypothesis about the upcoming
development of musical sentences, while those sentences are actually evolving and unfolding
their ambiguities. Our study is consistent with this perspective, where the brain predicts the
upcoming sounds of the musical patterns leading to at least two separable outcomes. On the
one hand, there is activity in the primary auditory cortex, responsible for the first sensorial
processing of tones, and decreasing over time. On the other hand, the ignition of brain areas
related to memory and evaluative processes is increasing over time and stronger for Bach’s
original phrases than for the variations. Indeed, this would suggest that the brain has
formulated predictions of the upcoming sounds on the basis of the memory trace previously
stored during the encoding part of our experimental task. The match between those
predictions and the actual sounds presented to participants may lead to the ignition of the
brain areas that we observed in our experiment.

In line with the predictive coding framework, our results expanded also the neuroscientific
literature on prediction error. Indeed, previous research using paradigms that required active
encoding and evaluation of the stimuli to formulate predictions and drive decision-making
processes has highlighted a prominent role of the anterior cingulate gyrus [37,38] and a
relevant contribution of hippocampal areas [39,40]. Furthermore, in the auditory domain,
traditionally prediction error has been investigated through the brain response to violations of
auditory regularity, as indexed by event-related components such as N100 and MMN [41,10].
Additionally, more recent research has shown a hierarchical organization of prediction error
processes occurring within the auditory cortex [42,43]. However, the majority of these
auditory studies employed varied versions of the oddball paradigm or more complex tasks
that did not require conscious elaboration of the stimuli, making it difficult to interpret the
results in terms of higher brain functioning.

In contrast, in the current study we utilised an auditory paradigm that required participants
to make active choices on the basis of prediction processes. Indeed, in line with the previous

literature, we detected a prominent role played by cingulate cortex, hippocampus and
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auditory cortex to establish whether a musical excerpt was a Bach’s original or a variation.
Notably, we observed hippocampus and cingulate gyrus to be central within the whole brain
network when the incoming stimuli matched the prediction made by the brain (e.g. when
listening to Bach’s original), while the auditory cortex appeared more central for signalling a

violation within the musical sequence expectation (e.g. when listening to Bach variation).

Static functional connectivity and event-related fields

Additionally, to increase the reliability of our findings, we complemented our main results on
spatiotemporal dynamics of brain activity and connectivity with more traditional approaches
such as static functional connectivity and analysis of MEG sensors.

For the static functional connectivity, we computed Pearson’s correlations between the
envelopes of each pair of brain areas and then studied the centrality of brain regions within
whole-brain networks. We detected the most prominent connectivity patterns associated to
music recognition for theta band (2 — 8 Hz), highlighting a large network of brain regions
including primary auditory cortex, superior temporal gyrus, frontal operculum, insula,
hippocampus and basal ganglia. As expected, the static functional connectivity network was
very similar to the dynamic functional connectivity ones and involved brain regions
previously related to auditory [44], memory [22,23] and evaluative processes [26].

Importantly, the static functional connectivity analysis failed to detect differences between
Bach’s original phrases and variations. This shows that to capture the fine-grained brain
functioning underlying recognition of original musical patterns, it was crucial to employ
methods designed to detect the dynamic unfolding of the brain connectivity.

We also investigated our data by focusing on MEG sensor analysis. In this regard, we
found that brain activity was reflected by two event-related fields (ERF) components: N100
to each sound and a slow negativity following the entire duration of the musical patterns.

While the N100 associated to each tone represented a well-known finding, to the best of
our knowledge the detection of the slow negative component associated to pattern
recognition has never been described earlier. Indeed, even if this negative waveform shared
similarities with well-established ERF components such as contingent negative variation
(CNV) [45], P300 and P600 [46], previous literature has never associated an auditory
recognition task to a slow negative component such as the one that we described. Thus, our
results provided new insights and may contribute to develop future perspectives also within

the framework of ERF and MEG sensor analysis.
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Conclusion

In conclusion, our findings have identified the spatiotemporal unfolding of brain activity
elicited by the recognition of the music of J.S. Bach comparedto carefully matched
variations thereof. These results reveal the brain networks involved in recognising music that
many describe as eliciting deeply meaningful musical experiences — similar to those proposed
in the ‘Godel, Escher and Bach’ book mentioned in the introduction [17].

As an aside, an anecdote from Bach’s contemporary Christian Schubart reminds us of the
importance of creating real, lasting art — rather than mere variations - was never far from
Bach’s mind. Bach’s son Johann Christian Bach recounted playing around with a variation of
Bach’s musical compositions which woke up Bach, prompting him to get up, reprimand his
son and play the correct ending.

More research is needed to reveal what it is about Bach’s music that so speaks to both the
mind and emotion not just when already familiar but even when it is first encountered. Still,
the present results reveal some of the brain mechanisms underlying Hofstadter’s seminal
ideas on what makes us recognise art as meaningful. In line with the proposal by Changeux
[18], our results show that recognising Bach’s music - which is generally considered a high
point of Western musical art — ignites widespread brain networks that may contribute to
feeling of deeply meaningful music, and perhaps even the elusive state of eudaimonia.
Indeed, our results using state-of-the-art neuroimaging and analysis methods highlight how
the integration of brain activity and fast-scale phase synchronization analyses, combined with
Bach’s high meaningful musical patterns, provide a unique opportunity to understand the
brain functioning underlying complex cognitive processes - and can perhaps even shed light

on how art becomes meaningful for the brain.
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Methods

Participants
The study comprised 70 volunteers, composed by 36 males and 34 females (age range: 18 —
42 years old, mean age: 25.06 + 4.11 years). Since our experiment involved a musical piece
usually played by classical pianists, we recruited 23 classical pianists (13 males and 10
females, age range: 18 — 34 years old, mean age: 24.83 + 4.10 years old), 24 non-pianist
musicians (12 males and 12 females, age range: 19 - 42 years old, mean age: 24.54 + 4.75),
and 23 non-musicians (11 males and 12 females, age range: 21 — 35 years old; mean age:
25.86 + 3.34). The sample regarding functional connectivity analysis slightly differed (three
participants had to be discarded due to technical problems during acquisition) consisting of
67 participants (34 males and 33 females, age range: 18 — 42 years old, mean age: 25.00 +
4.18 years). Specifically, 21 were non-pianist musicians (10 males and 11 females, age range:
42 — 19 years old, mean age: 24.29 + 5.02 years), 23 classical pianists (13 males and 10
females, age range: 18 — 34 years old, mean age: 24.83 + 4.10 years) and 23 non-musicians
(11 males and 12 females, age range: 21 — 35 years old; mean age: 25.86 + 3.34 years).

All the experimental procedures were carried out complying with the Declaration of
Helsinki — Ethical Principles for Medical Research and were approved by the Ethics
Committee of the Central Denmark Region (De Videnskabsetiske Komitéer for Region

Midtjylland) (Ref 1-10-72-411-17).

Experimental design and stimuli

To study the brain dynamics of musical pattern recognition, we employed an old/new [47]
auditory pattern recognition task during MEG recording. First, participants were requested to
listen to four repetitions of a MIDI homo-rhythmic version of the right-hand part of the entire
prelude in C minor BWV 847 composed by J.S. Bach (total duration of about 10 minutes).
Second, they were presented with 80 short musical excerpts lasting 1250 ms each and
requested to indicate whether each excerpt belonged to the prelude by Bach (Bach’s original,
old) or was a variation of the original patterns (Bach variation, new). A graphical depiction of
the experimental design is reported in Figure 1A. Successive analyses were performed on
correctly recognised trials only. Both the entire prelude and the excerpts were created by
using Finale (MakeMusic, Boulder, CO) and then presented by adopting Presentation
software (Neurobehavioural Systems, Berkeley, CA).
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Notably, to extract the original Bach’s excerpt and to create their variations, we matched the
average information content (IC) and entropy (H) estimated for each tone of the original
excerpts (mean IC: 5.70 = 1.73, mean H: 4.70 + .33) and the variations (mean IC: 5.92 +
1.81, mean H: 4.78 + .35) by using Information Dynamics of Music (IDyOM) [48]. This
method uses machine learning to return a value of IC for the target note on the basis of a
combination of the preceding notes and of a set of rules learned from a large set of
prototypical pieces of Western music. Formally, the IC represents the minimum number of

bits required to encode e; and is described by the equation (1):

1
1c(e;le =log, ————— 1
(Edeinen perle ) M

Where p(e; |e(l “n)+1) 1s the probability of the event e; given a previous set of e(l n) +1
events.
The entropy gives a measure of the certainty/uncertainty of the upcoming event given the

revious set of e’} events and is calculated by the equation (2):
p (i-n)+1 Y q

H(e(l n)+1) zp(e |e(L n)+1)IC(e Ie(l n)+1) (2)

ecA

Equation (2) shows that if the probability of a given event e; is 1, the probability of the other
events in A will be 0 and therefore H will be equal to 0 (maximum certainty). On the
contrary, if all the events are equally likely, H will be maximum (maximum uncertainty).
Therefore, IDyOM returns an estimation of the predictability of each tone and uncertainty
with which it can be predicted, coherently with the human perception [49].

In the same or another day than the MEG recording, we collected structural images for

each participant by employing magnetic resonance imaging (MRI).
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Data acquisition

We acquired both MRI and MEG data in two independent sessions. The MEG data was
acquired by employing an Elekta Neuromag TRIUX system (Elekta Neuromag, Helsinki,
Finland) equipped with 306 channels. The machine was positioned in a magnetically shielded
room at Aarhus University Hospital, Denmark. Data was recorded at a sampling rate of 1000
Hz with an analogue filtering of 0.1-330 Hz. Prior to the measurements, we accommodated
the sound volume at 50 dB above the minimum hearing threshold of each participant.
Moreover, by utilizing a 3D digitizer (Polhemus Fastrak, Colchester, VT, USA), we
registered the participant's head shape and the position of four headcoils, with respect to three
anatomical landmarks (nasion, and left and right preauricular locations). This information
was successively used to co-register the MEG data with the anatomical structure collected by
the MRI scanner. The location of the headcoils was registered during the entire recording by
using a continuous head position identification (cHPI), allowing us to track the exact head
location within the MEG scanner at each time-point. We utilized this data to perform an
accurate movement correction at a later stage of data analysis.

The recorded MRI data corresponded to structural T1. The acquisition parameters for the
scan were: voxel size = 1.0 x 1.0 x 1.0 mm (or 1.0 mm?); reconstructed matrix size 256x256;
echo time (TE) of 2.96 ms and repetition time (TR) of 5000 ms and a bandwidth of 240
Hz/Px. Each individual T1-weighted MRI scan was successively co-registered to the standard
Montreal Neurological Institute (MNI) brain template through an affine transformation and
then referenced to the MEG sensors space by using the Polhemus head shape data and the

three fiducial points measured during the MEG session.

Data pre-processing

The raw MEG sensor data (204 planar gradiometers and 102 magnetometers) was pre-
processed by MaxFilter [50] for attenuating the interference originated outside the scalp by
applying signal space separation. Within the same session, Maxfilter also adjusted the signal
for head movement and down-sampled it from 1000 Hz to 250 Hz.

The data was converted into the Statistical Parametric Mapping (SPM) format and further
analyzed in Matlab (MathWorks, Natick, Massachusetts, United States of America) by using
Oxford Centre for Human Brain Activity Software Library (OSL) [51], a freely available
toolbox that combines in-house-built functions with existing tools from the FMRIB Software
Library (FSL) [52], SPM [53] and Fieldtrip [54]. The data was then high-pass filtered (0.1 Hz

threshold) to remove frequencies that were too low for being originated by the brain. We also
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applied notch filter (48-52 Hz) to correct for possible interference of the electric current. The
data was further downsampled to 150 Hz and few parts of the data, altered by large artefacts,
were removed after visual inspection. Then, to discard the interference of eyeblinks and
heart-beat artefacts from the brain data, we performed independent component analysis (ICA)
to decompose the original signal in independent components. Then, we isolated and
discarded the components that picked up eyeblink and heart-beat activities, rebuilding the
signal by using the remaining components [55]. The data was epoched in 80 trials (one for
each musical excerpt) lasting 3500 ms each (100ms of pre-stimulus time), and low-pass
filtered (40Hz threshold) to improve the subsequent analysis.

Then, correctly identified trials were analysed by employing two different methodologies
(multivariate pattern analysis and cluster-based MCS of independent univariate analyses) to
strengthen the reliability of the results as well as to increment the amount of information

derived by the data.

Multivariate pattern analysis
We conducted a multivariate pattern analysis to decode different neural activity associated to
the recognition of Bach’s original patterns and variations. Specifically, we employed SVMs
(libsvm:http://www.csie.ntu.edu.tw/~cjlin/libsvm/)  [56], analysing each participant
independently. MEG data was arranged in a 3D matrix (channels x time-points x trials) and
submitted to the supervised learning algorithm. To avoid overfitting, we employed a leave-
one-out cross-validation approach to train the SVM classifier to decode the two conditions.
This procedure consisted of dividing the trials into N (here with N = 8) different groups and,
for each time point, assigning N — 1 groups to the training set and the remaining N”* group to
the testing set. Then, the performance of the classifier to separate the two conditions was
evaluated. This process was carried out 100 times with random reassignment of the data to
training and testing sets. Finally, the decoding accuracy time-series were averaged together to
obtain a final time-series reflecting the performance of the classifier for each participant.
Then, to identify the channels that were carrying the highest amount of information required
for decoding the two experimental conditions, we followed the procedure described by Haufe
and colleagues [57] and computed the decoding patterns from the weights returned by the
SVM.

Finally, to assess whether the two experimental conditions were differentiated by neural
patterns stable over time, we performed a temporal generalization multivariate analysis. The

algorithm was the same as the one described above, with the difference that in this case we
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used each time-point of the training set to predict not only the same time-point in the testing
set, but all time-points [58,59,60].

In both cases, to test whether the decoding results were significantly different from the
chance level (50%), we used a sign permutation tests against the chance level for each time-
point (o = .05) and then corrected for multiple comparisons by applying FDR correction (p <

.026 for non-temporal generalization results and p <.005 for temporal generalization results).

Univariate tests and Monte Carlo simulations

The multivariate pattern analysis is a powerful tool that requires relatively few pre-processing
steps for returning an estimation of the different neural activity associated to two or more
experimental conditions. However, this technique does not identify which condition was
stronger than the other nor the polarity of the neural signal characterising the experimental
conditions. To answer these questions and strengthen our results, we employed a different
approach by calculating several univariate t-tests and then correcting for multiple
comparisons by using MCS.

Before computing the t-tests, in accordance with a large number of other MEG and
electroencephalography (EEG) task studies [61,62], we averaged the trials over conditions,
obtaining two mean trials, one for Bach’s original and one for the variation. Then, we
combined each pair of planar gradiometers by mean root square. Afterwards, we computed a
t-test for each combined planar gradiometer and each time-point in the time-range 0 — 2.500
seconds, contrasting the two experimental conditions. We reshaped the matrix for obtaining,
for each time-point, a 2D approximation of the MEG channels layout that we binarized
according to the p-values obtained from the previous t-tests (threshold = .01) and the sign of
t-values. The resulting 3D matrix (M) was therefore composed by Os when the t-test was not
significant and 1s when it was. Then, to correct for multiple comparisons, we identified the
clusters of 1s and assessed their significance by running MCS. Specifically, we made 1000
permutations of the elements of the original binary matrix M, identified the maximum cluster
size of 1s and built the distribution of the 1000 maximum cluster sizes. Finally, we
considered significant the original clusters that had a size bigger than the 99.9% maximum
cluster sizes of the permuted data. Considering that magnetometers (differently from
combined gradiometers) maintain the double polarity of the magnetic field, contrasting two
experimental conditions presents potential technical ambiguities, admitting the theoretical

possibility that two neighbouring clusters with opposite polarity and depicting different
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strengths between conditions (e.g. cond1 > cond2 (positive polarity) in cluster one and cond2
> condl (negative polarity) in cluster two) may be identified as one unique large (positive)
cluster. For these reasons, at first, we carried out the algorithm by contrasting Bach’s original
vs variation for combined planar gradiometers only. Then, on the basis of the significant
clusters emerged, we used the same algorithm one more time for magnetometers only, within
the significant time-range emerging from the first MCS (in this case: 0.547 — 1.180 seconds).
This procedure allowed us to obtain more reliable and complete information about the
different neural signal associated to Bach’s original and variation for both gradiometers and
magnetometers. The whole MCS procedure was performed for Bach’s original vs variation

and vice versa.

Source reconstruction

Beamforming

The brain activity collected on the scalp by MEG channels was reconstructed in source space
using OSL [51] to apply an overlapping-spheres forward model and a beamformer approach
as inverse method [63] (Figure 1B and 1C). We used an 8-mm grid and both magnetometers
and planar gradiometers. The spheres model depicted the MNI-co-registered anatomy as a
simplified geometric model using a basic set of spherical harmonic volumes [64]. The
beamforming utilized a diverse set of weights sequentially applied to the source locations for
isolating the contribution of each source to the activity recorded by the MEG channels for

each time-point [65,63].

General Linear Model

An independent GLM was calculated sequentially for each time-point at each dipole location,
and for each experimental condition [66]. At first, reconstructed data was tested against its
own baseline to calculate the statistics of neural sources of the two conditions Bach’s original
and Bach variation. Then, after computing the absolute value of the reconstructed time-series
to avoid sign ambiguity of the neural signal, first-level analysis was conducted, calculating
contrast of parameter estimates (Bach’s original vs variation) for each dipole and each time-
point. Those results were submitted to a second-level analysis, using one-sample t-tests with
spatially smoothed variance obtained with a Gaussian kernel (full-width at half-maximum: 50

mm).
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Then, to correct for multiple comparisons, a cluster-based permutation test [66] with 5000
permutations has been computed on second-level analysis results, taking into account the
significant time-range emerged from the MEG sensors MCS significant gradiometer cluster.
Therefore, we performed one permutation test on source space, using an o level of .05,

corresponding to a cluster forming threshold of 7 =1.7.

Brain activity underlying musical patterns development

Then, as depicted in Figure 1D, we performed an additional analysis considering the brain
activity underlying the processing of each tone forming the musical sequences. To do that we
computed a GLM for each time-point and source location and then corrected for multiple
comparisons with a cluster-based permutation test, as described above [66]. Here, when
computing the significant clusters of brain activation independently for the two experimental
conditions (Bach’s original and variation), we computed 10 permutation tests on source
space, adjusting the a level to .005 (.05/10), corresponding to a cluster forming threshold of ¢
= 2.7. Regarding Bach’s original vs variation, we performed five tests and therefore the a

level became .01 (.05/5), corresponding to a cluster forming threshold of # = 2.3.

Functional connectivity pre-processing
Regarding functional connectivity analysis, we used slightly larger epochs (pre-stimulus time
of 200ms instead of 100ms). After reconstructing the data into source space, we constrained
the beamforming results into the 90 non-cerebellar regions of the AAL parcellation, a widely-
used and freely available template [67] in line with previous MEG studies [68,69,70] and
corrected for source leakage [71]. Finally, according to a large number of MEG and EEG task
studies [61,62] we averaged the trials over conditions, obtaining two mean trials, one for
Bach’s original and one for Bach variation. In order to minimize the probability of analyzing
trials that were correctly recognised by chance, here we only considered the 20 fastest (mean
RT: 1770 £ 352 ms) correctly recognised original (mean RT: 1717 &+ 381 ms) and variation
(mean RT: 1822 + 323 ms) excerpts. The same operation has been carried out for the resting
state that served as baseline. Here, we created 80 pseudo-trials with the same length of the
real ones, starting at random time-points of the recorded resting state data.

This procedure has been carried out for five different frequency bands (delta: 0.1 — 2 Hz,
theta: 2 — 8 Hz alpha: 8§ — 12 Hz, beta: 12 — 32 Hz, gamma: 32 — 75 Hz) [72].
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Static functional connectivity and degree centrality

We estimated the SFC calculating Pearson’s correlations between the envelope of each pair
of brain areas time-courses. This procedure has been carried out for both task and baseline
and for each of the five frequency bands considered in the study. Afterwards, we averaged
the connectivity matrices in order to obtain one global value of connectivity for each
participant and each frequency band. These values were submitted to an ANOVA to highlight
which frequency band yielded the clearest connectivity results, as illustrated in Figure 5B
[73]. Successive post-hoc analysis was done by using Tukey’s correction for multiple
comparisons. Then, for all frequency bands, we computed Wilcoxon sign-rank tests
comparing each pair of brain areas for recognition task vs baseline, aiming to identify the
functional connectivity specifically associated to the task. To evaluate the outputted
connectivity matrix B, we identified the degree of each region of interest (ROI) and tested its
significance through MCS [74].

In graph theory the degree of each vertex v (here each brain area) of the graph G (here the
matrix B) is given by the sum of the connection strengths of v with the other vertexes of G,
showing the centrality of each v in G [75]. We computed the degree of each vertex of B for
each musical tone, obtaining a 90 x 1 vector (s;). Then, through MCS, we assessed whether
the vertices of B had a significantly higher degree than the degrees obtained permuting B.
Specifically, we made 1000 permutations of the elements in the upper triangle of B and we
calculated a 90 x 1 vector d,, ,, containing the degree of each vertex v for each permutation p.
Combining vectors d,, we obtained the distribution of the degrees calculated for each
permutation. Finally, we considered significant the original degrees stored in s, that
randomly occurred during the 1000 permutations less than two times. This threshold was
obtained by dividing the a level (.001) by the five frequency bands considered in the study.
The o level was set to .001 since this is the threshold that, during simulations with input
matrices of uniformly distributed random numbers, provided no false positives. This

procedure was carried out for each frequency band and for both experimental conditions.

Phase synchronization estimation

In order to reveal the brain dynamics of the musical sequence recognition, we studied the
phase synchronization between brain areas for theta, the frequency band that showed the
strongest connectivity patterns when contrasting task vs baseline at the previous stage of

analysis.
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As illustrated in Figure 2A, by applying the Hilbert transform [76] on the envelope of the
reconstructed time-courses we obtained the analytic signal expressed by the following

equation:

i0n.
S(ni't) = A(ni't)e] st 3)

where A, ) refers to the instantaneous amplitude and 6, +) to the instantaneous phase of
the signal for the brain region n; at time t. To prevent boundary artefacts due to the
instantaneous phase estimation [77], we computed the Hilbert transform on time-series that
were slightly larger than the duration of the stimuli and then discarded their edges. To
estimate the phase synchronization between two brain areas n; and n,,, after extracting the

instantaneous phase at time t, we calculated the cosine similarity expressed by equation (4):

IFC(ni,nm,t) = COS(G(ni,t) - H(nm,t)) (4)

We carried out this procedure for each time-point and each pair of brain areas, obtaining 90 x
90 symmetric IFC matrices showing the phase synchronization of every couple of brain areas
over time. This calculation has been performed for the two conditions (Bach’s original and

variation) and for the baseline, as depicted in Figure 2B.

Dynamic functional connectivity and degree centrality
Since we were interested in detecting the brain connectivity profile and dynamics associated
to the processing of each tone of the musical sequence, we sub-averaged the IFC matrices to
obtain one sub-averaged IFC matrix for each tone and condition. This procedure allowed us
to reduce data dimensionality and remove random noise introduced by the signal processing.
To detect the brain connectivity specifically associated to the task we applied Wilcoxon
signed-rank tests, contrasting, for each pair of brain areas, each of the five sub-averaged IFC
matrices of the task with the averaged values over time of the baseline, as depicted in Figure

2C. This procedure allowed us to obtain a square matrix for each tone (B;) and for both
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conditions (Bach’s original and variation) showing the strength of the phase synchronisation
between each pair of brain areas during the evolution of the task. After this procedure, we
calculated an MCS (Figure SF4) analogous to the one described above for the SFC to test
which ROIs were significantly central within the brain network for the recognition of Bach’s
original and variation. Since we repeated this test 10 times (two conditions and five tones),
we used a threshold = 1.0e-04, obtained dividing the o level (.001) by 10. Figure 2D
provides a graphical representation of the whole-brain connectivity and the correspondent
degree centrality calculation. Finally, we contrasted the IFC matrices of Bach’s original vs
variation and vice versa and we submitted the results to MCS. In this case, since we
computed five independent tests (Bach’s original vs variation and Bach variation vs original),
we obtained a threshold = 2.0e-04 (a level divided by five). We indicated the output of this

calculation instantaneous brain degree (IBD ().

Kuramoto order parameter
In conclusion, we computed the Kuramoto order parameter to estimate the global

synchronization between brain areas over time. This parameter is defined by equation (5):

N

n=1

)

where 60, is the instantaneous phase of the signal for the brain region n at time t. The
Kuramoto order parameter indicates the global level of synchronization of a group of N
oscillating signals [78,79]. Thus, if the signals are completely independent the N
instantaneous phases are uniformly distributed and therefore R ) tends to 0. In contrast, if the
N phases are equal, R = 1.

The time-series obtained for Bach’s original and variation were then contrasted by
calculating t-tests and binarized, assigning 1 to significant values (threshold = .05) emerged
from t-tests and O otherwise. Those values were submitted to a 1D MCS. For each of the
10000 permutations, we randomized the binarized elements (threshold = .05) of the p-value

time-series and extracted the maximum cluster size. Then, we built a distribution of
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maximum cluster sizes and considered significant the original clusters that were larger than

the 95% of the permuted ones.
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