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Dopaminergic stimulants and risk of Parkinson’s disease

Michael Wainberg PhD', Dipender Gill MD? Bowen Su MD*°, Mike A. Nalls PhD*°,
Robert R. Graham PhD®, Sudeshna Das PhD’, Ioanna Tzoulaki PhD>*?,
Nasa Sinnott-Armstrong ScM'®', Manuel A. Rivas DPhil'""

Parkinson’s disease is characterized by dopaminergic neurodegeneration in the substantia
nigra. Although dopaminergic drugs are the mainstay of Parkinson’s treatment, their putative
disease-modifying properties remain controversial. We explored whether prescription of
dopaminergic stimulants for attention-deficit hyperactivity disorder (ADHD) might affect
Parkinson’s incidence. We performed Cox survival analyses for outpatient Parkinson’s
diagnosis among ADHD-diagnosed seniors in the Optum Clinformatics™ Data Mart
de-identified administrative claims database, correcting for diverse demographic and
socio-economic status covariates. We compared 5,683 sustained users (> 90 days) of
dopaminergic stimulants to 252 sustained users of atomoxetine, a noradrenergic first-line
ADHD medication. Parkinson’s incidence was reduced among sustained dopaminergic
stimulant users compared to atomoxetine users (adjusted hazard ratio [HR] 0.15, 95%
confidence interval [CI] 0.04-0.56, p = 0.005). Effect sizes were comparable between derivatives
of amphetamine (adjusted HR 0.12, 95% CI 0.03-0.48, p = 0.003) and methylphenidate (adjusted
HR 0.27, 95% CI 0.04-1.76, p = 0.2). In sensitivity analyses, similar trends were observed when
other psychotropics (SSRIs, gabapentin) were used as comparators instead of atomoxetine, or
when the threshold for sustained use was defined as 45, 180 or 360 days instead of 90. Thus,
sustained dopaminergic stimulant use was associated with lower Parkinson’s incidence among
seniors with ADHD. Our results are consistent with a protective effect of dopaminergic
stimulants on the development of Parkinson’s, and support a re-examination of certain
dopaminergics, particularly rasagiline and other selective monoamine oxidase B inhibitors, as

potential disease-modifying agents.
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Introduction

Parkinson’s disease is one of the most common neurodegenerative diseases, affecting
approximately 6 million individuals worldwide, predominantly over age 65'. Etiologically,
Parkinson’s is characterized by the degeneration of dopaminergic neurons in the substantia
nigra and consequent dopamine deficiency in the striatum, leading to motor deficits, mood
and sleep disorders, cognitive impairment and hyposmia, among other symptoms>°.
Dopaminergic drugs, such as the dopamine precursor L-DOPA; the dopamine agonists
pramipexole, ropinirole and rotigotine; and the monoamine oxidase B (MAO-B) inhibitors
selegiline and rasagiline effectively treat motor and to a lesser extent non-motor symptoms of
Parkinson’s by raising striatal dopamine levels*. However, no drug has been approved to delay
or reverse the neurodegeneration underlying Parkinson’s disease; such a disease-modifying

therapy has been described as “the greatest unmet therapeutic need in Parkinson's disease™.

Though controversial, some evidence suggests that dopaminergic drugs such as rasagiline may
influence Parkinson’s-associated neurodegeneration in addition to relieving symptoms.
Though the LEAP® and PROUD’ delayed-start trials found that early treatment with L-DOPA and
pramipexole, respectively, do not significantly alter the rate of progression of Parkinson’s
symptoms, the ADAGIO delayed-start trial found that early treatment with rasagiline was
associated with significantly reduced rate of progression at 1 mg/day, but not 2 mg/day®. The
positive result of the ADAGIO trial at 1 mg/day is consistent with experimental evidence that

rasagiline’'® and its primary metabolite 1-(R)-aminoindan'>"" have neuroprotective properties.

In this study, we aimed to complement these randomized control trials with real-world
evidence from an American insurance claims database, Optum Clinformatics™ Data Mart,
containing de-identified medical and pharmacy claims for over 57 million unique patients. The
uniquely large size of this cohort allowed us to focus on a highly specific patient population,
seniors prescribed dopaminergic stimulants (amphetamine and methylphenidate derivatives)
for attention-deficit hyperactivity disorder (ADHD). At high doses, amphetamines are
neurotoxic via a variety of mechanisms', and mice treated with 10-20 mg/kg of
methamphetamine, the equivalent of approximately 50 to 100 times the human therapeutic
dose, display ~40-45% dopaminergic neuronal loss in the substantia nigra'’. Conversely,
therapeutic doses of amphetamines have been found to modestly ameliorate Parkinson’s

symptoms®, and low-dose methamphetamine appears to be neuroprotective in animal models
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of stroke and traumatic brain injury®”’. Thus, we hypothesized that therapeutic use of
dopaminergic stimulants for ADHD might influence Parkinson’s-associated neurodegeneration

and therefore the incidence of transition from prodromal to frank disease.

Methods

DATA SOURCE

In this cohort study, we used Optum Clinformatics™ Data Mart Database (OptumInsight, Eden
Prairie, MN), a de-identified database of medical and pharmacy claims for over 57 million

unique patients from a large national U.S. insurance provider.

STUDY POPULATION

Eligible patients were aged 65 or over at date of cohort entry (see below for definition) and had
previously had at least one outpatient encounter with a diagnosis of ADHD (International
Classification of Diseases, 9th Revision [ICD-9], code 314, or 10th Revision [ICD-10], code F90).
Patients were excluded if they had either no administrative claim entries, outpatient
prescription entries, insurance plan entries, or socio-economic status entries in the database.
Patients with any entries for dopaminergic stimulants rarely prescribed for ADHD
(phentermine, pemoline, and methamphetamine) were excluded, as in a recent insurance
claims study of dopaminergic stimulants and psychosis®, as were patients with ambiguous

ages (different years of birth recorded in different insurance plan entries).

A previous study of dopaminergic stimulants and Parkinson’s in the Utah Population Database
found a 50% increased hazard of Parkinson’s among ADHD-diagnosed therapeutic ever-users
of stimulants aged 66 and under compared to never-users®, but this result could be explained
by individuals with missing prescription data being more likely to also lack data on Parkinson’s
diagnosis. To avoid this source of confounding in our own study design, we employed a control
group consisting of patients taking a comparator drug: atomoxetine, a norepinephrine

reuptake inhibitor used, like dopaminergic stimulants, as a first-line ADHD medication.

The cohort entry date was defined as the date on which the patient was prescribed their 90th
day of either a dopaminergic stimulant or atomoxetine, not necessarily contiguously.
Prescription entries with < 0 days’ supply were discarded. Patients were excluded if they had

never been prescribed more than 90 days’ supply of the medication or had ever taken both
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types of medications. The cohort exit date was either the date the patient developed
Parkinson’s or the date of the patient’s last ICD entry in Optum, whichever came first. Patients
were excluded if their entry date would fall after their exit date, i.e. if they were prescribed
fewer than 90 days’ supply of a dopaminergic stimulant or comparator drug before developing
Parkinson’s or attaining their last ICD entry in Optum. Notably, this study design avoids

immortal time bias*, regardless of the timing of prescriptions prior to the 90-day mark.

The dopaminergic stimulant group consisted of patients prescribed either amphetamines
(mixed amphetamine salts, dextroamphetamine and lisdexamfetamine), methylphenidate
derivatives (methylphenidate, and dexmethylphenidate), or both types of stimulants. Patients
were permitted to switch between stimulants in the same category, and all stimulants in the
category were counted towards the 90-day threshold. However, for the amphetamine- and
methylphenidate-specific analyses, patients were excluded if they had ever been prescribed

both types of stimulants, even outside the entry and exit dates, in order to be conservative.

STATISTICAL ANALYSIS

For the main analysis, we performed multivariable Cox regression to estimate hazard ratios
[HR] and 95% confidence intervals [CI] for Parkinson’s disease onset between the
dopaminergic stimulant and comparator groups. Patients were censored if they did not
develop Parkinson’s disease before their last ICD entry in Optum. The primary outcome was an
ICD code for Parkinson’s disease (ICD-9: 332.0; ICD-10: G20) or a prescription of a medication
containing L-DOPA. (Though L-DOPA was historically also prescribed for restless legs
syndrome, its use has been largely superseded by gabapentinoids and dopamine agonists for
this indication®) All analyses were performed using Python 3.6.8 software, using the standard

lifelines package (version 0.18.4) for Cox regression.

We adjusted for a wide variety of demographic and socio-economic status markers: age at
cohort entry (standardized to zero mean and unit variance), as well as the exponential and
logarithm of this standardized age to account for potential non-linearity in the relationship
between age and Parkinson’s disease even after adjusting for other covariates, sex, race, region
of the US, highest degree obtained, home ownership status, household income range,
occupation type, number of adults in household, and number of children in household. (For
the logarithm of standardized age, standardized age was shifted by the minimum age minus 1 x

10" so that the argument of the logarithm was positive.) To further mitigate bias, we also
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included as covariates the fraction of days each patient was prescribed the stimulant or
comparator drug during the period between the cohort entry and exit dates (the total days’
supply of all prescriptions during this period, divided by the length of the period), as a proxy
for cumulative exposure to the drug over and above the 90-day initial exposure. We also
included the total number of prescription entries of any drug during this period, as a proxy for

data density or completeness.

To avoid model convergence failure due to collinearity or quasi-complete separation, we
discard the rarest value of each categorical covariate when ‘one-hot encoding’ (converting
categorical variables to a series of binary numerical variables), and further discard covariates
with variance < 1 x 10* among either the stimulant or comparator groups, or frequency < 10%

in the selected cohort.

DATA AVAILABILITY

Optum Clinformatics™ Data Mart is available by application through the Stanford Center for

Population Health Sciences (http://med.stanford.edu/phs.html).

Results
STUDY COHORT

The cohort for the primary analysis consisted of 5,683 patients in the dopaminergic stimulants
group and 252 patients in the comparator group, with a total of 18,825 person-years of

follow-up. Covariate frequencies among the two groups are shown in Table 1.

Of the 8,857,739 individuals aged 65 or over with at least one administrative claim entry,
outpatient prescription entry, insurance plan entry, and socio-economic status entry in Optum
Clinformatics, there were 141,850 (1.6%) cases of Parkinson’s disease according to the
definition used for the primary outcome (Methods). There were 40,039 (0.45%) cases of ADHD
(the majority of whom did not have a sufficient number of stimulant prescriptions to be
included in the dopaminergic stimulant or comparator groups), of which 589 (1.5%) were also
cases of Parkinson’s. Thus, ADHD diagnosis was associated with marginally reduced

prevalence of Parkinson’s (relative risk 0.92, Fisher p = 0.04) in this dataset.
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PRIMARY ANALYSIS

Of the 5,683 patients in the dopaminergic stimulants group, 14 developed Parkinson’s; of the
252 patients in the atomoxetine group, 3 developed Parkinson’s. Sustained use of dopaminergic
stimulants was associated with a lower incidence of Parkinson’s (Table 2), with an adjusted
hazard ratio of 0.15 (95% CI, 0.04 to 0.56, p = 0.005). Effect sizes appeared consistent between
amphetamines (adjusted hazard ratio 0.12, 95% CI, 0.03 to 0.48, p = 0.003) and methylphenidate
derivatives (adjusted hazard ratio 0.27, 95% CI, 0.04 to 1.76, p = 0.2), though with wide

confidence intervals on the methylphenidate group.

SENSITIVITY ANALYSES

We performed two types of sensitivity analyses (Table 3). In analyses using either SSRIs
(citalopram, escitalopram, fluoxetine, fluvoxamine, paroxetine, and/or sertraline) or
gabapentin instead of atomoxetine as the comparator drug (with both the stimulant and
comparator groups still restricted to individuals with ADHD), sustained use of dopaminergic
stimulants was again associated with a significantly lower incidence of Parkinson’s (SSRIs:
adjusted HR 0.36, 95% CI, 0.14 to 0.92, p = 0.03; gabapentin: adjusted HR 0.14, 95% CI, 0.05 to
0.39, p =0.0001). In analyses using 45, 180 or 360 days as the threshold for sustained use instead
of 90, point estimates of the adjusted hazard ratio were similar to the primary analysis (0.10 to

0.34), though sometimes with greater margins of error due to smaller sample sizes.

POWER CALCULATION

We performed power calculations according to the formula of Schoenfeld (1983)%*, using as
input the number of individuals in the stimulant and comparator groups, the total number of
Parkinson’s cases across both groups, the adjusted hazard ratio, and a significance level of 0.05.
Though estimated power was only 47% for the primary analysis due to the small number of
seniors prescribed atomoxetine, power was adequate for the sensitivity analyses using larger
comparator groups (74% for SSRIs and 90% for gabapentin). The high degree of concordance
between the primary and sensitivity analyses suggests the results of the primary analysis are

unlikely to be substantially biased due to insufficient power.

Discussion

Since the dramatic discovery of L-DOPA as a highly effective Parkinson’s disease treatment?, it

has become well established that dopaminergic drugs are efficacious at controlling the
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symptoms of the disease. In this study, we add to the body of evidence suggesting that certain
dopaminergic drugs may also prevent or delay progression of the neurodegeneration
underlying the disease. We find that sustained dopaminergic stimulant use is associated with

reduced incidence of Parkinson’s disease among seniors with ADHD.

Our study has several limitations. First, our analysis was restricted to individuals with ADHD.
Although this has the benefit of mitigating confounding by indication, our findings in ADHD
patients may not fully generalize to individuals without ADHD. Fortunately, a diagnosis of
ADHD was on its own associated with only mildly altered Parkinson’s prevalence (relative risk
0.92, Fisher p = 0.04), suggesting that individuals with ADHD are similar to the general

population in relation to the development of Parkinson’s disease.

Second, the apparent reduction in Parkinson’s incidence could be driven by dopaminergic
stimulants merely masking the symptoms of prodromal disease (and thereby delaying time to
diagnosis), without causally affecting neurodegeneration. However, amphetamines were
found to only improve Parkinson’s disease symptoms by about 20%’, suggesting any masking
effect would be unlikely to explain such a large observed reduction in Parkinson’s hazard.
Further, dopaminergic stimulants and atomoxetine are rarely prescribed for indications other
than ADHD, making it unlikely that reverse causality (patients being prescribed stimulants to

treat symptoms of prodromal Parkinson’s disease) could explain the observed results.

Third, the limited number of years of available data (only since 2003) and the inherent
incompleteness of insurance claims mean that some individuals could have been diagnosed
with ADHD and started on stimulants long before their cohort entry date. Indeed, though
ADHD is increasingly being diagnosed in adults and adult-onset ADHD has even been
postulated to be a distinct disorder from child-onset ADHD*, some individuals in our cohort
may well have been taking stimulants for ADHD since childhood. While his “tip of the iceberg
effect”, in which the small number of stimulant prescriptions visible in Optum are a marker for
a potentially much larger number of unobserved prescriptions, helps to justify the large effect
sizes we observe, it could also introduce subtle biases that are difficult to fully account for
(though not immortal time bias - see Methods). For instance, some individuals in the
atomoxetine group could have originally been treated with dopaminergic stimulants prior to
atomoxetine’s FDA approval in 2002, though if anything this would tend to make dopaminergic

stimulants look less beneficial, rather than more beneficial.
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Fourth, though our study supports dopaminergics being disease-modifying in prodromal PD,
this does not necessarily imply being disease-modifying in established PD. This distinction is
supported by the relative lack of overlap in genetic risk factors between Parkinson’s risk and

Parkinson’s progression found by genome-wide association studies®.

Fifth, the low rates of recorded ADHD diagnosis and stimulant use among seniors, combined
with the relative rarity of Parkinson’s disease, limit the power of our analysis; and, as with all
observational data analysis, our observed association may not be causal. For instance, though
observational studies linked high levels of urate (an antioxidant) to both reduced risk of
Parkinson’s and slower disease progression, the Study of Urate Elevation in Parkinson's
Disease (SURE-PD3) trial did not show disease-modifying effects from raising urate levels with
inosine supplementation. We emphasize the need for replication in other cohorts (though very
few, if any, others exist of a suitable size), and above all randomized control trial evidence, to

validate the conclusions presented here.

Although the ADAGIO trial has sometimes been perceived as blanket evidence against the
neuroprotective efficacy of rasagiline in Parkinson’s, with one commentary®” stating
categorically that “the earliest suggestions of any [disease-modifying] effect for [...] rasagiline
in TEMPO [a non-delayed-start trial] were negated by the rigorous subsequent delayed-start
[trial] ADAGIO”, this glosses over the substantial complexity and ambiguity of the trial’s results.
Perhaps the most parsimonious interpretation of the ADAGIO trial is that the delayed-start
arms did suffer from greater neurodegeneration, but that the larger 2 mg/day dose was
sufficient to mask the additional symptoms resulting from this neurodegeneration, while the
smaller 1 mg/day dose was not. Crucial support for this interpretation is provided by the
observation in the ADAGIO paper that “for rasagiline at a dose of 2 mg, a post hoc subgroup
analysis showed that for subjects in the highest quartile of UPDRS [Unified Parkinson's Disease
Rating Scale] scores at baseline, early-start rasagiline provided a significant benefit over
delayed-start rasagiline with respect to the change in the UPDRS score between baseline and 72
weeks (-3.63 UPDRS points), and all primary end points were met despite the relatively small
sample”. The notion that dopaminergic drugs as a class are either all disease-modifying or all
non-disease-modifying may likewise be overly simplistic: it is entirely possible that rasagiline
is disease-modifying as a result of its demonstrated neuroprotective effects’®, while L-DOPA is
not as a result of neurotoxic effects® negating neuroprotective effects. Our results suggest that

the ADAGIO trial’s finding of delayed disease progression with 1 mg/day rasagiline should not
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be so easily dismissed, and support further randomized clinical trials of rasagiline (or
alternatively of even more selective MAO-B inhibitors such as sembragiline®) to resolve the
ambiguity and either replicate or definitively refute this finding. Future trial designs could
account for any potential masking effect by including a washout phase at the end of the trial in

addition to a delayed-start phase at the beginning of the trial.

In conclusion, sustained dopaminergic stimulant use was associated with reduced incidence of
Parkinson’s disease among seniors with ADHD. Given the urgent unmet need for
disease-modifying therapies in Parkinson’s, our results support further investigation of the use
of selective monoamine oxidase B inhibitors, and possibly other dopaminergics, as potential

disease-modifying agents in Parkinson’s.
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Tables
Variable Dopaminergic Atomoxetine
stimulants (N =252)
(N =5,683)
Age (years) 68.60 + 3.93 68.14 + 3.51
Sex Female 58.7% 59.1%
Male 41.2% 40.5%
Race White 77.6% 78.2%
Unknown 12.6% 12.3%
Black 5.7% 6.3%
Region South Atlantic 28.2% 29.4%
East North Central 15.2% 16.7%
Pacific 11.1% 11.5%
Mountain 12.4% 7.5%
West South Central 8.5% 10.3%
West North Central 7.4% 8.3%
Middle Atlantic 6.5% 6.7%
New England 6.8% 6.0%
Education level Bachelor’s or greater 22.5% 27.4%
Less than bachelor’s 57.5% 51.2%
High school diploma 19.5% 20.2%
Home ownership [Likely homeowner 71.5% 69.4%
Likely non-homeowner 6.4% 4.4%
Unknown 22.0% 26.2%
Household income [<$40K 19.5% 20.6%
range $40K-$49K 6.4% 4.4%
$50K-$59K 7.6% 4.4%
$60K-$74K 10.5% 9.5%
$75K-$99K 14.4% 11.1%
$100K+ 26.3% 27.8%
Unknown 15.3% 22.2%
Occupation type  [Missing/unknown 75.7% 73.4%
White Collar/Health/Civil Service/Military 9.2% 13.1%
Homemaker/Retired 7.8% 7.5%
Manager/Owner/Professional 5.1% 4.8%
# adults in 1 88.7% 76.2%
household 2 8.8% 19.4%
# children in 0 99.7% 100.0%
household

Table 1: Patient covariates and their frequencies; covariates with frequency <5% in both groups omitted for
brevity.
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Stimulant Parkinson’s cases Unadj. HR | Unadj. | Adj. HR Adj.
(95% CI) p-value | (95% CI) p-value

Stimulant [Atomoxetine

All stimulants 14/5683 3/252 0.22 0.02 0.15 0.005
(0.2%) (1.1%) (0.06-0.75) (0.04-0.56)

Amphetamines 7/3475 3/233 0.17 0.01 0.12 0.003
(0.2%) (1.3%) (0.04-0.67) (0.03-0.48)

Methylphenidate | 4/1644 2/244 0.28 0.1 0.27 0.2

derivatives (0.2%) (0.8%) (0.05-1.53) (0.04-1.76)

Table 2: Primary analysis.

covariates (Methods).

Unadj. refers to analyses based on raw case incidence; adj. is adjusted for relevant

Analysis Parkinson’s cases Unadj. HR | Unadj. | Adj. HR Adj.
(95% CI) p-value | (95% CI) p-value

Stimulant | Comparator

SSRIs as 8/3295 14/1845 0.38 0.03 0.36 0.03

comparator (0.2%) (0.8%) (0.16-0.90) (0.14-0.92)

Gabapentin as 10/4907 8/828 0.19 0.0005 |0.14 0.0001

comparator (0.2%) (1.0%) (0.08-0.49) (0.05-0.39)

45-day threshold 17/5814 2/254 0.38 0.2 0.34 0.2
(0.3%) (0.8%) (0.09-1.65) (0.08-1.53)

180-day threshold | 12/5165 4/213 0.13 0.0004 0.10 0.0001
(0.2%) (1.9%) (0.04-0.40) (0.03-0.32)

360-day threshold | 11/4058 2/168 0.22 0.05 0.25 0.09
(0.3%) (1.2%) (0.05-0.98) (0.05-1.27)

Table 3: Sensitivity analyses. Note that the choice of comparator affects the number of individuals in the stimulant
group, due to the exclusion of patients on both the stimulant and the comparator.
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