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 The exact risk of dying from COVID-19 has remained elusive and a topic of debate. In this 

study, the observed case fatality rates of 46 different countries are hypothesized to be dependent on 

their testing rates. An analytical test to this hypothesis suggests that the case fatality rate of COVID-

19 could be consistent to a certain degree across all countries and states. The current global fatality 

rate is estimated to be around 1% and expected to converge between 1-3% when the pandemic ends. 

This model can be helpful to estimate the true infection rate for individual countries. 

 

 

This study uses a mathematical modeling approach to estimate the true outbreak size and clinical severity of COVID-19. It 

is a preliminary report that has not been certified yet by peer review. It should not be relied on to guide clinical practice 

or health-related behavior and should not be reported in news media as established information. 
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 The exact risk of dying from COVID-19 has remained elusive and a topic of debate. In this study, the observed 
case fatality rates of 46 different countries are hypothesized to be dependent on their testing rates. An analytical test to 
this hypothesis suggests that the case fatality rate of COVID-19 could be consistent to a certain degree across all countries 
and states. The current global fatality rate is estimated to be around 1% and expected to converge between 1-3% when the 
pandemic ends. This model can be helpful to estimate the true infection rate for individual countries. 

 

The case fatality rate (CFR) of COVID-19 is defined as the ratio 
of reported deaths from SARS-CoV-2 infection to the number 
of infected patients. The case fatality of COVID-19 and its 
variation across different countries remains debatable (1-4).  
In many countries, the case fatality even varies widely across 
different states (5). The observed inconsistency of CFR has 
been associated with age(3), co-morbidity(6), the efficiency of 
the healthcare system(7), three different viral strains(8), 
regional weather(9), and even vaccination schedule(10). 
However, none of these parameters are probably sufficient to 
explain the variation with mathematical precision. 

To accurately calculate the fatality rate, it is necessary to 
correctly estimate the number of people infected by the virus, 
i.e., the denominator of the CFR ratio. (2). But, a salient 
feature of COVID-19 disease is its mild and asymptomatic 
nature in a large number of infected patients, who can carry 
and spread the infection to other healthy susceptible 
individuals. Data from recent studies suggest 25%-70% 
carriers of SARS-CoV-2 can be asymptomatic or show very 
limited symptoms (11, 12). Therefore, the efficiency of COVID-
19 detection or testing is critical. Accurate detection not only 
helps isolate the infected patients, but it also allows accurate 
documentation of the infection and fatality rate. However, the 
testing infrastructure and policies also widely vary across 
nations, once again giving rise to an inconsistency in the 
fatality rate. This letter is intended to illustrate an intriguing 
relationship between the case fatality and testing rate which 
is gradually emerging from the COVID-19 dataset worldwide. 
A mathematical correlation function was derived using a 
simple model of infection transmission. 

As only a very small percent of infected people develop severe 
symptoms, the large number of mild and asymptomatic 
patients can be missed easily. To overcome this challenge, the 
detection strategies (Covid-19 testing) follow an efficient 
algorithm. The probability of infection transmission from one 
particular individual gradually decreased from the close-
contacts (persons who are close, or came close to the infected 
individual) to the far-contacts (persons who were physically 
distant from the infected individual). The probability of the 
spread of the infection approaches to zero for someone who is 
located at a large distance from the infected individual. 
Therefore the detection of COVID-19 infection is largely 

performed by a contact tracing method, mostly to maximize 
the efficiency of detection. In this method, when a patient 
(symptomatic or asymptomatic) is tested positive, all the 
individuals who came in close contact with that person in the 
last 10-14 days are tested with the highest priority. Thus, the 
detection algorithm is optimized by adapting the same 
pattern of the infection-transmission (see supplementary note 
Q1).  

It is fundamentally important to accurately model the true 
detection efficiency in a population to know the true outbreak 
size and subsequently develop more efficient testing 
strategies. The chance of the contracting infection from one 
infected person can be mathematically modeled with a 
probability distribution function, which gradually decreases 
from the close-contacts to the far-contacts. As the spread of 
infection occurs continuously and independently at a constant 
average rate, the probability distribution is assumed to be 
exponentially decaying from close-contacts to far-contacts 
according to the following equation (Figure 1): 

𝑃(𝑛) = 𝑒−𝜆𝑛  (1);  

where 𝑃(𝑛) is the probability of contracting the infection for 

𝑛𝑡ℎ contact person and 𝜆 is a constant representing the rate of 
decay. The physical distance of a contact person from the 
infected individual increases equivalently with the numerical 
value of 𝑛. The unit cell (or the building block) of this model 
includes only a single infected person at the center and the 
people who can contract the infection from that person 
directly. In reality, the same unit cell repeats itself for 
secondary, tertiary, and subsequent infections. Thus, like a 
growing crystal in a crystallization process, the infection keeps 
spreading within a population by repeating the unit-cell of 
infection following the same probability distribution function 
(equation 1).  

The total number of infection (𝐼0) within a unit-cell can be 
estimated as (total area under the curve in figure 1a): 

𝐼0 = ∫ 𝑃(𝑛)𝑑𝑛
∞

0
  (2). 

However, in an actual scenario, only a defined number of 
individuals can be detected by testing. Thus, the number of  
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Figure 1: The mathematical model of COVID-19 detection. (a) A probability function of infection transmission from a single 
infected individual. The function can also indicate the probability of finding the nth person COVID-19 positive while contact 
tracing. The area under the curve represents the total number of infected persons. The shaded area indicates the detected fraction 
of the population when only n number of contacts are tested for the disease. (b) Detection rate as a function of the testing rate in 
a population. The detected % positive rate initially increases with increasing testing rate but eventually saturates to the true % of 
infection within the population.  

 

detected (𝐼) infection within a unit-cell can be estimated as 
(shaded area under the curve in figure 1a): 

𝐼 = ∫ 𝑃(𝑛)𝑑𝑛
𝑛

0
  (3); 

where 𝑛 is the number of individuals tested per detected case 
through contact tracing, a number which widely varies across 
countries.  The value 𝐼 is equal to the area under the curve as 
illustrated in figure 1. The mathematical expression of 𝐼 can be 
derived as a function of 𝑛 by solving equations 1-3. Therefore, 
the detection efficiency (Ф) can be estimated as the ratio of 
the detected number to the actual number of infection within 
the unit cell:  

Ф =
𝐼

𝐼0  (4).  

It is important to note that this ratio is dimensionless and 
independent of the total number of population in a region. In 
other words, this relationship is not limited to the unit-cell 
but applies to the whole population. Therefore the detection 
rate of COVID-19 within a population can be modeled using 
the relation given in equation 4.  The simulated curve in figure 
1b illustrates that at a given time in a region, the % detection 
of infected individuals increases when the testing rate is 
increased (see supplementary note Q2), but eventually 
saturates when most of the infected people are already 
detected within that population (Ф ≃ 1). The numerical value 
of exponential decay constant (𝜆 = .03) was derived from 
fitting a dataset, which will be discussed later. 

If 𝐷 is the number of deaths from the infection within the unit-
cell, then the actual CFR (δ0) and observed CFR (δ) can be 
defined as: 

δ0 = 
𝐷

𝐼0
       (5), and 

δ = 
𝐷

𝐼
    (6) 

respectively. 

Solving equation 1-6, the following relation can be established 
between the observed case fatality (dependent variable) and 
the number of testing performed per detected case 
(independent variable): 

δ(n) =
δ0

1−𝑒−𝜆𝑛       (7) 

The uncertainty of the above function (𝛥δ) can be determined 
using the propagation of uncertainty from 𝐼 as follows:  

𝛥δ

δ
=

𝛥𝐼

𝐼
         (8)   

Where 𝛥𝐼 is the uncertainty of 𝐼 and can be calculated from 
equations 1 and 3. 

𝛥𝐼 = |𝐼(𝑛 + 𝛥𝑛) − 𝐼(𝑛)| =
1

𝜆
𝑒−𝜆𝑛(1 − 𝑒−𝜆𝛥𝑛)      (9) 

Solving equation 7-9, the uncertainty of observed CFR is found 
to be 

a b 
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 𝛥δ(𝑛, 𝛥𝑛) = δ0 ⌊
𝑒−𝜆𝑛

(1−𝑒−𝜆𝑛)
2⌋ (1 − 𝑒−𝜆𝛥𝑛) (10) Or,   

𝛥δ(𝑛, 𝛥𝑛) = (𝛥𝑛)𝜆δ0 ⌊
𝑒−𝜆𝑛

(1−𝑒−𝜆𝑛)
2⌋   (11), with 

approximation (Taylor expansion).  

Similar to detection efficiency, the equation 7-9 also holds for 
the whole population outside the unit-cell. To test these 
correlations within the existing datasets of COVID-19 
pandemic, it is hypothesized that the actual or true fatality 
rate of COVID-19 is consistent (δ0 is a constant) worldwide. 
The values of δ(n) (total deaths/total cases) and n (total 
tests/total cases) were calculated for 46 different countries 
(Table S1, data collected from worldometers.info). The δ(n) vs 
𝑛 plot was fitted using equation 7 to determine the value of δ0. 
The fitting and the relative location of some countries are 
illustrated in Figure 2. The residual analysis is shown in the 
supplementary information (Figure S1). The goodness of fit 
can be further improved by excluding a few countries like 
Brazil and Italy who appear to be the outliers in the plot. Yet, 
the hypothesis can be tested keeping the uncertainties in 
mind.  

According to equation 10, the uncertainty 𝛥δ linearly increases 
with the value of 𝛥𝑛, and decays exponentially as a function of 
𝑛. The uncertainty regions are illustrated in Figure 2b for three 
different values of 𝛥𝑛. The uncertainty analysis provides 
substantial supporting evidence to the hypothesis stated 

above. Conceptually, countries, where a large fraction of the 
screened people have been found to be contracted with the 
disease (SARS-CoV-2 positive), may have insufficient data to 
accurately calculate their fatality rate. The observed fatality 
rates in such countries could be overestimations and may fall 
within a broad range as well. In contrast, countries that have 
found most of the screened suspects to be negative for the 
disease (SARS-CoV-2 negative) have higher odds of 
converging into the accurate estimation of the fatality rate. 
The fitted value of δ0 suggest that the true case fatality of 
COVID-19 mathematically converges to 0.8% (δ0 = 0.8 ± 0.6) 
with relatively small uncertainty (Figure 2b). This numerical 
value is very similar to the fatality rate among the individuals 
in the Diamond Princess cruise ship (0.99%), a unique case 
study that might have provided us a reliable estimation of the 
CFR of COVID-19 (2). 

It must be mentioned here that the presence of outliers in 
equation 7 is plausible with a low testing ratio (𝑛), as the cause 
of death may depend on a large number of parameters as 
mentioned before. Hence, the fatality rate may not be exactly 
the same for each and every country. For instance, the 
observed fatality rate of Italy would be expected around 5% 
from equation 7, but it is >12% in practice due to several other 
factors. In contrast, the observed fatality is lower than 
expected in Brazil. Although these variations are expected 
from the uncertainty equations, the accurate values for 
individual countries cannot be estimated using this model. 

     

Figure 2. Correlation between the observed fatality rate and the average number of tests performed per detected case obtained 
from 46 countries. (a) The fitted line (red) represents the exponential relation stated in equation 7. The shaded area is the region 
of 99% confidence. Positions of several countries are indicated by arrows. (b) The regions of uncertainty (shaded area) of the 
observed case fatality (red line) exponentially reduce according to equation 11.  The data points tend to converge to a fixed value 
of fatality rate with reduced uncertainty at a very high value of n.    
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An important question, which should arise in this context is 
whether the CFR reflects the true severity of the disease. As 
there is a time-lag between recovery and death, the CRF may 
keep changing throughout the epidemic in each country and 
saturate to a certain value at the end. Additional 
considerations might be needed to account for the time delay 
between disease onset and death (or recovery) from COVID-
19 infection for the assessment of the actual clinical severity of 
the disease. For that, one can also look at the fatality rate in 
closed cases (CCFR), which takes the relative speed between 
death and recovery into considerations. At a given time point 
CCFR is generally found to be higher than CRF due to the long 
time delay between infection and recovery (figure 3a, 
supplementary information figure S2). A fitting of CCFR with 
a similar method results in a global fatality rate of around 3% 
(δ0 = 2.7 ± 0.3). The CCFR is expected to gradually decrease 
and converge to the same value of CFR at the end of the 
pandemic. Thus, at any time point, both of these time-
sensitive indices may inaccurately represent the clinical 
severity. Yet, they provide a reliable window for the true 
fatality range which gradually diminishes with the duration of 
the pandemic (figure 3b). This range of uncertainty would 
gradually reduce with time as the pandemic progresses.  

One corollary which immediately manifests from this 
hypothesis is a possible route of estimation of the actual size 
of the outbreak.  If it is assumed that most of the undetected 
patients recover from a mild or asymptomatic infection, then 
the current observed rate of recovery would also be an 
underestimation. According to the model discussed above, the 
outbreak size can be approximately estimated as a function of 
𝑛 using equation 1-4 (Figure 1b) and the fitted value of 𝜆 

(Figure 4a).  Assuming 𝑛 =
𝑇𝑜𝑡𝑎𝑙 𝑡𝑒𝑠𝑡𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑐𝑎𝑠𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
, and 𝜆 = 0.03, 

equation 4 suggests that most of the countries may have 
already missed a significant portion of the infected population 
who might have recovered from a milder disease (Figure 4b).  
For instance, France, Brazil, Iran, and Belgium who have 
reported one of the highest rates (~30-50%, n≃2-3) of positive 
cases during Covid-19 detection, might have missed up to 75-
90% of the true infected population till May 3, 2020. In 
contrast, Vietnam, UAE, Hong Kong, South Korea, or New 
Zealand who have reported the least rate of positive cases 
(~0.2-2%, n≃50-500) might have missed only 1-10% till May 3, 
2020, according to this model. However, to estimate the 
number of recovered individuals from mild infection, it might 
need an in-depth formulation (Figure 4a) of the rate 
equations, which is outside the scope of this letter.  
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Figure 3. The two different types of fatality rate: Observed case fatality rate (CFR) and Observed closed-case fatality rate (CCFR) 
(a) The fitted lines show the difference between CFR (black) and CCFR (red). The CRF converges to 1% and CCFR converges to 
3%. (b) Schematic diagram showing how CFR gradually decreases and CCFR gradually increases during the pandemic. They 
converge to the same value at the end of the pandemic. The uncertainty range for the true fatality rate is shown by the green 
shaded area. 
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Figure 4: Detected and missed cases (a) Schematic diagram showing the true size of outbreak, recovery, and death. The proportion 
of undetected cases can be estimated as a function of detection efficiency (Ф). (b) The estimated percent of detected and missed 
cases as a function of testing rate across 46 countries. Most of the countries may have missed a significant proportion of cases 
according to the model.   

 

So, in conclusion, the analytical approach presented in this 
letter shows that the widely variable observed fatality rate is a 
function of the testing rate or the average tests performed per 
case (see supplementary note Q3). However, the true case 
fatality rate has a fixed value between 1-3% in most of the 
countries. The methodology described here could be useful to 
estimate the true size of the infected population, which 

otherwise largely remains unknown.  The accuracy of this 
simple mathematical approach can be improved further with 
additional parameters in future studies. This study attempts 
to reliably distill the data from various countries into a 
coherent mathematical formulation to estimate the global risk 
of mortality during the COVID-19 pandemic.   

 

========================================================================== 

The supplementary information file contains table S1, Figure S1-2, and 
supplementary notes Q1-3.  
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