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Abstract

Synthetic genetic circuits allow us to modify the behavior of living cells. However, changes in
environmental conditions and unforeseen interactions with the host cell can cause deviations
from a desired function, resulting in the need for time-consuming reassembly to fix these
issues. Here, we use a regulatory motif that controls transcription and translation to create
genetic devices whose response functions can be dynamically tuned. This allows us, after
construction, to shift the on and off states of a sensor by 4.5- and 28-fold, respectively, and
modify genetic NOT and NOR logic gates to allow their transitions between states to be varied
over a >6-fold range. In all cases, tuning leads to trade-offs in the fold-change and the ability
to distinguish cellular states. This work lays the foundation for adaptive genetic circuits that
can be tuned after their physical assembly to maintain functionality across diverse

environments and design contexts.
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Introduction

Genetic regulatory circuits govern when and where genes are expressed in cells and control
core biochemical processes like transcription and translation 2. The ability to synthesize DNA
encoding engineered genetic circuits offers a means to expand the capabilities of a cell and

1,3

reprogram its behavior . Synthetic genetic circuits have been built to implement

4 11,12

computational operations *'°, dynamic behaviors , and even coordinate multicellular

actions ¥°1°,
The task of reprograming living cells is simplified by employing genetically encoded
devices that use common input and output signals 278, This allows the output of one device
to be connected to the input of another to create circuits implementing more complex
functionalities. Signals can take many forms, but one of the most commonly used is RNA
polymerase (RNAP) flux whereby promoters are used to guide this signal to specific points in
a circuit's DNA 76, The response function of a genetic device captures how input signals map
to output signals at steady state ""'®. By ensuring the response functions of two devices are
compatible, i.e. the range of the output from the first device spans the necessary range of
inputs for the second device, larger circuits with desired functions can be constructed ',
Matching of components is vital in circuits where devices exhibit switching behaviors (e.g.
Boolean logic) to ensure input signals are sufficiently separated to trigger required transitions
between on and off states as signals propagate through the circuit.

Although the use of characterized genetic devices has enabled the automated design
of large circuits "8, they are often sensitive to many factors. Differences in host physiology '*-

| 22726 can all affect the response

2! and interactions between genetic parts and the host cel
function of a device and subsequently its compatibility within a circuit. This makes the creation
of robust genetic circuits a challenge. Even when considering controlled lab conditions, a
genetic circuit often needs to be reassembled from scratch multiple times until a working
combination of parts is found. This is time consuming and costly, and often has to be repeated
if the circuit is deployed into slightly different conditions or host strains.

In this work, we tackle this problem by developing genetic devices whose response
functions can be dynamically tuned after circuit assembly to correct for unwanted changes in
their behavior. The ability to tune/modify the steady state input-output relationship is achieved
by employing a simple regulatory motif. We show how this motif can be connected to small
molecule sensors to characterize its function and then illustrate its use in practice by
integrating it into genetic NOT and NOR logic gates ' to tune their transition points between
on and off states. These capabilities make the devices more broadly compatible with other
components "' but their use comes at a cost. As we tune each device, a decrease in the

dynamic range is observed and it becomes more difficult to differentiate cellular states due to
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variability in gene expression across a population. Mathematical modelling is used to help us
better understand these limitations and derive design principles to further optimize device
designs. This work is a step towards adaptive genetic circuitry where individual components
tune their function to ensure robust system-level behaviors are maintained no matter the

genetic, cellular or environmental context.

Results

Constructing a tunable expression system

To allow for the response of a genetic device to be dynamically modified, we developed a
tunable expression system (TES) based on a simple regulatory motif where two separate
promoters control the transcription (TX) and translation (TL) rates of a gene of interest (Figure
1a). By using promoters as control inputs, it is possible to easily connect a TES to existing
genetic components/circuitry or even endogenous transcriptional signals within a cell. The
TES contains a toehold switch (THS) that enables the translation initiation rate of the gene of
interest to be varied by the relative concentration of a tuner small RNA (sRNA) ©%. The main
component of the THS is a 92 bp DNA sequence that encodes a structural region and a
ribosome binding site (RBS) used to drive translation of a downstream protein coding region.
This is expressed from a promoter that acts as the main input to the TES (Figure 1a). When
transcribed, the structural region of the THS mRNA folds to form a hairpin loop secondary
structure that hampers ribosome accessibility to the RBS and reduces its translation initiation
rate. This structure is disrupted by a second component, a 65 nt tuner sRNA that is
complementary to the first 30 nt of the THS 2. The tuner sSRNA is expressed from a second
promoter, which acts as a tuner input to the device (Figure 1a). Complementarity between the
tuner sRNA and a short unstructured region of the THS enables initial binding, making it
thermodynamically favorable for the sRNA to unfold the secondary structure of the THS
through a branch migration process. This makes the RBS more accessible to ribosomes,
which increases the translation initiation rate. Relative concentrations of the THS mRNA and
tuner sRNA (controlled by the input and tuner promoters) enable the rate of translation
initiation to be varied over a 100-fold range for the THS design (variant 20) we selected 22
(Methods). However, THS designs exist which allow for up to a 400-fold change in translation
initiation rates ®%. We selected as main and tuner inputs for the TES the output promoters of
two sensors, Piw: and P, that respond to anhydrotetracycline (aTc) and isopropyl B-D-1-
thiogalactopyranoside (IPTG), respectively (Figure 1b). Yellow fluorescent protein (YFP) was
used as the output (Figure 1b) to allow us to measure the rate of protein production in single

cells using flow cytometry.
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Characterization of the device was performed in Escherichia coli cells grown in
different concentrations of aTc (input) and IPTG (tuner). Steady state fluorescence
measurements were taken using flow cytometry and promoter activities of the main and tuner
inputs were measured in relative promoter units (RPUs) to allow for direct comparisons
(Methods; Supplementary Figure 1). A further advantage of characterizing our devices in
RPUs is that the data becomes compatible with genetic design automation software like Cello
7 allowing our parts to be interfaced with a large library of sensors and logic gates?”°.

For a fixed tuner promoter activity, we observed a sigmoidal increase in output YFP
fluorescence as the input promoter activity increased from 0.002 to 6.6 RPU (Figure 1c). As
the activity of the tuner promoter increased from 0.002 to 2.6 RPU, the entire response
function shifted upwards to higher YFP fluorescence. Notably, this shift was not uniform, with
larger relative increases seen for lower input promoter activities; 28-fold versus 4.5-fold for
inputs of 0.002 and 6.6 RPU, respectively (Figure 1c). Closer analysis of the flow cytometry
data (Figure 1d) showed that these changes arose from the distributions of YFP fluorescence
for low and high inputs shifting uniformly together as the tuner promoter activity was increased.
Therefore, even though a similar relative difference between outputs for low and high inputs
(also referred to as the dynamic range) was observed for all tuner inputs, when the tuner input
was low, the distributions were virtually identical to the autofluorescence of the cells (Figure
1d). This lead to even small absolute differences in the median values between low and high
input states resulting in high fold-changes.

Flow cytometry data also showed a significant overlap in the output YFP fluorescence
distributions for low and high input promoter activities (Figure 1d). Many applications require
that on and off states in a system are well separated so that they can be accurately
distinguished. To assess this feature, we calculated the fractional overlap between the output
YFP fluorescence distributions for low and high input promoter activities (Methods). We found
a constant intersection of ~70% across all tuner promoter activity levels (Figure 1e), which
resulted from the similar shifts we saw in output across all input promoter activities (Figure
1d).

To better understand these effects, we derived a deterministic ordinary differential
equation (ODE) model of the system (Supplementary Note 1). Simulations using biologically
realistic parameters (Supplementary Table 1) showed similar qualitative behavior to the
experiments; increasing tuner promoter activity shifted the response curve to higher output
protein production rates (Figure 1f). However, unlike the experiments, increasing the tuner
promoter activity resulted in a small increase in the fold-change in the output between low and
high inputs (Figure 1g, bottom). The limiting effect that the tuner sRNA can have is a possible
mechanism that could account for the non-linear response observed in the experiments,

where on states did not increase as quickly as off states as the tuner activity increased (Figure

5
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19, top). Tuner sRNA concentration was fixed for each response function. Therefore, it could
have been higher than the concentration of THS transcript (i.e. non-limiting) when the main
input was low, while limiting the output when the main input is high.

Another potential cause of this non-linear response could be retroactivity that occurs
when the behavior of components in a biological circuit change once interconnected *°*'. Such
effects break modularity and make it difficult to predict circuit behavior. To explore this
possibility, we coupled our existing model to another that is able to capture retroactivity-like
effects due to shifts in ribosome allocation between endogenous genes and synthetic
constructs, such as the TES (Supplementary Note 2) 233°3' Ribosomes are a key cellular
resource and fluctuations in their availability due to the burden of a synthetic construct can
cause drops in protein synthesis rates across the cell, affecting upstream components in a
circuit 20222426 Comparisons between the original and coupling models, showed that
retroactivity could have an impact for biologically realistic parameters, but only when the
output caused significant cellular burden and only for the most highly expressed outputs

(Supplementary Figure 2).

Design and assembly of a tunable genetic NOT gate
Some genetic devices rely on the expression of proteins such as transcription factors to
implement basic logic that can be composed to carry out more complex decision-making tasks
4732 One such device is a NOT gate, which has a single input and output 2. NOT gates invert
their input such that the output is on if the input is off and vice versa. Such a behavior can be
implemented by using promoters as the input and output, with the input promoter driving
expression of a repressor protein that binds to the DNA of a constitutive output promoter.
When the input promoter is inactive, the repressor is not synthesized and the constitutive
output promoter is in an active/on state. However, once the input promoter is activated, the
repressor is expressed which binds the output promoter and represses/turns off its activity.
Because the activity range of promoters varies, the transition point, whereby sufficient
concentrations of repressor are present to cause strong repression of the output promoter,
may make it impossible to connect other devices and ensure a signal is correctly propagated.
For example, the output promoter of a weak sensor system acting as input to a NOT gate with
a high transition point may produce insufficient repressor, causing the output promoter to be
continually active. These incompatibilities can sometimes be corrected by modifying other
regulatory elements in the design. In the case of a repressor-based NOT gate, while the
promoters cannot be easily changed, in bacteria the translation initiation rate can be varied by
altering the RBS for the repressor gene. Increasing the RBS strength causes more repressor

protein to be produced for the same input promoter activity, shifting the transition point to a
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lower value "#’. While such modifications can fix issues with device compatibility, they require
reassembly of the entire genetic device.

Given that the TES allows for the rates of both transcription and translation to be
dynamically controlled, we attempted to create a tunable NOT gate that integrated the TES to
allow its response function, and crucially its transition point, to be altered after physical
assembly. We chose an existing NOT gate design ?’ that uses the PhIF repressor to control
the activity of an output Ppnr promoter (Figure 2a). Expression of PhIF was controlled by the
TES, replacing the YFP reporter protein in the original TES design (Figure 1a). Unlike the
TES, the tunable NOT gate uses promoters for both inputs and outputs allowing it to be easily
connected to other devices that use RNAP flux as an input/output signal '® (Figure 2a).

To enable characterization of the tunable NOT gate, the output promoter Ppnr was
used to drive expression of YFP. Measurements were taken using flow cytometry for cells
harboring the device in varying concentrations of aTc and IPTG, and steady state response
functions generated (Figures 2b and 2c). As expected, these showed a negative sigmoidal
shape with transition points (K values from the Hill function fits to the experimental data) that
varied over a 7-fold range (Figure 2b). We also found that increases in the tuner promoter
activity lead to transitions at lower activity levels for the input promoter. The range of transition
points achieved by our device covered a high proportion (35%) of the largest collection of
repressor-based NOT gates built to date (total of 20 variants; Figure 2d) ’.

These results demonstrate the ability for the TES to dynamically alter a key
characteristic of a NOT gate’s response function and improve its compatibility with other
genetic devices. However, tuning came at a cost; it resulted in a drop in the fold-change
between low and high outputs (Figure 2e) and an increase in the overlap between output YFP

fluorescence distributions, making on and off states difficult to distinguish (Figure 2f).

Boosting sRNA levels improves device performance

For the THS to function correctly, it is essential that the sSRNA reaches a sufficiently high
concentration relative to the THS transcript to ensure the associated RBS is in a predominantly
exposed state ?8. In our design, the tuner promoter P has less than half the maximum
strength of the main input promoter P:«: (Supplementary Figure 1). Furthermore, although
the tuner sRNA contains a hairpin to improve its stability, SRNAs are generally more quickly
degraded than normal transcripts 334,

To better understand the role that the THS transcript to tuner sRNA ratio had on the
performance of the TES, we used our mathematical model of the system (Supplementary
Note 1) to explore how various key parameters (e.g. transcription rates and binding affinities)
affected the response function of the device. Using biologically realistic ranges of parameters

(Supplementary Table 1), we found that for lower sRNA transcription rates the output
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response function could be shifted to maintain a similar fold-change between low and high
output states (Figure 3a). At these low THS/sRNA ratios the translation rate from the THS
transcript is limited by the sSRNA concentration. However, as the sRNA transcription rate
increased a transition point was seen where for low THS transcription rates the sRNA is in
excess such that the THS transcript concentration limits the output protein production rate
(Figure 3a). In contrast, at high THS transcription rates the sRNAs become limiting again but
allows for a relatively higher output protein production rate causing a larger fold-change in the
response function (Figure 3a). Further stochastic modelling of the system showed that
increasing sRNA transcription rate also reduced variability in the distribution of protein
production rate across a population and lowered the fractional intersection between low (off)
and high (on) output states (Figure 3b).

To experimentally verify the benefit of increasing the sRNA transcription rate, we built
a complementary sRNA booster plasmid that contained a high-copy pColE1 origin of
replication (50—70 copies per cell) ** and expressed the tuner sRNA from a strong viral P17
promoter (Figure 3c) *°. Transcription from Pz requires T7 RNA polymerase (T7RNAP). This
is provided by our host strain E. coli BL21 Star (DE3), which has the T7RNAP gene under the
control of an IPTG inducible Pcuvs promoter within its genome (Figure 3c) ¥. Using IPTG,
induction of the tuner P:c promoter in our devices leads to simultaneous expression of T7
RNAP from the host genome and transcription of additional tuner sRNA from the booster
plasmid (Figure 3c). As the tunable devices are encoded on a plasmid with a p15A origin of
replication (~15 copies per cell; Supplementary Figure 3) **, we would expect that a five
times higher tuner sRNA concentration is reached when the sRNA booster is present.

Cells were co-transformed with each tunable genetic device and sRNA booster
plasmid, and their response functions measured (Figures 3D and 3E). As predicted by the
modelling, the TES performance improved with more than a doubling in the fold-change
across all tuner promoter activities and a >40% drop in the intersection between low and high
output YFP fluorescence distributions (Table 1). For the tunable NOT gate only minor
differences in performance were seen with mostly small decreases in fold-change for high

tuner promoter activities.

Self-cleaving ribozymes impact toehold switch function

In our initial designs, a RiboJ self-cleaving ribozyme was included in the TES and NOT gate
to insulate the translation of the yfp or phlF genes, respectively, from different 5’ untranslated
region (UTR) sequences that might be generated when using different promoters as an input
(Figures 1a, 2a) *°. Any variable UTR sequences would be cleaved at the RiboJ site to
produce a standardized mRNA with more consistent degradation and translation rates.

Unfortunately, because RiboJ contains a number of strong secondary RNA structures 3940, it

8
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is possible that the 23 nt hairpin at the 3’-end impacts the ability for the sRNA to interact with
the THS, reducing the hybridization rate (Figure 4a).

To assess whether the RibodJ insulator might affect the stability of secondary structures
that are crucial to the TES’s function, we performed thermodynamic modelling of the binding
between the THS mRNA and the tuner sRNA for variants of the TES design with and without
Ribod present (Methods). Simulations predicted a 40% drop in Gibbs free energy of the
reactants when RiboJ was removed (-40.5 kcal/mol with versus —65 kcal/mol without RiboJ;
Figure 4b). This suggests that binding between sRNAs and the THS may be hampered by
interactions with the RibodJ insulator, lowering the effective translation initiation rate of the RBS
controlled by the THS and subsequently the performance of the devices.

To experimentally test these predictions, non-insulated variants of the TES and tunable
NOT gate were constructed in which RiboJ was removed. Characterization of these devices
showed major improvements in overall performance (Figures 4c and 4d). The TES saw more
than a doubling in the dynamic range and a 10-fold increase in the fold-change between on
and off states across low and high tuner activity levels (Table 1). In addition, the fraction of
intersection of the output YFP fluorescence distributions dropped by >50%. The tunable NOT
gate saw more modest improvements with a 73% increase in the fold-change at high tuner
activity levels, but an overall drop of 66% in the range of transition points (K values) that could
be achieved (Table 1). These results highlight an important consideration often ignored. When
using RNA-based devices that require the proper formation of secondary structures, care must
be taken to ensure multiple parts do not interfere with each other, leading to cryptic failure
modes.

Another counterintuitive change in the TES'’s response function after RiboJ removal
was the large drop in output YFP fluorescence from 26 to 3 arbitrary units (a.u.) when no input
or tuner was present (Figure 4c). Similar drops of between 4- and 11-fold were also seen for
higher tuner promoter activities. Given that binding of a tuner sRNA to the THS mRNA should
be less hampered when RiboJ is absent, an increase not decrease in output protein production
would be expected. A possible explanation is that the stability of the THS mRNA decreased
after Ribod was removed. This is supported by recent results that have shown the RiboJ
insulator both stabilizes its mMRNA and also boosts the translation initiation rate of a nearby
downstream RBS *'. The precise mechanisms for this are not well understood but it is thought
that the structural aspect of the RiboJ at the 5-end of an mRNA inhibits degradation by
exonucleases, whilst the hairpin at the 3’-end exposes the nearby RBS by reducing the chance
of unwanted secondary structure formation 3°4°.

Finally, we combined the non-insulated designs with the sSRNA booster plasmid to see
whether further improvements could be made (Table 1). For the TES, we found that the

dynamic range had plateaued, with only moderate increases at low tuner promoter activities.
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In contrast, the fold-change between low and high outputs more than doubled across tuner
promoter activities when compared to the non-insulated design, and a further drop of >18%
was seen in the fractional intersection between the YFP fluorescence distributions for these
output states. The tunable NOT gate showed minor decreases in performance for many of the
measures (Table 1). However, the inclusion of the sSRNA booster likely increased overall PhIF
concentrations as the transition points from an on to off state shifted far below what had been
seen for all other designs. This would make this specific design of value for uses where a

weak input signal needs to be inverted and amplified simultaneously.

Towards complex tunable logic
To create larger genetic circuits that implement complex logic, it is vital that a sufficiently
diverse set of logic gates are available for use. Because a NOT gate alone has limited
capabilities, we further modified its design to create a tunable 2-input NOR gate "?’. The output
of a NOR gate is on only when both inputs are off (Figure 5b) and crucially this type of gate
is functionally complete (i.e. any combinatorial logic function can be implemented using NOR
gates alone). In our new device, we added a further inducible input promoter, Pgap, directly
before the existing Pt input promoter, and included the associated sensor system (araC gene)
to allow activity of the Psap promoter to be controlled by the concentration of L-Arabinose (Ara)
(Figure 5a). Our modifications were made to the original NOT gate design that included the
RiboJ insulator because this produced the largest tunable range for the on to off transition
point.

To assess the function of the tunable NOR gate, the activities of both input promoters
Peap and Py, and the tuner promoter P.c were varied by culturing cells harboring the device
in different concentrations of Ara, aTc and IPTG, respectively (Methods). The two-
dimensional response functions (Figure 5c¢) showed that NOR logic was successfully
implemented and that the transition point from low to high output for both inputs was
simultaneously shifted to lower input promoter activities when the tuner promoter was highly
active (Figure 5c, right panel). Considering each input promoter separately, the transition
point between on and off states shifting by 16- and 6-fold for Psap and Pt:, respectively.

Unlike the NOT gate, even at high tuner promoter activities, the dynamic range was
better maintained, dropping at most 35%, and the fold-change between on and off states
remained above 4- and 8-fold for low and high tuner promoter activities, respectively
(Supplementary Table 3). Furthermore, the improved separation of these states leads to
smaller intersections in the output YFP distributions compared to the NOT gate. This was
especially evident when comparing NOR gate states where both input promoters were

simultaneously on or off with only a ~5% intersection observed (Supplementary Table 3).
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The cause of this improvement is not clear but may relate to the Pgap promoter
insulating expression of the phlF gene from transcriptional read-through originating from the
tuner sRNA transcription unit that is located directly upstream in the DNA (Supplementary
Figure 3). Without this insulating effect, read-through would cause elevated expression of
PhIF, even when the input promoters are off, and potentially lead to a partial switch in the
output when the tuner promoter is active (as seen for the original NOT gate, Figure 2b). Such
a mechanism could also account for the elevated output levels for the TES when the input

promoter was off and the tuner promoter activity increased (Figure 1c).

Discussion

In this work, we developed a new class of genetic device whose response function can be
dynamically tuned. This was achieved by constructing a TES to separately control the
transcription and translation rate of a gene. We demonstrate how the TES can be used to shift
the on and off output states of a sensor by 4.5- and 28-fold, respectively (Figure 1) and
incorporated into NOT and NOR gates to alter their transition point between on and off output
states over a >6-fold range (Figure 2). Unfortunately, the performance of the tunable devices
varied for differing tuner inputs, leading to a trade-off between performance and the level of
tuning required. Mathematical modelling revealed: 1. the importance of ensuring sufficient
tuner sRNA is present to fully activate the THS (Figure 3), and 2. the presence of possible
detrimental interactions between a self-cleaving ribosome and the THS (Figure 4). Modified
designs addressing these concerns showed improved performance for the TES, but only
minor improvements in the fold-change of the tunable NOT gate when the self-cleaving
ribozyme was removed (Table 1). In contrast, the NOR gate behaved more consistently
across tuner activity levels and displayed better separation of on and off states. To the best of
our knowledge the simultaneous control of transcription and translation to tune the response
function of a genetic device is original, making this work a valuable resource for others to build
on. Furthermore, unlike other attempts at tuning the response of devices through mutation of
protein components to alter catalytic rates *?, our method allows for dynamic changes to a
response function using simple to control transcriptional signals.

A difficulty when using THSs to regulate gene expression is that high concentrations
of sSRNA are required to achieve a strong enough activation of mRNA translation. This stems
from the regulatory mechanism which relies on base-pairing of the sSRNA to THS, placing limits
on the binding affinity that can be achieved. A possible means of increasing the affinity
between these species would be to exploit RNA chaperones such as Hfg “***. In prokaryotes,
sRNAs that associate with Hfq play a variety of roles from inhibiting and activating translation,

to affecting the stability of a target mMRNA . In some cases, these effects are significant; it
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has been shown in vitro that Hfq increases by 30- to 50-fold the binding affinity of the DsrA

sRNA to the leader of the rpoS mRNA “8. Designing de novo sRNA that bind to Hfq to increase

4 44

their affinity to a target mMRNA has been shown for both activation ** and inhibition ** of
translation initiation. In both cases, Hfq binding a scaffold from an endogenous gene (e.g.
micC) which is fused with a targeting sequence (e.g. that found on the sRNA). This approach
could be employed in future TES designs. In fact, previous work that used Hfgq associated
sRNAs to implement a metabolically cheap negative feedback control loop created a useful
repressive tuning element that could be directly used in our system*. By combining the
findings from that study with ours and incorporating recent improvements in THS design , it
should be possible to make further strides towards high-performance tunable genetic devices.

An interesting future direction opened up by the adaptive nature of our devices is the
possibility to incorporate many of them into large circuits. This would allow multiple parts of a
circuit to be tuned simultaneously to maximize component compatibility and optimize system
behavior. Unlike a typical design-build-test cycle that requires the reassembly of a genetic
circuit if malfunctions are detected, this work supports a design-build-test-tune cycle where
costly reassembly can be avoided. Rather than reassembling a circuit, parts can instead be
dynamically tuned until they work correctly in unison. In this context, applying sensitivity
analysis during circuit design would allow us to identify specific components where even small
deviations in behavior would adversely impact overall circuit function *°. These would be ideal
candidates to be encoded using tunable devices to allow for tweaking at these critical points.

The additional tuner inputs in our devices raise some practical challenges. Systems
composed of numerous tunable devices will require a large number of tuner inputs to be
controlled simultaneously. If external signals are to be used then a unique sensor is required
for each tuner input, as well as the capability to be able to control the environment to provide
the correct set of input signals over time. Although the range of small molecule ?° and light

based 4250

sensing systems has grown over recent years, the ability to control many
environmental factors (e.g. small molecule concentrations) simultaneously remains difficult.
However, external control is not the only way to tune the behavior of these devices. The use
of promoters as inputs allows them to be controlled by connecting them directly to the many
transcriptional signals used natively in a cell. This offers the advantage of tapping into the cells
innate capacity to sense and respond to its environment. Alternatively, if an adaptive circuit is
not required, sensors controlling the tuning inputs could be replaced once a working
configuration is found with constitutive promoters of an identical strength. This would reduce
the reassembly required to a single step once the correct combination of tuning inputs is found.

When designing our tunable devices, we observed deviations between the

30,31

experimental and modelled responses. This may be due to retroactivity , Where expression

of the output reporter protein places a significant burden on the host cell (Supplementary
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Note 2). Recently, there has been increased interest in the role of burden 5! and attempts
made to mitigate its effect ®2. One approach has been to implement resource allocation
schemes based on split exogenous RNAPs 3. This limits the maximum burden a circuit can
impose by providing fixed size pools of transcriptional resources that are orthogonal to the
endogenous ones. Because our devices can have their response dynamically tuned, they
could be used to boost the expression of downstream components to mitigate retroactivity
effects or even be used to cap to maximum levels of resource that can be used by a circuit.
For synthetic biology to have a broad impact outside of the carefully controlled
conditions of a lab, it is vital that we are able to build adaptive genetic circuits that are able to
maintain their functionality when exposed to unexpected environmental changes or shifts in
host cell physiology **. By combining advances in biological control engineering *2°*%® with
the tunable genetic devices developed in this work, bioengineers have a complementary set

of tools capable of taking steps towards this goal.

Methods

Strains and media

Cloning was performed using Escherichia coli strain DH5-a (F~ endA1 ginV44 thi-1 recA1
relA1 gyrA96 deoR nupG purB20 ¢80d/lacZAM15 A(lacZYA-argF)U169, hsdR17(r mk™), A7)
(New England Biolabs, C2987I). Device characterization was performed using BL21 Star
(DE3) (F-ompT hsdSs (rs”, me~) gal dcm rne-131 [DE3]) (Thermo Fisher Scientific, C601003).
For cloning, cells were grown in LB Miller broth (Sigma-Aldrich, L3522). For device
characterization, cells were grown in M9 minimal media supplemented with glucose containing
M9 salts (6.78 g/L Na:HPOs, 3 g/L KH2POs4, 1 g/L NH4CI, 0.5 g/L NaCl) (Sigma-Aldrich,
M6030), 0.34 g/L thiamine hydrochloride (Sigma T4625), 0.4% D-glucose (Sigma-Aldrich,
G7528), 0.2% casamino acids (Acros, AC61204-5000), 2 mM MgSO. (Acros, 213115000),
and 0.1 mM CaCl; (Sigma-Aldrich, C8106). Antibiotic selection was performed using 50 pg/mL
kanamycin (Sigma-Aldrich, K1637) or 50 mg/mL spectinomycin (Santa Cruz Biotechnology,
sc-203279). Induction of sensor systems was performed using anhydrotetracycline (aTc)
(Sigma-Alrdich, 37919), isopropyl 3-D-1-thiogalactopyranoside (IPTG) (Sigma-Aldrich, 16758)
and L-Arabinose (Ara) (Sigma-Aldrich, A3256).

Genetic device synthesis and assembly

Plasmids containing the TES (pVB001) and tunable NOT gate devices (pVB002) were
constructed by a combination of gene synthesis (GeneArt, Thermo Fisher Scientific) and PCR
of existing plasmids to generate linear fragments with regions of homology between

subsequent parts. Gibson assembly (New England Biolabs, E2611S) was then used to
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assemble these into the final plasmids. Supplementary Table 4 provides details of the
synthesized DNA fragments (TES-P1 and TES-P2), and Supplementary Table 5 provides
details of the primers and their templates used to generate all linear fragment for each plasmid
design. Removal of RiboJ from the TES (pVB001) and NOT gate (pVB002) was achieved by
PCR of the relevant design using primers F_RiboJ_Rem and R_RiboJ_Rem (Supplementary
Table 5) and subsequent circularization by standard Golden Gate assembly (New England
Biolabs, E1601S) to create the plasmids pVB003 and pVB004, respectively. The plasmid used
to boost tuner sRNA levels (pVB005) was fully synthesized (GeneArt, Thermo Fisher
Scientific). The plasmid containing the tunable NOR gate device (pVB006) was constructed
by first PCR amplification of the pAN1720 plasmid (without the /lacZa region normally used for
blue/white screening) using primers containing an EcoRI restriction site at the 5’-end and a
Notl restriction site at the 3’-end (F_pAN1720_EcoRI and R_pAN1720_Notl; Supplementary
Table 5). The tunable NOR gate DNA insert was synthesized in three parts, NOR-P1, NOR-
P2 and NOR-P3 (Integrated DNA Technologies), which were then assembled using a
standard Golden Gate assembly method (New England Biolabs, E1601S) to create a full-
length linear insert. This was designed to contain complementary EcoRI and Notl restriction
sites to the amplified pAN1720 fragment. Both linear DNA fragments were finally used in a
standard restriction digest using EcoRI (New England Biolabs, R3101) and Notl (New England
Biolabs, R3189), and then a ligation reaction (New England Biolabs, M0202S) used to
assemble the complete pVB006 plasmid. All plasmids were sequence verified by Sanger
sequencing (Eurofins Genomics). Annotated plasmid maps of all devices are provided in

Supplementary Figure 3 and Supplementary Data 2.

Genetic device characterization

Single colonies of cells transformed with the appropriate genetic constructs were inoculated
in 200 yL M9 media supplemented with glucose and necessary antibiotics for selection in a
96-well microtiter plate (Thermo Fisher Scientific, 249952) and grown for 16 hours in a shaking
incubator (Stuart, S1505) at 37 °C and 1250 rpm. Following this, cultures were diluted 9:1600
(15 pL into 185 L, with 15 pL of this dilution loaded into 185 pL) in glucose supplemented M9
media with necessary antibiotics for selection and grown for 3 hours at the same conditions.
Next, the cultures were diluted 1:45 (10 pL into 140 pL) into supplemented M9 media with
necessary antibiotics for selection and any required inducers in a new 96-well microtiter plate
(Thermo Fisher Scientific, 249952) and grown at 37 °C and 1250 rpm for 5 hours. Finally, the
cells were diluted 1:10 (10 pL into 90 pL) in phosphate-buffered saline (PBS) (Gibco,18912-
014) containing 2 mg/mL kanamycin to halt protein translation and incubated at room

temperature for 1 hour to allow for maturation of the YFP before performing flow cytometry.
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Flow cytometry

YFP fluorescence of individual cells was measured using an Acea Biosciences NovoCyte
3000 flow cytometer equipped with a NovoSampler to allow for automated collection from 96-
well microtiter plates. Data was collected using the NovoExpress software. Cells were excited
using a 488 nm laser and measurements were taken using a 530 nm detector. A flow rate of
40 pL/min was used to collect at least 10° cells for all measured conditions. Automated gating
of events using the forward (FSC-A) and side scatter (SSC-A) channels was performed for all
data using the FlowCal Python package version 1.2 * and the density2d function with
parameters: channels = ['[FSC-A’, ‘SSC-A’], bins = 1024, gate_fraction = 0.5, xscale = ‘logicle’,
yscale = ‘logicle’, and sigma = 10.0. A demonstration of this automated approach is shown in

Supplementary Figure 4.

Autofluorescence correction

To measure YFP fluorescence from our constructs it was necessary to correct for the
autofluorescence of cells. An autofluorescence control strain containing the pAN1201 plasmid
’, which does not express YFP but contains the same backbone as our genetic devices, was
measured using flow cytometry under the same culturing conditions as for characterization.
Measurements were taken from three biological replicates and an average of the medians of
the gated distributions was subtracted from the gated YFP fluorescence flow cytometry data

of the characterized devices, as in previous work .

Characterization of sensor systems

To allow for inputs to our devices to be controlled in standardized relative promoter units
(RPUs) " calibration curves for the two sensor systems were generated to enable a
conversion between a chemical inducer concentration and the relative promoter activity of
each sensors’ output promoter (P and Pi). Cells transformed with plasmids pAN1718 and
PAN1719 for P and Pier, respectively, and the pAN1717 RPU standard 7, were cultured in
the same way as the characterization experiments. Flow cytometry was used to measure YFP
fluorescence which was further corrected for cell autofluorescence. RPU values were then
calculated by dividing the YFP output from the sensor by the YFP output from the RPU

standard and a Hill function fitted to the resultant data (Supplementary Figure 1).
Quantifying histogram intersections

The fraction of intersection H between two histograms (e.g. flow cytometry fluorescence

distributions), x and y, was calculated using,
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Heny) = Ti, ™o, (1

Xi
Here, histograms x and y are divided into n bins that correspond to identical ranges of values

for each, with x; and y; denoting the value of bin i for histogram x or y, respectively.

Predicting RNA binding and secondary structure

To predict the binding and secondary structure of the THS and tuner sRNA (Figure 3),
thermodynamic modelling was performed using the NUPACK web application °'. All
simulations were run using the parameters: nucleic acid = RNA, temperature = 37 °C and the
concentration of THS mRNA was set to 5 x 10™* yM. The switch sequence mRNA and the
switch sequence mRNA with an upstream cleaved RiboJ were simulated independently with
additional parameters strand species = 1 and a maximum complex size = 1. The THS mRNA
with and without an upstream RiboJ sequence where also simulated in the presence of trigger
sRNA set to a concentration of 7 x 10~° uM with additional parameters: strand species = 1 and

a maximum complex size = 1. Full sequences are given in Supplementary Table 2.

Computational analyses and data fitting

All general computational analyses and plotting were performed using Python version 3.6.6,
NumPy version 1.16, Pandas version 0.24 and matplotlib version 3.1. Response functions for
the TES designs were generated by fitting median values of YFP fluorescence from flow

cytometry data to a Hill function of the form

Y = Ymin + (Vmax ~ Ymin) K,f—:xn (2)
where y is the output YFP fluorescence (in arbitrary units), ymin and ymax are the minimum and
maximum output YFP fluorescence (in arbitrary units), respectively, K is the input promoter
activity (in RPU units) at which the output is halfway between its minimum and maximum, n is
the Hill coefficient, and x is the input promoter activity (in RPU units). Response functions for

the tunable NOT gates were generated in a similar way using a Hill function of the form

n

K
Y = Ymin + Qmax — Ymin) K (3)
Fitting of data was performed using non-linear least squares and the curve_fit function from

the SciPy.integrate Python package version 1.1.

Numerical simulation

The deterministic ODE model (Supplementary Note 1) was simulated using the odeint
function of the SciPy.integrate Python package version 1.1 with default parameters. The delay
differential equations (Supplementary Note 2) were simulated using the DifferentialEquations

module version 6.10 using the Bogacki-Shampine 3/2 method running in Julia version 1.3.

16


https://doi.org/10.1101/711275
http://creativecommons.org/licenses/by-nd/4.0/

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

bioRxiv preprint doi: https://doi.org/10.1101/711275. The copyright holder for this preprint (which was not peer-reviewed) is the
author/funder. It is made available under a CC-BY-ND 4.0 International license.

Stochastic simulations of the biochemical model (Supplementary Note 1) were performed
using the tau-leap method in COPASI version 4.24 with the following settings: number of
iterations (simulations) = 4000, duration = 100 min, interval size = 1 min, number of intervals
= 100 and the starting in steady state option selected. Initial steady-state conditions for the

simulation are calculated automatically by COPASI using a damped Newton method.

Visualization of genetic designs
All genetic diagrams are shown using Synthetic Biology Open Language Visual (SBOL Visual)
63,64

notation ®2. SBOL Visual diagrams were generated using the DNAplotlib Python package

version 1.0 which were then annotated and composed with OmniGraffle version 7.9.2.

Data availability

Systems Biology Markup Language (SBML) file implementing a model of the TES can be
found in Supplementary Data 1. Annotated sequence files in GenBank format for all plasmids
are available in Supplementary Data 2. All plasmids are available from Addgene (#127185—
127189, 140327). Flow cytometry data is available from the authors upon request.
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Figure 1: Design and characterization of a tunable expression system (TES). (a)
Schematic of the TES (top) and genetic implementation using a THS (variant 20) % to regulate
translation initiation rate of an output protein (bottom, dashed box). Yellow fluorescent protein
(YFP) is used as the output and T1 and T2 correspond to the transcriptional terminators
L3S3P11 and L3S2P21, respectively ®. (b) Genetic design of the sensor modules used to
drive the main and tuner inputs to the TES. (c) Experimentally measured response functions
for the TES. Points denote the average of three biological replicates and error bars show +1
standard deviation. Each line shows a fitted Hill function for a fixed tuner input (color scale
light—dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU). (d) Flow cytometry distributions of output
YFP fluorescence when the tuner promoter activity is low (bottom; 0.002 RPU) and high (top;
2.6 RPU). Black outlined distributions correspond to a high input promoter activity (6.6 RPU)
and the filled red distributions to a low input promoter activity (0.002 RPU). Cell
autofluorescence is shown by the dashed grey line. (e) Fraction of intersection between YFP
fluorescence distributions for low (0.002 RPU) and high (6.6 RPU) inputs across varying tuner
promoter activities. Points denote the average of three biological replicates and error bars
show +1 standard deviation. (f) Response functions from a deterministic model of the TES
(Supplementary Note 1). Output shown as the steady state protein level. Line color
corresponds to the promoter activity of the tuner input (light—dark: 0.0001, 0.06, 0.3, 1.5, 7.6,
38, 190 RNAP/min). (g) Comparison of the output for high (filled circles; 6.6 RPU) and low
(unfilled circles; 0.002 RPU) inputs across a range of tuner promoter activities (Experiment:
0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU; Model: 0.0001, 0.3, 1.5, 7.6, 38, 190 RNAP/min).
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Figure 2: Design and characterization of a tunable NOT gate. (a) Schematic of the tunable
NOT gate (top) and genetic implementation embedding the TES (bottom, dashed box). Yellow
fluorescent protein (YFP) expression is driven by the output promoter and T1 and T3
correspond to the transcriptional terminators L3S3P11 and ECK120033737, respectively %
(b) Experimentally measured response functions of the tunable NOT gate. Points denote the
average of three biological replicates and error bars show +1 standard deviation. Each line
shows a fitted Hill function for a fixed tuner input (color scale light—dark: 0.002, 0.03, 0.15,
0.43, 0.9, 2.6 RPU). (c) Flow cytometry distributions of the output YFP fluorescence from the
tunable NOT gate when the tuner promoter activity is low (bottom; 0.002 RPU) and high (top;
2.6 RPU). Black outlined distributions correspond to a high input promoter activity (1.5 RPU)
and the filled blue distributions to a low input promoter activity (0.002 RPU). (d) Comparison
of the switching point (K value) for each repressor-based NOT gate from Cello 7 (black circles)
to the range achievable by the tunable NOT gate (red crosses and shaded regions). (e)
Fraction of intersection between output YFP fluorescence distributions for low (0.002 RPU)
and high (1.5 RPU) inputs across varying tuner promoter activities. Points denote the average
of three biological replicates and error bars show +1 standard deviation. (f) Fold-change in the
median output YFP fluorescence between low (0.002 RPU) and high (1.5 RPU) inputs across
varying tuner promoter activities. Points denote the average of three biological replicates and

error bars show *1 standard deviation.
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Figure 3: Increasing tuner sRNA transcription rate to improve device performance. (a)
Results of deterministic simulations of the TES model (Supplementary Note 1) showing
steady state protein output and THS mRNA to tuner sRNA ratio for a range of input and tuner
promoter activities. Tuner promoter activities are shown in bands between (light-dark) 0.0001,
0.0005, 0.0024, 0.012, 0.056, 0.27, 1.3, 6.4, 31, 150 and 730 RNAP/min, respectively. (b)
Stochastic simulation of the TES model (n = 4000) for low (1 RNAP/min; grey) and high (1.5
RNAP/min; green) input promoter activity. Top and bottom panels correspond to low (1.5
RNAP/min) and high (5 RNAP/min) tuner promoter activities, respectively. (¢) Genetic design
of the sRNA booster. The T7RNAP gene is encoded in the host genome and an additional
plasmid contains a tuner sRNA expression unit. (d) Experimentally measured response
functions (left) and flow cytometry distributions of the YFP fluorescence output (right) for the
TES with the sRNA booster present. (e) Experimentally measured response functions (left)
and flow cytometry distributions of the YFP fluorescence output (right) for the tunable NOT
gate with the sRNA booster present. Points in all response functions denote the average of
three biological replicates and error bars show +1 standard deviation. Each line shows a fitted
Hill function for a fixed tuner input (color scale light-dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6
RPU). All flow cytometry distributions are shown for low (bottom; 0.002 RPU) and high (top;
2.6 RPU) tuner promoter activity. Black outlined distributions correspond to a high input
promoter activity (6.6 RPU for the TES and 1.5 RPU for the NOT gate) and filled red/blue
distributions to a low input promoter activity (0.002 RPU). Cell autofluorescence is shown by

the dashed grey line.
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Figure 4: Self-cleaving ribozyme insulators affect tunable device performance. (a)
Original designs of both the TES and tunable NOT gate include a RiboJ insulating element,
which can potentially interfere with binding of the tuner sRNA to the THS. (b) RNA secondary
structure predictions for THS mRNA alone and with a complimentary tuner sRNA bound.
Separate structures shown when the RiboJ insulating element is present (left) and absent
(right). (c) Experimentally measured response functions (left) and flow cytometry distributions
of the output YFP fluorescence (right) for the TES with the RiboJ insulator removed. (d)
Experimentally measured response functions (left) and flow cytometry distributions of the YFP
fluorescence output (right) for the tunable NOT gate with the RiboJ insulator removed. Points
in all response functions denote the average of three biological replicates and error bars show
11 standard deviation. Each line shows a fitted Hill function for a fixed tuner input (color scale
light—dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU). All flow cytometry distributions are shown
for low (bottom; 0.002 RPU) and high (top; 2.6 RPU) tuner promoter activity. Black outlined
distributions correspond to a high input promoter activity (6.6 RPU for the TES and 1.5 RPU
for the NOT gate) and filled red/blue distributions to a low input promoter activity (0.002 RPU).

Cell autofluorescence is shown by the dashed grey line.
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Figure 5: Design and characterization of a tunable NOR gate. (a) Schematic of all the
sensor systems used (top, left), the tunable NOR gate (top, right), and their genetic
implementation (bottom, dashed boxes). Yellow fluorescent protein (YFP) expression is driven
by the output promoter and T1 and T3 correspond to the transcriptional terminators L3S3P11
and ECK120033737, respectively %. (b) Function of a 2-input NOR gate. (c) Heatmaps
showing the output of the tunable NOR gate for varying input promoter activities (Input A —
Pgap: 0.008, 0.003, 0.15, 0.5, 2.5, 3.1 RPU; Input B — P+ 0.05, 0.5, 1.6, 3.1, 6.4, 7.5 RPU)
and for low (left) and high (right) tuner promoter activities. Output promoter activities shown
are average values calculated from flow cytometry data for three biological replicates. White
dashed line shows an output of 1.2 RPU and denotes the transition point from a high to low
output. (d) Flow cytometry distributions of the output YFP fluorescence for tuner promoter
activities of 0.002 RPU (bottom) and 2.6 RPU (top). The four distributions correspond to

combinations of the absence and presence of L-Arabinose (10 mM) and aTc (50 ng/mL).
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Tables

Table 1: Performance summary of TES and tunable NOT gate.

Dynamic range (a.u.) | Fold-change Intersection
Device | Design Low High Low | High | Low High | Krange (RPU)
TES Original 333+ 877 + 14+| 24+ | 078+ | 0.69% -
53 695 1.7 1.2 0.06 0.16
sRNA 538 + 2064+ | 227+ | 57+ | 046+ | 035+ -
booster 51 1070 297 1.8 0.04 0.15
Non- 882 + 2149+ | 445+ | 31+ | 026+ | 027 -
insulated 134 409 412 16 0.07 0.06
Combined 1550 + 1712+ | 1236 | 66+ | 015+ | 0.22+ -
209 584 | +613 54 0.04 0.04
NOT Original 17280 + 3512+ | 6.0%+| 1.5+| 019+ | 0.84 0.01-0.07
gate 1273 286 0.1 0.1 0.04 0.02
sRNA 22040 2170+ | 58+ | 09| 013+ | 0.85% 0.01-0.06
booster 1601 654 0.3 0.3 0.07 0.02
Non- 17466 + 4061+ | 68| 26+ | 011+| 056+ 0.02-0.04
insulated 1926 827 0.3 04 0.03 0.08
Combined | 27751 2383+ | 6.0+ 09| 008+ | 090+ 0.003-0.02
3104 165 0.6 0.1 0.05 0.03

Average values are shown * 1 standard deviation calculated from flow cytometry data for three
biological replicates. The low and high columns correspond to experiments when the tuner promoter
activity is 0.002 RPU and 2.61 RPU, respectively. Dynamic range is calculated as the absolute
difference in YFP fluorescence between on and off inputs states. The on and off input states correspond
to input promoter activities of 6.6 RPU and 0.002 RPU for the TES, and 1.5 RPU and 0.002 RPU for
the NOT gate, respectively. Fold-change is calculated for YFP fluorescence between on and off input
states. Intersection is calculated as the fractional overlap between distributions for on and off input
states. The K range gives the span of K values from Hill functions fitted to experimental data. The
designs are as follows: original designs are the initial constructs (Figures 1a and 2a), sRNA booster
designs include the additional sSRNA booster plasmid (Figure 3c), the non-insulated designs have the
RiboJ element removed (Figure 4), and the combined designs have both RiboJ removed and the sRNA

booster plasmid present.
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