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Abstract 1 

Synthetic genetic circuits allow us to modify the behavior of living cells. However, changes in 2 

environmental conditions and unforeseen interactions with the host cell can cause deviations 3 

from a desired function, resulting in the need for time-consuming reassembly to fix these 4 

issues. Here, we use a regulatory motif that controls transcription and translation to create 5 

genetic devices whose response functions can be dynamically tuned. This allows us, after 6 

construction, to shift the on and off states of a sensor by 4.5- and 28-fold, respectively, and 7 

modify genetic NOT and NOR logic gates to allow their transitions between states to be varied 8 

over a >6-fold range. In all cases, tuning leads to trade-offs in the fold-change and the ability 9 

to distinguish cellular states. This work lays the foundation for adaptive genetic circuits that 10 

can be tuned after their physical assembly to maintain functionality across diverse 11 

environments and design contexts.  12 
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Introduction 13 

Genetic regulatory circuits govern when and where genes are expressed in cells and control 14 

core biochemical processes like transcription and translation 1,2. The ability to synthesize DNA 15 

encoding engineered genetic circuits offers a means to expand the capabilities of a cell and 16 

reprogram its behavior 1,3. Synthetic genetic circuits have been built to implement 17 

computational operations 4–10, dynamic behaviors 11,12, and even coordinate multicellular 18 

actions 13–15.  19 

 The task of reprograming living cells is simplified by employing genetically encoded 20 

devices that use common input and output signals 1,2,7,8. This allows the output of one device 21 

to be connected to the input of another to create circuits implementing more complex 22 

functionalities. Signals can take many forms, but one of the most commonly used is RNA 23 

polymerase (RNAP) flux whereby promoters are used to guide this signal to specific points in 24 

a circuit’s DNA 7,16. The response function of a genetic device captures how input signals map 25 

to output signals at steady state 1,7,16. By ensuring the response functions of two devices are 26 

compatible, i.e. the range of the output from the first device spans the necessary range of 27 

inputs for the second device, larger circuits with desired functions can be constructed 17. 28 

Matching of components is vital in circuits where devices exhibit switching behaviors (e.g. 29 

Boolean logic) to ensure input signals are sufficiently separated to trigger required transitions 30 

between on and off states as signals propagate through the circuit. 31 

Although the use of characterized genetic devices has enabled the automated design 32 

of large circuits 7,18, they are often sensitive to many factors. Differences in host physiology 19–33 

21 and interactions between genetic parts and the host cell 22–26 can all affect the response 34 

function of a device and subsequently its compatibility within a circuit. This makes the creation 35 

of robust genetic circuits a challenge. Even when considering controlled lab conditions, a 36 

genetic circuit often needs to be reassembled from scratch multiple times until a working 37 

combination of parts is found. This is time consuming and costly, and often has to be repeated 38 

if the circuit is deployed into slightly different conditions or host strains. 39 

In this work, we tackle this problem by developing genetic devices whose response 40 

functions can be dynamically tuned after circuit assembly to correct for unwanted changes in 41 

their behavior. The ability to tune/modify the steady state input-output relationship is achieved 42 

by employing a simple regulatory motif. We show how this motif can be connected to small 43 

molecule sensors to characterize its function and then illustrate its use in practice by 44 

integrating it into genetic NOT and NOR logic gates 27 to tune their transition points between 45 

on and off states. These capabilities make the devices more broadly compatible with other 46 

components 1,7,17, but their use comes at a cost. As we tune each device, a decrease in the 47 

dynamic range is observed and it becomes more difficult to differentiate cellular states due to 48 
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variability in gene expression across a population. Mathematical modelling is used to help us 49 

better understand these limitations and derive design principles to further optimize device 50 

designs. This work is a step towards adaptive genetic circuitry where individual components 51 

tune their function to ensure robust system-level behaviors are maintained no matter the 52 

genetic, cellular or environmental context. 53 

 54 

Results 55 

Constructing a tunable expression system  56 

To allow for the response of a genetic device to be dynamically modified, we developed a 57 

tunable expression system (TES) based on a simple regulatory motif where two separate 58 

promoters control the transcription (TX) and translation (TL) rates of a gene of interest (Figure 59 

1a). By using promoters as control inputs, it is possible to easily connect a TES to existing 60 

genetic components/circuitry or even endogenous transcriptional signals within a cell. The 61 

TES contains a toehold switch (THS) that enables the translation initiation rate of the gene of 62 

interest to be varied by the relative concentration of a tuner small RNA (sRNA) 6,28. The main 63 

component of the THS is a 92 bp DNA sequence that encodes a structural region and a 64 

ribosome binding site (RBS) used to drive translation of a downstream protein coding region. 65 

This is expressed from a promoter that acts as the main input to the TES (Figure 1a). When 66 

transcribed, the structural region of the THS mRNA folds to form a hairpin loop secondary 67 

structure that hampers ribosome accessibility to the RBS and reduces its translation initiation 68 

rate. This structure is disrupted by a second component, a 65 nt tuner sRNA that is 69 

complementary to the first 30 nt of the THS 28. The tuner sRNA is expressed from a second 70 

promoter, which acts as a tuner input to the device (Figure 1a). Complementarity between the 71 

tuner sRNA and a short unstructured region of the THS enables initial binding, making it 72 

thermodynamically favorable for the sRNA to unfold the secondary structure of the THS 73 

through a branch migration process. This makes the RBS more accessible to ribosomes, 74 

which increases the translation initiation rate. Relative concentrations of the THS mRNA and 75 

tuner sRNA (controlled by the input and tuner promoters) enable the rate of translation 76 

initiation to be varied over a 100-fold range for the THS design (variant 20) we selected 28 77 

(Methods). However, THS designs exist which allow for up to a 400-fold change in translation 78 

initiation rates 6,28. We selected as main and tuner inputs for the TES the output promoters of 79 

two sensors, Ptet and Ptac, that respond to anhydrotetracycline (aTc) and isopropyl β-D-1-80 

thiogalactopyranoside (IPTG), respectively (Figure 1b). Yellow fluorescent protein (YFP) was 81 

used as the output (Figure 1b) to allow us to measure the rate of protein production in single 82 

cells using flow cytometry.   83 
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Characterization of the device was performed in Escherichia coli cells grown in 84 

different concentrations of aTc (input) and IPTG (tuner). Steady state fluorescence 85 

measurements were taken using flow cytometry and promoter activities of the main and tuner 86 

inputs were measured in relative promoter units (RPUs) to allow for direct comparisons 87 

(Methods; Supplementary Figure 1). A further advantage of characterizing our devices in 88 

RPUs is that the data becomes compatible with genetic design automation software like Cello 89 

7, allowing our parts to be interfaced with a large library of sensors and logic gates27,29. 90 

For a fixed tuner promoter activity, we observed a sigmoidal increase in output YFP 91 

fluorescence as the input promoter activity increased from 0.002 to 6.6 RPU (Figure 1c). As 92 

the activity of the tuner promoter increased from 0.002 to 2.6 RPU, the entire response 93 

function shifted upwards to higher YFP fluorescence. Notably, this shift was not uniform, with 94 

larger relative increases seen for lower input promoter activities; 28-fold versus 4.5-fold for 95 

inputs of 0.002 and 6.6 RPU, respectively (Figure 1c). Closer analysis of the flow cytometry 96 

data (Figure 1d) showed that these changes arose from the distributions of YFP fluorescence 97 

for low and high inputs shifting uniformly together as the tuner promoter activity was increased. 98 

Therefore, even though a similar relative difference between outputs for low and high inputs 99 

(also referred to as the dynamic range) was observed for all tuner inputs, when the tuner input 100 

was low, the distributions were virtually identical to the autofluorescence of the cells (Figure 101 

1d). This lead to even small absolute differences in the median values between low and high 102 

input states resulting in high fold-changes. 103 

Flow cytometry data also showed a significant overlap in the output YFP fluorescence 104 

distributions for low and high input promoter activities (Figure 1d). Many applications require 105 

that on and off states in a system are well separated so that they can be accurately 106 

distinguished. To assess this feature, we calculated the fractional overlap between the output 107 

YFP fluorescence distributions for low and high input promoter activities (Methods). We found 108 

a constant intersection of ~70% across all tuner promoter activity levels (Figure 1e), which 109 

resulted from the similar shifts we saw in output across all input promoter activities (Figure 110 

1d). 111 

To better understand these effects, we derived a deterministic ordinary differential 112 

equation (ODE) model of the system (Supplementary Note 1). Simulations using biologically 113 

realistic parameters (Supplementary Table 1) showed similar qualitative behavior to the 114 

experiments; increasing tuner promoter activity shifted the response curve to higher output 115 

protein production rates (Figure 1f). However, unlike the experiments, increasing the tuner 116 

promoter activity resulted in a small increase in the fold-change in the output between low and 117 

high inputs (Figure 1g, bottom). The limiting effect that the tuner sRNA can have is a possible 118 

mechanism that could account for the non-linear response observed in the experiments, 119 

where on states did not increase as quickly as off states as the tuner activity increased (Figure 120 
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1g, top). Tuner sRNA concentration was fixed for each response function. Therefore, it could 121 

have been higher than the concentration of THS transcript (i.e. non-limiting) when the main 122 

input was low, while limiting the output when the main input is high. 123 

Another potential cause of this non-linear response could be retroactivity that occurs 124 

when the behavior of components in a biological circuit change once interconnected 30,31. Such 125 

effects break modularity and make it difficult to predict circuit behavior. To explore this 126 

possibility, we coupled our existing model to another that is able to capture retroactivity-like 127 

effects due to shifts in ribosome allocation between endogenous genes and synthetic 128 

constructs, such as the TES (Supplementary Note 2) 23,30,31. Ribosomes are a key cellular 129 

resource and fluctuations in their availability due to the burden of a synthetic construct can 130 

cause drops in protein synthesis rates across the cell, affecting upstream components in a 131 

circuit 20,22,24,26. Comparisons between the original and coupling models, showed that 132 

retroactivity could have an impact for biologically realistic parameters, but only when the 133 

output caused significant cellular burden and only for the most highly expressed outputs 134 

(Supplementary Figure 2). 135 

 136 

Design and assembly of a tunable genetic NOT gate 137 

Some genetic devices rely on the expression of proteins such as transcription factors to 138 

implement basic logic that can be composed to carry out more complex decision-making tasks 139 

4,7,32. One such device is a NOT gate, which has a single input and output 27. NOT gates invert 140 

their input such that the output is on if the input is off and vice versa. Such a behavior can be 141 

implemented by using promoters as the input and output, with the input promoter driving 142 

expression of a repressor protein that binds to the DNA of a constitutive output promoter. 143 

When the input promoter is inactive, the repressor is not synthesized and the constitutive 144 

output promoter is in an active/on state. However, once the input promoter is activated, the 145 

repressor is expressed which binds the output promoter and represses/turns off its activity. 146 

Because the activity range of promoters varies, the transition point, whereby sufficient 147 

concentrations of repressor are present to cause strong repression of the output promoter, 148 

may make it impossible to connect other devices and ensure a signal is correctly propagated. 149 

For example, the output promoter of a weak sensor system acting as input to a NOT gate with 150 

a high transition point may produce insufficient repressor, causing the output promoter to be 151 

continually active. These incompatibilities can sometimes be corrected by modifying other 152 

regulatory elements in the design. In the case of a repressor-based NOT gate, while the 153 

promoters cannot be easily changed, in bacteria the translation initiation rate can be varied by 154 

altering the RBS for the repressor gene. Increasing the RBS strength causes more repressor 155 

protein to be produced for the same input promoter activity, shifting the transition point to a 156 
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lower value 7,27. While such modifications can fix issues with device compatibility, they require 157 

reassembly of the entire genetic device. 158 

Given that the TES allows for the rates of both transcription and translation to be 159 

dynamically controlled, we attempted to create a tunable NOT gate that integrated the TES to 160 

allow its response function, and crucially its transition point, to be altered after physical 161 

assembly. We chose an existing NOT gate design 27 that uses the PhlF repressor to control 162 

the activity of an output PphlF promoter (Figure 2a). Expression of PhlF was controlled by the 163 

TES, replacing the YFP reporter protein in the original TES design (Figure 1a). Unlike the 164 

TES, the tunable NOT gate uses promoters for both inputs and outputs allowing it to be easily 165 

connected to other devices that use RNAP flux as an input/output signal 7,16 (Figure 2a). 166 

To enable characterization of the tunable NOT gate, the output promoter PphlF was 167 

used to drive expression of YFP. Measurements were taken using flow cytometry for cells 168 

harboring the device in varying concentrations of aTc and IPTG, and steady state response 169 

functions generated (Figures 2b and 2c). As expected, these showed a negative sigmoidal 170 

shape with transition points (K values from the Hill function fits to the experimental data) that 171 

varied over a 7-fold range (Figure 2b). We also found that increases in the tuner promoter 172 

activity lead to transitions at lower activity levels for the input promoter. The range of transition 173 

points achieved by our device covered a high proportion (35%) of the largest collection of 174 

repressor-based NOT gates built to date (total of 20 variants; Figure 2d) 7. 175 

These results demonstrate the ability for the TES to dynamically alter a key 176 

characteristic of a NOT gate’s response function and improve its compatibility with other 177 

genetic devices. However, tuning came at a cost; it resulted in a drop in the fold-change 178 

between low and high outputs (Figure 2e) and an increase in the overlap between output YFP 179 

fluorescence distributions, making on and off states difficult to distinguish (Figure 2f). 180 

 181 

Boosting sRNA levels improves device performance 182 

For the THS to function correctly, it is essential that the sRNA reaches a sufficiently high 183 

concentration relative to the THS transcript to ensure the associated RBS is in a predominantly 184 

exposed state 28. In our design, the tuner promoter Ptac has less than half the maximum 185 

strength of the main input promoter Ptet (Supplementary Figure 1). Furthermore, although 186 

the tuner sRNA contains a hairpin to improve its stability, sRNAs are generally more quickly 187 

degraded than normal transcripts 33,34. 188 

To better understand the role that the THS transcript to tuner sRNA ratio had on the 189 

performance of the TES, we used our mathematical model of the system (Supplementary 190 

Note 1) to explore how various key parameters (e.g. transcription rates and binding affinities) 191 

affected the response function of the device. Using biologically realistic ranges of parameters 192 

(Supplementary Table 1), we found that for lower sRNA transcription rates the output 193 
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response function could be shifted to maintain a similar fold-change between low and high 194 

output states (Figure 3a). At these low THS/sRNA ratios the translation rate from the THS 195 

transcript is limited by the sRNA concentration. However, as the sRNA transcription rate 196 

increased a transition point was seen where for low THS transcription rates the sRNA is in 197 

excess such that the THS transcript concentration limits the output protein production rate 198 

(Figure 3a). In contrast, at high THS transcription rates the sRNAs become limiting again but 199 

allows for a relatively higher output protein production rate causing a larger fold-change in the 200 

response function (Figure 3a). Further stochastic modelling of the system showed that 201 

increasing sRNA transcription rate also reduced variability in the distribution of protein 202 

production rate across a population and lowered the fractional intersection between low (off) 203 

and high (on) output states (Figure 3b).  204 

To experimentally verify the benefit of increasing the sRNA transcription rate, we built 205 

a complementary sRNA booster plasmid that contained a high-copy pColE1 origin of 206 

replication (50–70 copies per cell) 35 and expressed the tuner sRNA from a strong viral PT7 207 

promoter (Figure 3c) 36. Transcription from PT7 requires T7 RNA polymerase (T7RNAP). This 208 

is provided by our host strain E. coli BL21 Star (DE3), which has the T7RNAP gene under the 209 

control of an IPTG inducible PlacUV5 promoter within its genome (Figure 3c) 37. Using IPTG, 210 

induction of the tuner Ptac promoter in our devices leads to simultaneous expression of T7 211 

RNAP from the host genome and transcription of additional tuner sRNA from the booster 212 

plasmid (Figure 3c). As the tunable devices are encoded on a plasmid with a p15A origin of 213 

replication (~15 copies per cell; Supplementary Figure 3) 38, we would expect that a five 214 

times higher tuner sRNA concentration is reached when the sRNA booster is present. 215 

Cells were co-transformed with each tunable genetic device and sRNA booster 216 

plasmid, and their response functions measured (Figures 3D and 3E). As predicted by the 217 

modelling, the TES performance improved with more than a doubling in the fold-change 218 

across all tuner promoter activities and a >40% drop in the intersection between low and high 219 

output YFP fluorescence distributions (Table 1). For the tunable NOT gate only minor 220 

differences in performance were seen with mostly small decreases in fold-change for high 221 

tuner promoter activities. 222 

 223 

Self-cleaving ribozymes impact toehold switch function 224 

In our initial designs, a RiboJ self-cleaving ribozyme was included in the TES and NOT gate 225 

to insulate the translation of the yfp or phlF genes, respectively, from different 5’ untranslated 226 

region (UTR) sequences that might be generated when using different promoters as an input 227 

(Figures 1a, 2a) 39. Any variable UTR sequences would be cleaved at the RiboJ site to 228 

produce a standardized mRNA with more consistent degradation and translation rates. 229 

Unfortunately, because RiboJ contains a number of strong secondary RNA structures 39,40, it 230 
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is possible that the 23 nt hairpin at the 3’-end impacts the ability for the sRNA to interact with 231 

the THS, reducing the hybridization rate (Figure 4a). 232 

To assess whether the RiboJ insulator might affect the stability of secondary structures 233 

that are crucial to the TES’s function, we performed thermodynamic modelling of the binding 234 

between the THS mRNA and the tuner sRNA for variants of the TES design with and without 235 

RiboJ present (Methods). Simulations predicted a 40% drop in Gibbs free energy of the 236 

reactants when RiboJ was removed (−40.5 kcal/mol with versus −65 kcal/mol without RiboJ; 237 

Figure 4b). This suggests that binding between sRNAs and the THS may be hampered by 238 

interactions with the RiboJ insulator, lowering the effective translation initiation rate of the RBS 239 

controlled by the THS and subsequently the performance of the devices. 240 

To experimentally test these predictions, non-insulated variants of the TES and tunable 241 

NOT gate were constructed in which RiboJ was removed. Characterization of these devices 242 

showed major improvements in overall performance (Figures 4c and 4d). The TES saw more 243 

than a doubling in the dynamic range and a 10-fold increase in the fold-change between on 244 

and off states across low and high tuner activity levels (Table 1). In addition, the fraction of 245 

intersection of the output YFP fluorescence distributions dropped by >50%. The tunable NOT 246 

gate saw more modest improvements with a 73% increase in the fold-change at high tuner 247 

activity levels, but an overall drop of 66% in the range of transition points (K values) that could 248 

be achieved (Table 1). These results highlight an important consideration often ignored. When 249 

using RNA-based devices that require the proper formation of secondary structures, care must 250 

be taken to ensure multiple parts do not interfere with each other, leading to cryptic failure 251 

modes. 252 

Another counterintuitive change in the TES’s response function after RiboJ removal 253 

was the large drop in output YFP fluorescence from 26 to 3 arbitrary units (a.u.) when no input 254 

or tuner was present (Figure 4c). Similar drops of between 4- and 11-fold were also seen for 255 

higher tuner promoter activities. Given that binding of a tuner sRNA to the THS mRNA should 256 

be less hampered when RiboJ is absent, an increase not decrease in output protein production 257 

would be expected. A possible explanation is that the stability of the THS mRNA decreased 258 

after RiboJ was removed. This is supported by recent results that have shown the RiboJ 259 

insulator both stabilizes its mRNA and also boosts the translation initiation rate of a nearby 260 

downstream RBS 41. The precise mechanisms for this are not well understood but it is thought 261 

that the structural aspect of the RiboJ at the 5’-end of an mRNA inhibits degradation by 262 

exonucleases, whilst the hairpin at the 3’-end exposes the nearby RBS by reducing the chance 263 

of unwanted secondary structure formation 39,40. 264 

Finally, we combined the non-insulated designs with the sRNA booster plasmid to see 265 

whether further improvements could be made (Table 1). For the TES, we found that the 266 

dynamic range had plateaued, with only moderate increases at low tuner promoter activities. 267 
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In contrast, the fold-change between low and high outputs more than doubled across tuner 268 

promoter activities when compared to the non-insulated design, and a further drop of >18% 269 

was seen in the fractional intersection between the YFP fluorescence distributions for these 270 

output states. The tunable NOT gate showed minor decreases in performance for many of the 271 

measures (Table 1). However, the inclusion of the sRNA booster likely increased overall PhlF 272 

concentrations as the transition points from an on to off state shifted far below what had been 273 

seen for all other designs. This would make this specific design of value for uses where a 274 

weak input signal needs to be inverted and amplified simultaneously. 275 

 276 

Towards complex tunable logic 277 

To create larger genetic circuits that implement complex logic, it is vital that a sufficiently 278 

diverse set of logic gates are available for use. Because a NOT gate alone has limited 279 

capabilities, we further modified its design to create a tunable 2-input NOR gate 7,27. The output 280 

of a NOR gate is on only when both inputs are off (Figure 5b) and crucially this type of gate 281 

is functionally complete (i.e. any combinatorial logic function can be implemented using NOR 282 

gates alone). In our new device, we added a further inducible input promoter, PBAD, directly 283 

before the existing Ptet input promoter, and included the associated sensor system (araC gene) 284 

to allow activity of the PBAD promoter to be controlled by the concentration of L-Arabinose (Ara) 285 

(Figure 5a). Our modifications were made to the original NOT gate design that included the 286 

RiboJ insulator because this produced the largest tunable range for the on to off transition 287 

point.  288 

To assess the function of the tunable NOR gate, the activities of both input promoters 289 

PBAD and Ptet, and the tuner promoter Ptac were varied by culturing cells harboring the device 290 

in different concentrations of Ara, aTc and IPTG, respectively (Methods). The two-291 

dimensional response functions (Figure 5c) showed that NOR logic was successfully 292 

implemented and that the transition point from low to high output for both inputs was 293 

simultaneously shifted to lower input promoter activities when the tuner promoter was highly 294 

active (Figure 5c, right panel). Considering each input promoter separately, the transition 295 

point between on and off states shifting by 16- and 6-fold for PBAD and Ptet, respectively. 296 

Unlike the NOT gate, even at high tuner promoter activities, the dynamic range was 297 

better maintained, dropping at most 35%, and the fold-change between on and off states 298 

remained above 4- and 8-fold for low and high tuner promoter activities, respectively 299 

(Supplementary Table 3). Furthermore, the improved separation of these states leads to 300 

smaller intersections in the output YFP distributions compared to the NOT gate. This was 301 

especially evident when comparing NOR gate states where both input promoters were 302 

simultaneously on or off with only a ~5% intersection observed (Supplementary Table 3). 303 
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The cause of this improvement is not clear but may relate to the PBAD promoter 304 

insulating expression of the phlF gene from transcriptional read-through originating from the 305 

tuner sRNA transcription unit that is located directly upstream in the DNA (Supplementary 306 

Figure 3). Without this insulating effect, read-through would cause elevated expression of 307 

PhlF, even when the input promoters are off, and potentially lead to a partial switch in the 308 

output when the tuner promoter is active (as seen for the original NOT gate, Figure 2b). Such 309 

a mechanism could also account for the elevated output levels for the TES when the input 310 

promoter was off and the tuner promoter activity increased (Figure 1c). 311 

 312 

Discussion 313 

In this work, we developed a new class of genetic device whose response function can be 314 

dynamically tuned. This was achieved by constructing a TES to separately control the 315 

transcription and translation rate of a gene. We demonstrate how the TES can be used to shift 316 

the on and off output states of a sensor by 4.5- and 28-fold, respectively (Figure 1) and  317 

incorporated into NOT and NOR gates to alter their transition point between on and off output 318 

states over a >6-fold range (Figure 2). Unfortunately, the performance of the tunable devices 319 

varied for differing tuner inputs, leading to a trade-off between performance and the level of 320 

tuning required. Mathematical modelling revealed: 1. the importance of ensuring sufficient 321 

tuner sRNA is present to fully activate the THS (Figure 3), and 2. the presence of possible 322 

detrimental interactions between a self-cleaving ribosome and the THS (Figure 4). Modified 323 

designs addressing these concerns showed improved performance for the TES, but only 324 

minor improvements in the fold-change of the tunable NOT gate when the self-cleaving 325 

ribozyme was removed (Table 1). In contrast, the NOR gate behaved more consistently 326 

across tuner activity levels and displayed better separation of on and off states. To the best of 327 

our knowledge the simultaneous control of transcription and translation to tune the response 328 

function of a genetic device is original, making this work a valuable resource for others to build 329 

on. Furthermore, unlike other attempts at tuning the response of devices through mutation of 330 

protein components to alter catalytic rates 42, our method allows for dynamic changes to a 331 

response function using simple to control transcriptional signals. 332 

A difficulty when using THSs to regulate gene expression is that high concentrations 333 

of sRNA are required to achieve a strong enough activation of mRNA translation. This stems 334 

from the regulatory mechanism which relies on base-pairing of the sRNA to THS, placing limits 335 

on the binding affinity that can be achieved. A possible means of increasing the affinity 336 

between these species would be to exploit RNA chaperones such as Hfq 43,44. In prokaryotes, 337 

sRNAs that associate with Hfq play a variety of roles from inhibiting and activating translation, 338 

to affecting the stability of a target mRNA 45–47. In some cases, these effects are significant; it 339 
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has been shown in vitro that Hfq increases by 30- to 50-fold the binding affinity of the DsrA 340 

sRNA to the leader of the rpoS mRNA 48. Designing de novo sRNA that bind to Hfq to increase 341 

their affinity to a target mRNA has been shown for both activation 43 and inhibition 44 of 342 

translation initiation. In both cases, Hfq binding a scaffold from an endogenous gene (e.g. 343 

micC) which is fused with a targeting sequence (e.g. that found on the sRNA). This approach 344 

could be employed in future TES designs. In fact, previous work that used Hfq associated 345 

sRNAs to implement a metabolically cheap negative feedback control loop created a useful 346 

repressive tuning element that could be directly used in our system44. By combining the 347 

findings from that study with ours and incorporating recent improvements in THS design 6, it 348 

should be possible to make further strides towards high-performance tunable genetic devices. 349 

An interesting future direction opened up by the adaptive nature of our devices is the 350 

possibility to incorporate many of them into large circuits. This would allow multiple parts of a 351 

circuit to be tuned simultaneously to maximize component compatibility and optimize system 352 

behavior. Unlike a typical design-build-test cycle that requires the reassembly of a genetic 353 

circuit if malfunctions are detected, this work supports a design-build-test-tune cycle where 354 

costly reassembly can be avoided. Rather than reassembling a circuit, parts can instead be 355 

dynamically tuned until they work correctly in unison. In this context, applying sensitivity 356 

analysis during circuit design would allow us to identify specific components where even small 357 

deviations in behavior would adversely impact overall circuit function 49. These would be ideal 358 

candidates to be encoded using tunable devices to allow for tweaking at these critical points. 359 

The additional tuner inputs in our devices raise some practical challenges. Systems 360 

composed of numerous tunable devices will require a large number of tuner inputs to be 361 

controlled simultaneously. If external signals are to be used then a unique sensor is required 362 

for each tuner input, as well as the capability to be able to control the environment to provide 363 

the correct set of input signals over time. Although the range of small molecule 29 and light 364 

based 42,50 sensing systems has grown over recent years, the ability to control many 365 

environmental factors (e.g. small molecule concentrations) simultaneously remains difficult. 366 

However, external control is not the only way to tune the behavior of these devices. The use 367 

of promoters as inputs allows them to be controlled by connecting them directly to the many 368 

transcriptional signals used natively in a cell. This offers the advantage of tapping into the cells 369 

innate capacity to sense and respond to its environment. Alternatively, if an adaptive circuit is 370 

not required, sensors controlling the tuning inputs could be replaced once a working 371 

configuration is found with constitutive promoters of an identical strength. This would reduce 372 

the reassembly required to a single step once the correct combination of tuning inputs is found. 373 

When designing our tunable devices, we observed deviations between the 374 

experimental and modelled responses. This may be due to retroactivity 30,31, where expression 375 

of the output reporter protein places a significant burden on the host cell (Supplementary 376 
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Note 2). Recently, there has been increased interest in the role of burden 51 and attempts 377 

made to mitigate its effect 52. One approach has been to implement resource allocation 378 

schemes based on split exogenous RNAPs 53. This limits the maximum burden a circuit can 379 

impose by providing fixed size pools of transcriptional resources that are orthogonal to the 380 

endogenous ones. Because our devices can have their response dynamically tuned, they 381 

could be used to boost the expression of downstream components to mitigate retroactivity 382 

effects or even be used to cap to maximum levels of resource that can be used by a circuit.  383 

For synthetic biology to have a broad impact outside of the carefully controlled 384 

conditions of a lab, it is vital that we are able to build adaptive genetic circuits that are able to 385 

maintain their functionality when exposed to unexpected environmental changes or shifts in 386 

host cell physiology 54. By combining advances in biological control engineering 52,54–58 with 387 

the tunable genetic devices developed in this work, bioengineers have a complementary set 388 

of tools capable of taking steps towards this goal. 389 

 390 

Methods 391 

Strains and media 392 

Cloning was performed using Escherichia coli strain DH5-α (F– endA1 glnV44 thi-1 recA1 393 

relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA–argF)U169, hsdR17(rK
–mK

+), λ–) 394 

(New England Biolabs, C2987I). Device characterization was performed using BL21 Star 395 

(DE3) (F– ompT hsdSB (rB
–, mB

–) gal dcm rne-131 [DE3]) (Thermo Fisher Scientific, C601003). 396 

For cloning, cells were grown in LB Miller broth (Sigma-Aldrich, L3522). For device 397 

characterization, cells were grown in M9 minimal media supplemented with glucose containing 398 

M9 salts (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl) (Sigma-Aldrich, 399 

M6030), 0.34 g/L thiamine hydrochloride (Sigma T4625), 0.4% D-glucose (Sigma-Aldrich, 400 

G7528), 0.2% casamino acids (Acros, AC61204-5000), 2 mM MgSO4 (Acros, 213115000), 401 

and 0.1 mM CaCl2 (Sigma-Aldrich, C8106). Antibiotic selection was performed using 50 μg/mL 402 

kanamycin (Sigma-Aldrich, K1637) or 50 mg/mL spectinomycin (Santa Cruz Biotechnology, 403 

sc-203279). Induction of sensor systems was performed using anhydrotetracycline (aTc) 404 

(Sigma-Alrdich, 37919), isopropyl β-D-1-thiogalactopyranoside (IPTG) (Sigma-Aldrich, I6758) 405 

and L-Arabinose (Ara) (Sigma-Aldrich, A3256). 406 

 407 

Genetic device synthesis and assembly 408 

Plasmids containing the TES (pVB001) and tunable NOT gate devices (pVB002) were 409 

constructed by a combination of gene synthesis (GeneArt, Thermo Fisher Scientific) and PCR 410 

of existing plasmids to generate linear fragments with regions of homology between 411 

subsequent parts. Gibson assembly (New England Biolabs, E2611S) was then used to 412 
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assemble these into the final plasmids. Supplementary Table 4 provides details of the 413 

synthesized DNA fragments (TES-P1 and TES-P2), and Supplementary Table 5 provides 414 

details of the primers and their templates used to generate all linear fragment for each plasmid 415 

design. Removal of RiboJ from the TES (pVB001) and NOT gate (pVB002) was achieved by 416 

PCR of the relevant design using primers F_RiboJ_Rem and R_RiboJ_Rem (Supplementary 417 

Table 5) and subsequent circularization by standard Golden Gate assembly (New England 418 

Biolabs, E1601S) to create the plasmids pVB003 and pVB004, respectively. The plasmid used 419 

to boost tuner sRNA levels (pVB005) was fully synthesized (GeneArt, Thermo Fisher 420 

Scientific). The plasmid containing the tunable NOR gate device (pVB006) was constructed 421 

by first PCR amplification of the pAN1720 plasmid (without the lacZα region normally used for 422 

blue/white screening) using primers containing an EcoRI restriction site at the 5’-end and a 423 

NotI restriction site at the 3’-end (F_pAN1720_EcoRI and R_pAN1720_NotI; Supplementary 424 

Table 5). The tunable NOR gate DNA insert was synthesized in three parts, NOR-P1, NOR-425 

P2 and NOR-P3 (Integrated DNA Technologies), which were then assembled using a 426 

standard Golden Gate assembly method (New England Biolabs, E1601S) to create a full-427 

length linear insert. This was designed to contain complementary EcoRI and NotI restriction 428 

sites to the amplified pAN1720 fragment. Both linear DNA fragments were finally used in a 429 

standard restriction digest using EcoRI (New England Biolabs, R3101) and NotI (New England 430 

Biolabs, R3189), and then a ligation reaction (New England Biolabs, M0202S) used to 431 

assemble the complete pVB006 plasmid. All plasmids were sequence verified by Sanger 432 

sequencing (Eurofins Genomics). Annotated plasmid maps of all devices are provided in 433 

Supplementary Figure 3 and Supplementary Data 2. 434 

 435 

Genetic device characterization  436 

Single colonies of cells transformed with the appropriate genetic constructs were inoculated 437 

in 200 μL M9 media supplemented with glucose and necessary antibiotics for selection in a 438 

96-well microtiter plate (Thermo Fisher Scientific, 249952) and grown for 16 hours in a shaking 439 

incubator (Stuart, S1505) at 37 °C and 1250 rpm. Following this, cultures were diluted 9:1600 440 

(15 μL into 185 μL, with 15 μL of this dilution loaded into 185 μL) in glucose supplemented M9 441 

media with necessary antibiotics for selection and grown for 3 hours at the same conditions. 442 

Next, the cultures were diluted 1:45 (10 μL into 140 μL) into supplemented M9 media with 443 

necessary antibiotics for selection and any required inducers in a new 96-well microtiter plate 444 

(Thermo Fisher Scientific, 249952) and grown at 37 °C and 1250 rpm for 5 hours. Finally, the 445 

cells were diluted 1:10 (10 μL into 90 μL) in phosphate-buffered saline (PBS) (Gibco,18912-446 

014) containing 2 mg/mL kanamycin to halt protein translation and incubated at room 447 

temperature for 1 hour to allow for maturation of the YFP before performing flow cytometry. 448 
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 449 

Flow cytometry 450 

YFP fluorescence of individual cells was measured using an Acea Biosciences NovoCyte 451 

3000 flow cytometer equipped with a NovoSampler to allow for automated collection from 96-452 

well microtiter plates. Data was collected using the NovoExpress software. Cells were excited 453 

using a 488 nm laser and measurements were taken using a 530 nm detector. A flow rate of 454 

40 μL/min was used to collect at least 105 cells for all measured conditions. Automated gating 455 

of events using the forward (FSC-A) and side scatter (SSC-A) channels was performed for all 456 

data using the FlowCal Python package version 1.2 59 and the density2d function with 457 

parameters: channels = [‘FSC-A’, ‘SSC-A’], bins = 1024, gate_fraction = 0.5, xscale = ‘logicle’, 458 

yscale = ‘logicle’, and sigma = 10.0. A demonstration of this automated approach is shown in 459 

Supplementary Figure 4. 460 

 461 

Autofluorescence correction 462 

To measure YFP fluorescence from our constructs it was necessary to correct for the 463 

autofluorescence of cells. An autofluorescence control strain containing the pAN1201 plasmid 464 

7, which does not express YFP but contains the same backbone as our genetic devices, was 465 

measured using flow cytometry under the same culturing conditions as for characterization. 466 

Measurements were taken from three biological replicates and an average of the medians of 467 

the gated distributions was subtracted from the gated YFP fluorescence flow cytometry data 468 

of the characterized devices, as in previous work 7. 469 

 470 

Characterization of sensor systems 471 

To allow for inputs to our devices to be controlled in standardized relative promoter units 472 

(RPUs) 7,60, calibration curves for the two sensor systems were generated to enable a 473 

conversion between a chemical inducer concentration and the relative promoter activity of 474 

each sensors’ output promoter (Ptac and Ptet). Cells transformed with plasmids pAN1718 and 475 

pAN1719 for Ptac and Ptet, respectively, and the pAN1717 RPU standard 7, were cultured in 476 

the same way as the characterization experiments. Flow cytometry was used to measure YFP 477 

fluorescence which was further corrected for cell autofluorescence. RPU values were then 478 

calculated by dividing the YFP output from the sensor by the YFP output from the RPU 479 

standard and a Hill function fitted to the resultant data (Supplementary Figure 1).  480 

 481 

Quantifying histogram intersections  482 

The fraction of intersection H between two histograms (e.g. flow cytometry fluorescence 483 

distributions), x and y, was calculated using, 484 
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𝐻(𝑥, 𝑦) = 	∑ !"#	(&!,(!)
&!

*
+,- 	.           (1) 485 

Here, histograms x and y are divided into n bins that correspond to identical ranges of values 486 

for each, with xi and yi denoting the value of bin i for histogram x or y, respectively. 487 

 488 

Predicting RNA binding and secondary structure 489 

To predict the binding and secondary structure of the THS and tuner sRNA (Figure 3), 490 

thermodynamic modelling was performed using the NUPACK web application 61. All 491 

simulations were run using the parameters: nucleic acid = RNA, temperature = 37 °C and the 492 

concentration of THS mRNA was set to 5 × 10−4 μM. The switch sequence mRNA and the 493 

switch sequence mRNA with an upstream cleaved RiboJ were simulated independently with 494 

additional parameters strand species = 1 and a maximum complex size = 1. The THS mRNA 495 

with and without an upstream RiboJ sequence where also simulated in the presence of trigger 496 

sRNA set to a concentration of 7 × 10−5 μM with additional parameters: strand species = 1 and 497 

a maximum complex size = 1. Full sequences are given in Supplementary Table 2. 498 

 499 

Computational analyses and data fitting 500 

All general computational analyses and plotting were performed using Python version 3.6.6, 501 

NumPy version 1.16, Pandas version 0.24 and matplotlib version 3.1. Response functions for 502 

the TES designs were generated by fitting median values of YFP fluorescence from flow 503 

cytometry data to a Hill function of the form 504 

𝑦 = 𝑦!"# + (𝑦!./ − 𝑦!"#)
&"

0"1&"
,          (2) 505 

where y is the output YFP fluorescence (in arbitrary units), ymin and ymax are the minimum and 506 

maximum output YFP fluorescence (in arbitrary units), respectively, K is the input promoter 507 

activity (in RPU units) at which the output is halfway between its minimum and maximum, n is 508 

the Hill coefficient, and x is the input promoter activity (in RPU units). Response functions for 509 

the tunable NOT gates were generated in a similar way using a Hill function of the form 510 

𝑦 = 𝑦!"# + (𝑦!./ − 𝑦!"#)
0"

0"1&"
.          (3) 511 

Fitting of data was performed using non-linear least squares and the curve_fit function from 512 

the SciPy.integrate Python package version 1.1. 513 

 514 

Numerical simulation 515 

The deterministic ODE model (Supplementary Note 1) was simulated using the odeint 516 

function of the SciPy.integrate Python package version 1.1 with default parameters. The delay 517 

differential equations (Supplementary Note 2) were simulated using the DifferentialEquations 518 

module version 6.10 using the Bogacki-Shampine 3/2 method running in Julia version 1.3. 519 
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Stochastic simulations of the biochemical model (Supplementary Note 1) were performed 520 

using the tau-leap method in COPASI version 4.24 with the following settings: number of 521 

iterations (simulations) = 4000, duration = 100 min, interval size = 1 min, number of intervals 522 

= 100 and the starting in steady state option selected. Initial steady-state conditions for the 523 

simulation are calculated automatically by COPASI using a damped Newton method. 524 

 525 

Visualization of genetic designs 526 

All genetic diagrams are shown using Synthetic Biology Open Language Visual (SBOL Visual) 527 

notation 62. SBOL Visual diagrams were generated using the DNAplotlib Python package 63,64 528 

version 1.0 which were then annotated and composed with OmniGraffle version 7.9.2.  529 

 530 

Data availability 531 

Systems Biology Markup Language (SBML) file implementing a model of the TES can be 532 

found in Supplementary Data 1. Annotated sequence files in GenBank format for all plasmids 533 

are available in Supplementary Data 2. All plasmids are available from Addgene (#127185–534 

127189, 140327). Flow cytometry data is available from the authors upon request. 535 
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Figures and captions 696 

 697 

Figure 1: Design and characterization of a tunable expression system (TES). (a) 698 

Schematic of the TES (top) and genetic implementation using a THS (variant 20) 28 to regulate 699 

translation initiation rate of an output protein (bottom, dashed box). Yellow fluorescent protein 700 

(YFP) is used as the output and T1 and T2 correspond to the transcriptional terminators 701 

L3S3P11 and L3S2P21, respectively 65. (b) Genetic design of the sensor modules used to 702 

drive the main and tuner inputs to the TES. (c) Experimentally measured response functions 703 

for the TES. Points denote the average of three biological replicates and error bars show ±1 704 

standard deviation. Each line shows a fitted Hill function for a fixed tuner input (color scale 705 

light–dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU). (d) Flow cytometry distributions of output 706 

YFP fluorescence when the tuner promoter activity is low (bottom; 0.002 RPU) and high (top; 707 

2.6 RPU). Black outlined distributions correspond to a high input promoter activity (6.6 RPU) 708 

and the filled red distributions to a low input promoter activity (0.002 RPU). Cell 709 

autofluorescence is shown by the dashed grey line. (e) Fraction of intersection between YFP 710 

fluorescence distributions for low (0.002 RPU) and high (6.6 RPU) inputs across varying tuner 711 

promoter activities. Points denote the average of three biological replicates and error bars 712 

show ±1 standard deviation. (f) Response functions from a deterministic model of the TES 713 

(Supplementary Note 1). Output shown as the steady state protein level. Line color 714 

corresponds to the promoter activity of the tuner input (light–dark: 0.0001, 0.06, 0.3, 1.5, 7.6, 715 

38, 190 RNAP/min). (g) Comparison of the output for high (filled circles; 6.6 RPU) and low 716 

(unfilled circles; 0.002 RPU) inputs across a range of tuner promoter activities (Experiment: 717 

0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU; Model: 0.0001, 0.3, 1.5, 7.6, 38, 190 RNAP/min).  718 
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 719 

Figure 2: Design and characterization of a tunable NOT gate. (a) Schematic of the tunable 720 

NOT gate (top) and genetic implementation embedding the TES (bottom, dashed box). Yellow 721 

fluorescent protein (YFP) expression is driven by the output promoter and T1 and T3 722 

correspond to the transcriptional terminators L3S3P11 and ECK120033737, respectively 65. 723 

(b) Experimentally measured response functions of the tunable NOT gate. Points denote the 724 

average of three biological replicates and error bars show ±1 standard deviation. Each line 725 

shows a fitted Hill function for a fixed tuner input (color scale light–dark: 0.002, 0.03, 0.15, 726 

0.43, 0.9, 2.6 RPU). (c) Flow cytometry distributions of the output YFP fluorescence from the 727 

tunable NOT gate when the tuner promoter activity is low (bottom; 0.002 RPU) and high (top; 728 

2.6 RPU). Black outlined distributions correspond to a high input promoter activity (1.5 RPU) 729 

and the filled blue distributions to a low input promoter activity (0.002 RPU). (d) Comparison 730 

of the switching point (K value) for each repressor-based NOT gate from Cello 7 (black circles) 731 

to the range achievable by the tunable NOT gate (red crosses and shaded regions). (e) 732 

Fraction of intersection between output YFP fluorescence distributions for low (0.002 RPU) 733 

and high (1.5 RPU) inputs across varying tuner promoter activities. Points denote the average 734 

of three biological replicates and error bars show ±1 standard deviation. (f) Fold-change in the 735 

median output YFP fluorescence between low (0.002 RPU) and high (1.5 RPU) inputs across 736 

varying tuner promoter activities. Points denote the average of three biological replicates and 737 

error bars show ±1 standard deviation.  738 
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 739 

Figure 3: Increasing tuner sRNA transcription rate to improve device performance. (a) 740 

Results of deterministic simulations of the TES model (Supplementary Note 1) showing 741 

steady state protein output and THS mRNA to tuner sRNA ratio for a range of input and tuner 742 

promoter activities. Tuner promoter activities are shown in bands between (light–dark) 0.0001, 743 

0.0005, 0.0024, 0.012, 0.056, 0.27, 1.3, 6.4, 31, 150 and 730 RNAP/min, respectively. (b) 744 

Stochastic simulation of the TES model (n = 4000) for low (1 RNAP/min; grey) and high (1.5 745 

RNAP/min; green) input promoter activity. Top and bottom panels correspond to low (1.5 746 

RNAP/min) and high (5 RNAP/min) tuner promoter activities, respectively. (c) Genetic design 747 

of the sRNA booster. The T7RNAP gene is encoded in the host genome and an additional 748 

plasmid contains a tuner sRNA expression unit. (d) Experimentally measured response 749 

functions (left) and flow cytometry distributions of the YFP fluorescence output (right) for the 750 

TES with the sRNA booster present. (e) Experimentally measured response functions (left) 751 

and flow cytometry distributions of the YFP fluorescence output (right) for the tunable NOT 752 

gate with the sRNA booster present. Points in all response functions denote the average of 753 

three biological replicates and error bars show ±1 standard deviation. Each line shows a fitted 754 

Hill function for a fixed tuner input (color scale light–dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 755 

RPU). All flow cytometry distributions are shown for low (bottom; 0.002 RPU) and high (top; 756 

2.6 RPU) tuner promoter activity. Black outlined distributions correspond to a high input 757 

promoter activity (6.6 RPU for the TES and 1.5 RPU for the NOT gate) and filled red/blue 758 

distributions to a low input promoter activity (0.002 RPU). Cell autofluorescence is shown by 759 

the dashed grey line.  760 
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 761 

Figure 4: Self-cleaving ribozyme insulators affect tunable device performance. (a) 762 

Original designs of both the TES and tunable NOT gate include a RiboJ insulating element, 763 

which can potentially interfere with binding of the tuner sRNA to the THS. (b) RNA secondary 764 

structure predictions for THS mRNA alone and with a complimentary tuner sRNA bound. 765 

Separate structures shown when the RiboJ insulating element is present (left) and absent 766 

(right). (c) Experimentally measured response functions (left) and flow cytometry distributions 767 

of the output YFP fluorescence (right) for the TES with the RiboJ insulator removed. (d) 768 

Experimentally measured response functions (left) and flow cytometry distributions of the YFP 769 

fluorescence output (right) for the tunable NOT gate with the RiboJ insulator removed. Points 770 

in all response functions denote the average of three biological replicates and error bars show 771 

±1 standard deviation. Each line shows a fitted Hill function for a fixed tuner input (color scale 772 

light–dark: 0.002, 0.03, 0.15, 0.43, 0.9, 2.6 RPU). All flow cytometry distributions are shown 773 

for low (bottom; 0.002 RPU) and high (top; 2.6 RPU) tuner promoter activity. Black outlined 774 

distributions correspond to a high input promoter activity (6.6 RPU for the TES and 1.5 RPU 775 

for the NOT gate) and filled red/blue distributions to a low input promoter activity (0.002 RPU). 776 

Cell autofluorescence is shown by the dashed grey line.  777 
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 779 

Figure 5: Design and characterization of a tunable NOR gate. (a) Schematic of all the 780 

sensor systems used (top, left), the tunable NOR gate (top, right), and their genetic 781 

implementation (bottom, dashed boxes). Yellow fluorescent protein (YFP) expression is driven 782 

by the output promoter and T1 and T3 correspond to the transcriptional terminators L3S3P11 783 

and ECK120033737, respectively 65. (b) Function of a 2-input NOR gate. (c) Heatmaps 784 

showing the output of the tunable NOR gate for varying input promoter activities (Input A – 785 

PBAD: 0.008, 0.003, 0.15, 0.5, 2.5, 3.1 RPU; Input B – Ptet: 0.05, 0.5, 1.6, 3.1, 6.4, 7.5 RPU) 786 

and for low (left) and high (right) tuner promoter activities. Output promoter activities shown 787 

are average values calculated from flow cytometry data for three biological replicates. White 788 

dashed line shows an output of 1.2 RPU and denotes the transition point from a high to low 789 

output. (d) Flow cytometry distributions of the output YFP fluorescence for tuner promoter 790 

activities of 0.002 RPU (bottom) and 2.6 RPU (top). The four distributions correspond to 791 

combinations of the absence and presence of L-Arabinose (10 mM) and aTc (50 ng/mL).  792 
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Tables 793 

Table 1: Performance summary of TES and tunable NOT gate. 794 

  Dynamic range (a.u.) Fold-change Intersection  
Device Design Low High Low High Low High K range (RPU) 
TES Original 333 ± 

53 
877 ±  

695 
14 ± 

1.7 
2.4 ± 

1.2 
0.78 ± 

0.06 
0.69 ± 

0.16 
– 

 sRNA 

booster 
538 ± 

51 
2064 ± 

1070 
227 ± 

297 
5.7 ± 

1.8 
0.46 ± 

0.04 
0.35 ± 

0.15 
– 

 Non-

insulated 
882 ± 

134 
2149 ± 

409 
445 ± 

412 
31 ± 

16 
0.26 ± 

0.07 
0.27 ± 

0.06 
– 

 Combined 1550 ± 

209 
1712 ± 

584 
1236 

± 613 
66 ± 

54 
0.15 ± 

0.04 
0.22 ± 

0.04 
– 

NOT 

gate 
Original 17280 ± 

1273 
3512 ± 

286 
6.0 ± 

0.1 
1.5 ± 

0.1 
0.19 ± 

0.04 
0.84 ± 

0.02 
0.01–0.07 

 sRNA 
booster 

22040 ± 
1601 

2170 ± 
654 

5.8 ± 
0.3 

0.9 ± 
0.3 

0.13 ± 
0.07 

0.85 ± 
0.02 

0.01–0.06 

 Non-

insulated 
17466 ± 

1926 
4061 ± 

827 
6.8 ± 

0.3 
2.6 ± 

0.4 
0.11 ± 

0.03 
0.56 ± 

0.08 
0.02–0.04 

 Combined 27751 ± 

3104 
2383 ± 

165 
6.0 ± 

0.6 
0.9 ± 

0.1 
0.08 ± 

0.05 
0.90 ± 

0.03 
0.003–0.02 

Average values are shown ± 1 standard deviation calculated from flow cytometry data for three 795 

biological replicates. The low and high columns correspond to experiments when the tuner promoter 796 

activity is 0.002 RPU and 2.61 RPU, respectively. Dynamic range is calculated as the absolute 797 

difference in YFP fluorescence between on and off inputs states. The on and off input states correspond 798 

to input promoter activities of 6.6 RPU and 0.002 RPU for the TES, and 1.5 RPU and 0.002 RPU for 799 

the NOT gate, respectively. Fold-change is calculated for YFP fluorescence between on and off input 800 

states. Intersection is calculated as the fractional overlap between distributions for on and off input 801 

states. The K range gives the span of K values from Hill functions fitted to experimental data. The 802 

designs are as follows: original designs are the initial constructs (Figures 1a and 2a), sRNA booster 803 

designs include the additional sRNA booster plasmid (Figure 3c), the non-insulated designs have the 804 

RiboJ element removed (Figure 4), and the combined designs have both RiboJ removed and the sRNA 805 

booster plasmid present. 806 
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