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Genome-wide association study identifies 48 common genetic variants associated with
handedness.
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Abstract

Handedness, a consistent asymmetry in skill or use of the hands, has been studied extensively
because of its relationship with language and the over-representation of left-handers in some
neurodevelopmental disorders. Using data from the UK Biobank, 23andMe and 32 studies
from the International Handedness Consortium, we conducted the world’s largest genome-
wide association study of handedness (1,534,836 right-handed, 194,198 (11.0%) left-handed
and 37,637 (2.1%) ambidextrous individuals). We found 41 genetic loci associated with left-
handedness and seven associated with ambidexterity at genome-wide levels of significance
(P < 5x10®). Tissue enrichment analysis implicated the central nervous system and brain
tissues including the hippocampus and cerebrum in the etiology of left-handedness. Pathways
including regulation of microtubules, neurogenesis, axonogenesis and hippocampus
morphology were also highlighted. We found suggestive positive genetic correlations
between being left-handed and some neuropsychiatric traits including schizophrenia and
bipolar disorder. SNP heritability analyses indicated that additive genetic effects of genotyped
variants explained 5.9% (95% Cl = 5.8% - 6.0%) of the underlying liability of being left-handed,
while the narrow sense heritability was estimated at 12% (95% Cl = 7.2% - 17.7%). Further,
we show that genetic correlation between left-handedness and ambidexterity is low (rg =
0.26; 95% Cl = 0.08 — 0.43) implying that these traits are largely influenced by different genetic
mechanisms. In conclusion, our findings suggest that handedness, like many other complex
traits is highly polygenic, and that the genetic variants that predispose to left-handedness
may underlie part of the association with some psychiatric disorders that has been observed
in multiple observational studies.

Introduction

Handedness is the preferential use of one hand over the other. Hand preference is first
observed during gestation as embryos begin to exhibit single arm movements [1, 2]. Across
the life-span the consistent use of one hand leads to alterations in the macro- and micro-
morphology of bone [3] resulting in enduring asymmetries in bone form and density [4, 5]. At
the neurological level, handedness is associated with lateralization of language (the side of
the brain involved in language) and other cognitive effects [6, 7]. The prevalence of left-
handedness in modern western cultures is approximately 9% [8] and is greater in males than
females [9]. While handedness is conceptually simple, its aetiology and whether it is related
to brain and visceral (internal organs) asymmetry is unclear.

Since the mid-1980s, the literature regarding the genetics of handedness and lateralization
has been dominated by the Right-shift [10] and Dextral-chance [11] theories. Both theories
involve additive biallelic monogenic systems in which an allele at the locus biases an individual
towards right handedness, while the second allele is a null allele that results in random
determination of handedness by fluctuating asymmetry. The allele frequency of the right-shift
variant has been estimated at ~43.5% [13], whilst that of the Dextral-chance variant has been
estimated at ~20% in populations with a 10% prevalence of left-handedness[14]. A joint-
analysis of data from 35 twin studies found that additive genetic factors accounted for 25.5%
(95% Cl: 15.7, 29.5%) of the phenotypic variance of handedness [12], which is consistent with
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predictions of the variance explained under the single gene right-shift and Dextral-change
models. However, linkage studies [13-16] and genome-wide association studies (GWAS) [17-
21] have failed to identify any putative major gene for handedness.

Most recently, two large-scale GWAS identified four genomic loci containing common
variants of small effect associated with handedness [20, 21]. However, both GWAS failed to
replicate signals at the LRRTM1, PCSK6 and the X-linked Androgen receptor genes that had
been reported previously in smaller genetic association studies [17-19]. In this study, we
present findings from the world’s largest GWAS meta-analysis of handedness to date (N =
1,766,671), combining data from 32 cohorts from the International Handedness Consortium
(IHC) (N = 125,612), 23andMe (N = 1,178,877) and UK Biobank (N = 462,182).

Results
Genome-wide association study of left-handedness

Across all studies, the handedness phenotype was assessed by questionnaire that evaluated
either which hand was used for writing or for self-declared handedness. All cohorts were
randomly ascertained with respect to handedness. Combining data across the 32 IHC cohorts,
23andMe and UK Biobank yielded 1,534,836 right-handed and 194,198 left-handed (11.0%)
individuals [Supplementary Table 1]. After quality control (Methods), the GWAS meta-analysis
included 13,346,399 SNPs (including autosomal and X chromosome SNPs) with a minor allele
frequency (MAF)>0.05%.

The genetic correlations as estimated by bivariate LD-score regression [22] between the
results from the UK Biobank, 23andMe and IHC GWAS were (rgUkB-23andMe = 0 88 s.e. = 0.05,
rgU 8t =0.73,s.e. = 0.16, rg'HC23andMe = 0 60, s.e. = 0.11) suggesting that the three GWAS were
capturing many of the same genetic loci for handedness. There was some inflation of the test
statistics following meta-analysis (Acc = 1.22); however the intercept from LD-score regression
analysis [23] was 1.01 suggesting that the inflation was due to polygenicity rather than bias
due to population stratification or duplication of participants across the UK Biobank,
23andMe and IHC studies.

We identified 41 loci that met the threshold for genome-wide significance (P < 5x108) (Figure
1, Supplementary Table 2). Loci were defined as distinct if independent genome-wide
significant signals were separated by at least 1Mb except for the MHC region and the
17921.31 (that contains a common inversion polymorphism [24]) where we only report the
lead signals due to the extent of linkage-disequilibrium in these loci. Summary statistics for
the lead variants at genome-wide significant loci are presented in Table 1 along with the gene
nearest to the lead SNP. A description of the putative functions of the nearest gene is included
in Supplementary Table 2. Conditional analyses identified 9 additional independent SNPs at
genome-wide significance near the lead SNPs on chromosome 2q, 6p, 16q and 17q
[Supplementary Table 3]. Interestingly, the list of genome-wide significant associations
included multiple variants close to genes involved in microtubule formation or regulation (i.e.
MAP2, TUBB, TUBB3, NDRG1, TUBB4A, TUBA1B, BUB3, TTC28). A phenome-wide association
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scan (PheWAS) of the lead SNPs using GWAS summary data from 1,349 traits revealed that
28 out of the 41 lead SNPs have been previously associated with other complex traits
(Supplementary Table 4). Among these results, we highlight that the rs6224, rs13107325 and
rs45527431 variants have been previously associated with schizophrenia at genome-wide
levels of significance (P < 5x10°8). Specifically, the effect of alleles associated to both traits had
the same direction of effect (e.g. those that increase odds of left-handedness also increase
risk of schizophrenia) for all three SNPs. Further, we found that seven variants associated with
left-handedness were also associated with educational attainment; however, the direction of
effects of these SNPs on left-handedness and educational attainment was not consistent.
Future colocalization will be needed to assess if the same SNP associated to handedness
affects these traits of is a product of correlation between causal SNP.

In order to identify the most likely tissues and pathways underling the association of the SNPs,
we used DEPICT [25]. Results from tissue enrichment analysis implicated the central nervous
system, including brain tissues such as the hippocampus and cerebrum at FDR < 5% (Table 2),
consistent with the hypothesis that handedness is primarily a neurological trait. We observed
statistically significant pathways (FDR < 5%) including microtubule regulation and cerebral
cortex and hippocampus morphology (Table 3). Inter alia, we then performed gene-based
analyses using gene-expression prediction models of brain tissues using S-MultiXcan to
identify additional loci [26]. In total, we tested the association between the predicted
expression of 14,501 genes in brain tissues and left-handedness. In addition to detecting
significant associations (P < 3.44x10°) of genes within the loci identified during the meta-
analysis, we observed an association between left-handedness and the predicted expression
of AMIGO1 (P = 2.82 x 1077), a gene involved in growth and fasciculation of neurites from
cultured hippocampal neurons and that may be involved in myelination of developing neural
axons [27]. Supplementary Table 5 shows all the statistically significant associations from the
S-MultiXcan analysis.

Multiple studies have reported that left-handedness and ambidexterity are more prevalent
in males than in females [9]. Consistent with this observation, we found that 11.9% of male
participants in the IHC cohorts reported being left-handed or ambidextrous, compared to only
9.3% of females (OR = 1.31; 95% Cl: 1.25 - 1.38; P < 2.2x10°%®) [Supplementary Table 6].
Similarly, in UK Biobank, 10.5% of males and 9.9% of females were left handed (OR = 1.07;
95% Cl: 1.05-1.09; P = 1.87x10!!) and in 23andMe 15.6% of males and 12.6% of females were
left handed (OR = 1.28; 95% Cl: 1.26 - 1.30; P < 2.2x10%8). Sex differences in ambidexterity
were also apparent in the UK Biobank and 23andMe cohorts. In UK Biobank 2% of males and
1.30% of females reported being ambidextrous (OR = 1.55; 95% Cl: 1.47 - 1.62; P < 2.2x10719)
and in 23andMe 3.45% of males and 2.61% of females (OR = 1.33; 95% Cl: 1.28 - 1.37; P <
2.2x10°%8). Birth year had a small but significant effect on left-handedness with individuals
who were born more recently being more likely to be left-handed (OR = 1.008 per year; 95%
Cl: 1.007 — 1.009; P < 2.2x10°6),


https://doi.org/10.1101/831321
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/831321. The copyright holder for this preprint (which was not peer-reviewed) is the
author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.

The differences in prevalence between males and females and a previously reported
association between the X-linked androgen receptor gene and handedness [22] could reflect
the involvement of hormone-related genes in handedness aetiology. We therefore carried
out a sex-stratified GWAS of handedness in the UK Biobank data using left-handed individuals
as cases and right-handed individuals as controls; however, we did not identify any genome-
wide significant loci. Despite this, the point estimate of the genetic correlation between male
handedness and female handedness computed using LD-score regression was lower than
unity but not significantly different from one (r¢ = 0.77, s.e. =0.12, P = 0.055).

Associations with previously reported candidate genes

All loci identified in recent GWAS of handedness from UK Biobank, replicated [20, 21].
However, we found no evidence of association between left-handedness and genes and
genetic variants reported in prior studies. The SNPs rs1446109, rs1007371 and rs723524 in
the LRRTM1 locus reported by Francks et al [18] did not reach nominal significance in any of
the analyses performed (P>0.05). Similarly the SNP rs11855415 reported by Scerri et al [19]
as associated with left-handedness in dyslexic individuals also did not exhibit an association
(P>0.05). Further, we investigated if the 27 genes exhibiting asymmetric expression in early
development of the cerebral cortex described by Sun et al [28] were also associated with
handedness in our S-MultiXcan analyses. Only 11 out of the 27 asymmetry genes were
available in our analysis, and after adjusting the results for multiple testing, we did not
observe any significant association [Supplementary Table 7]. In a more recent study,
Ocklenburg and colleagues [29] list 74 genes displaying asymmetric expression in cervical and
anterior thoracic spinal cord segments of five human foetuses. In total, 43 out of the 74 genes
were in our S-MultiXcan analyses, of which only HISTIH4C was statistically significant after
correcting for multiple testing (P = 2.2x10™) [Supplementary Table 8].

Heritability of left-handedness and genetic correlations with other traits

Twin studies estimate the heritability of left-handedness as around 25% [12]. In the present
study, we employed a diverse range of statistical methods including LD-score regression, G-
REML analysis as implemented in BOLT-LMM, and maximum likelihood analysis of identity by
descent sharing in close relatives [30] to provide complementary estimates of SNP heritability
and total heritability that relied on a different set of assumptions than the classical twin
model. Using GWAS summary statistics from our study and LD-score regression, we estimated
that the variance explained by SNPs was 3.45% (s.e. = 0.17%) on the liability scale with
prevalence of left-handedness set at 10% [Table 4]. Using genotypic data from the UK Biobank
Study (and age and sex as covariates) and G-REML analysis, we also obtained low estimates
of the SNP heritability (5.87%, s.e. = 2.21%). Due to the large disparity between estimates of
heritability from twin studies and the lower estimates of SNP heritability from the above
approaches, we estimated the heritability of handedness using the autosomal Identity By
Descent (IBD) information from closely related individuals [28] in the UK Biobank (estimated
genome-wide IBD>8%) . We partitioned the phenotypic variance into additive genetic effects
(A), shared environmental effects (C) and individual environmental inputs (E) (see Methods
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section). We estimated that additive genetic effects explained 11.9% (95% Cl: 7.2 — 17.7) of
the phenotypic variance in handedness while shared environment and individual
environment accounted for 4.6% (95% Cl: 0 — 9.0) and 83.6% (95% Cl: 75.2 - 85.6) of the
variance in liability respectively [Table 4]. Dropping (C) from the model did not significantly
worsen the fit of the model (P=0.29). Estimates from the A+E model were 19.7% (95% Cl: 13.6
— 25.7) for additive genetic effects, overlapping with those from twin studies.

We investigated the genetic correlation between left-handedness and 1349 complex traits
using LD-score regression as implemented in CTG-VL [31]. We did not observe any statistically
significant genetic correlation at a Bonferroni P-value threshold (0.05/1349 = 3.7 x 10). We
observed suggestive (P < 0.05) positive correlations with neurological and psychiatric traits
including schizophrenia, bipolar disorder, intra-cranial volume and educational attainment
and negative correlations with mean pallidum volume [Supplementary Table 9]. Interestingly,
the genetic correlation between our left-handedness meta-analysis and our ambidexterity
meta-analysis was only moderate (rg = 0.24, s.e = 0.03), suggesting divergent genetic
etiologies.

Genome-wide association study of ambidexterity

Given the moderate genetic correlation between left-handedness and ambidexterity, a
separate GWAS of ambidexterity was carried out using UK Biobank and 23andMe data using
ambidextrous individuals as cases (N= 37,637; ~2% of the total sample) and right-handed
individuals as controls (N=1,422,823). This meta-analysis included 12,493,443 autosomal and
X chromosome SNPs with a MAF>0.05%.

Similar to the left-handedness GWAS, prior to meta-analysis, we computed the genetic
correlation between the UK Biobank ambidexterity GWAS and the 23andMe GWAS. The
estimate of the genetic correlation was rg = 1 (s.e. = 0.15) indicating that both GWAS were
capturing the same genetic loci. After meta-analysis, we identified seven loci with P < 5x108
(Figure 2). Table 5 displays the summary statistics for the lead SNPs at these loci along with
the closest gene. Full summary statistics and description of the nearest gene for these loci are
included in Supplementary Table 10. There was some overlap between genome-wide
significant SNPs associated with left-handedness and ambidexterity with 16 out of the 41
SNPs associated to left-handedness displaying a nominal significant association with
ambidexterity (P < 0.05); 15 of which were also in the same direction of effect (Supplementary
Table 11). Conditional analyses did not identify further independent signals at genome-wide
levels of significance. PheWAS revealed that the lead SNPs have been implicated in
anthropometric traits and blood biomarkers [Supplementary Table 12].

DEPICT analyses did not identify any tissue or pathway at an FDR < 5%. The top associated
tissues were cartilage and smooth muscle (P = 0.016 and P = 0.025 respectively). Top tissue
and pathway enrichment results are included in Supplementary Table 13 and 14. S-MultiXcan
analyses based on the association between predicted gene-expression on brain tissues and
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ambidexterity identified the genes QTRTD1, TMEMZ215, RPL41 and RAB40C in addition to
those loci identified during the GWAS [Supplementary Table 15].

Heritability of Ambidexterity and genetic correlations

Due to the low prevalence of ambidexterity in the population there are no heritability
estimates available from twin studies. Similarly, the number of ambidextrous individuals in
UK Biobank was not enough to precisely estimate the heritability using maximum likelihood
analysis of identity by descent sharing in close relatives. However, the SNP heritability of
ambidexterity on the liability scale (1% prevalence) estimated through LD-score regression
and REML implemented in BOLT-LMM was higher than that observed for left-handedness (h%
=0.12 (s.e. = 0.007) and h%; = 0.15 (s.e. = 0.014)).

We estimated the genetic correlation between ambidexterity and a catalogue of 1349 traits
with GWAS summary statistics. Our analyses revealed 260 statistically significant (P < 3.7 x 10°
%) genetic correlations. Among the strongest correlations, we saw positive genetic
correlations between ambidexterity and traits related to pain and injuries, body mass index,
as well as a negative genetic correlation with educational attainment [Supplementary Table
16].

Discussion

We have carried out the largest genetic study of handedness to date. Our GWAS and SNP
heritability analyses demonstrate conclusively that handedness is a polygenic trait — with
multiple genetic variants increasing the odds of being left-handed or ambidextrous by a small
amount. We identified 41 left-handedness and 7 ambidexterity loci that reached genome-
wide significance. Our findings are in contrast to the single gene right-shift [13] and dextral-
chance[14] hypotheses, where the causal genes are hypothesised to account for the
heritability of handedness. If these large effect variants do exist, they should have been
detected by our GWAS meta-analysis which provided over 90% statistical power
[Supplementary Table 17] to detect variants with effect sizes as small as a 5% increase in odds
per allele for common variants (MAF>0.05) at genome-wide significance (a = 5x10°8). Instead,
the present findings firmly support the hypothesis that handedness, like many other
behavioural and neurological traits, is influenced by many variants of small effect.

Using different methods and cohorts, we estimated the SNP heritability (hg?) of handedness
to be between 3% and 6%. However, by using IBD-based methods applied to siblings and
other relative pairs, we estimated the narrow sense heritability (h?) to be 11.9% (95% Cl: 7.2
—17.7). Although this is lower than that obtained from twin studies (25%; 95 Cl: 15.7 - 29.5
[12] and 21%; 95% Cl: 11 — 30 [32]), the confidence intervals for the estimates overlap.
Interestingly, hg? estimates for ambidexterity were larger (12%-15%), suggesting that
common SNPs tag a higher proportion of variability in liability to ambidexterity than in liability
to left-handedness.

Interestingly, our GWAS meta-analysis of left-handedness identified eight loci close to genes
involved in microtubule formation and regulation. An enrichment for microtubule-related
pathways was then confirmed by the DEPICT analysis. Microtubules are polymers that form
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part of the cytoskeleton and are essential in several cellular processes including intracellular
transport, cytoplasmic organization and cell division. With respect to handedness,
microtubule proteins play important roles during development and migration of neurons,
plasticity, and neurodegenerative processes [33, 34]. The association between handedness
and variation in microtubule genes also provides insights into differences in prevalence of
various neuropsychiatric disorders and left-handedness observed in some epidemiological
studies [35, 36]. Recent genetic studies have identified mutations in a wide variety of tubulin
isotypes and microtubule-related proteins in many of the major neurodevelopmental and
neurodegenerative diseases [33, 37-39].

We observed an association between left-handedness and the 17q21.31 locus. A deletion in
this locus is known to cause Koolen de Vries syndrome, a disorder characterized by intellectual
disability, developmental delay and neurological abnormalities of the corpus callosum,
hippocampi and ventricles. Variation in the 17921 locus, including structural variation, has
been associated with schizophrenia [40], autism [41, 42] and cognition [43]. In addition, based
on our pheWAS, the rs55974014 within this locus has been associated with mood swings,
neuroticism and educational attainment traits. The rs55974014 SNP is located near several
genes with neurological functions, including CRHR1 and NSF. Other SNPs close to this gene
have been associated with intelligence [44] and Parkinson’s disease [45]. Future colocalization
analyses are warranted to assess the veracity of the same variant affecting multiple traits.

The genetic correlation between left-handedness and ambidexterity was low, suggesting that
the genetic architecture underlying the two traits is different. Whereas being left-handed was
not statistically significantly (genetically) correlated with any other trait among the 1,349
complex traits tested, ambidexterity was significantly correlated with multiple traits,
particularly anthropometric and those involving pain and injuries. This suggests that reporting
being able to write with both hands may be a result from injuries that led to use of the other
hand. Future studies into the genetics of ambidexterity should include detailed phenotyping
that considers the reasons leading to hand use preference. Among the suggestive genetic
correlations (P < 0.05), we observed positive genetic correlations between left-handedness
and schizophrenia and bipolar disorder consistent with some previous observations of greater
atypical hand dominance in schizophrenia and bipolar disorder patients [46, 47].

The present study benefitted from having a large sample size that allowed the detection of
dozens of novel variants of small effect on handedness. However, it is worth noting that the
genetic correlations derived from GWAS summary statistics of left-handedness in the IHC,
23andMe and UK Biobank were high but statistically different from one, potentially impacting
the statistical power of the meta-analysis. These differences may have been due to the way
data was collected in each of the cohorts. For example, in the UK Biobank, handedness data
was obtained at up to three occasions, while this was not the case for the 23andMe and the
IHC cohorts. Furthermore, genetic correlations with IHC may have been affected by the IHC
having combined ambidextrous and left-handed individuals as cases, and the fact that
different imputation panels were used for the 32 cohorts that make up IHC.
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In summary, we report the world’s largest GWAS meta-analysis of handedness. We showed
that handedness is polygenic and found evidence that microtubule genes may play an
essential role in lateralization. Loci mapped in the present study warrant further exploration
of their potential role in neurological development and laterality.

Methods
Genome-wide association in UK Biobank

UK Biobank is a large long-term biobank study from the United Kingdom that aims to identify
the contribution of genetic and environmental factors to disease. Detailed information on
phenotyping and genotyping is presented elsewhere [48]. In brief, the UK Biobank recruited
502,647 individuals aged 37-76 across the country and gathered information regarding their
health and lifestyle, including handedness via questionnaires. Genotype data from the UK
Biobank is available for 487,411 participants. Genotypes were imputed by UK Biobank against
the UK10K reference panel using IMPUTE 2 [49]. In addition to the quality control metrics
performed centrally by UK Biobank [48], we defined a set of participants of European ancestry
by clustering the first two principal components (PCs) derived from the genotype data. Using
a K-means algorithm with K=4, we identified a group of 463,023 individuals of European
ancestry. From this group, 462,182 individuals (250,767 females) had data on handedness. In
total 410,677 participants identified themselves as right-handed, 43,859 as left-handed and
7,646 as ambidextrous. The mean birth year of the participants was 1951 (s.d. = 8.04).

We tested 11,498,822 autosomal and X chromosome SNPs with minor allele frequency
(MAF>0.005) and info score >0.4 for association with handedness using BOLT-LMM which
implements a linear mixed model to account for cryptic relatedness and population structure.
Sex and age were included as covariates in all models. We performed four analyses 1) right-
vs left-handed; 2) right vs ambidextrous; 3) right- vs left-handed (male only); and 4) right- vs
left-handed (female only). Analyses of X chromosome genotypes were performed in BOLT-
LMM fitting sex as a covariate and coding the male genotypes as 0/2.

Genome-wide association in 23andMe

All individuals included in the analyses were research participants of the personal genetics
company 23andMe, Inc., a private company, whose phenotypes were collected via online
surveys. DNA extraction and genotyping were performed on saliva samples by the National
Genetics Institute (NGI), a CLIA licensed clinical laboratory and a subsidiary of Laboratory
Corporation of America. Samples were genotyped on one of five genotyping platforms. The
vl and v2 platforms were variants of the lllumina HumanHap550 + BeadChip, including about
25,000 custom SNPs selected by 23andMe, with a total of about 560,000 SNPs. The v3
platform was based on the lllumina OmniExpress+ BeadChip, with custom content to improve
the overlap with the v2 array, with a total of about 950,000 SNPs. The v4 platform was a fully
customized array, including a lower redundancy subset of v2 and v3 SNPs with additional
coverage of lower-frequency coding variation, and about 570,000 SNPs. The v5 platform was
an lllumina Infinium Global Screening Array (~640,000 SNPs) supplemented with ~50,000
SNPs of custom content. Samples that failed to reach 98.5% call rate were re-analysed.
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Individuals whose analyses failed repeatedly were re-contacted by 23andMe customer
service to provide additional samples.

For our standard GWAS, we restricted participants to a set of individuals who have a specified
ancestry (predominantly European ancestry) determined through an analysis of local ancestry
[50]. A maximal set of unrelated individuals was chosen for each analysis using a segmental
identity-by-descent (IBD) estimation algorithm [51]. Individuals were defined as related if
they shared more than 700 cM IBD, including regions where the two individuals share either
one or both genomic segments IBD. This level of relatedness (roughly 20% of the genome)
corresponds approximately to the minimal expected sharing between first cousins in an
outbred population.

We used Minimac3 to impute genotype data against a reference panel comprised of the May
2015 release of the 1000 Genomes Phase 3 haplotypes [52] and the UK10K imputation
reference panel [53]. We computed associations by logistic regression assuming additive
allelic effects. We used the imputed dosages rather than best-guess genotypes and included
covariates for age, sex, the top five principal components to account for residual population
structure, and indicators for genotype platforms to account for genotype batch effects. For
associations on the X chromosome, male genotypes were coded as if they were homozygous
diploid for the observed allele. For QC of the GWAS results, we removed SNPs with rsq < 0.3,
MAF < 0.005 and available sample size <20% of the total sample, as well as SNPs that had
strong evidence of a platform batch effect. We also flagged logistic regression results that did
not converge due to complete separation, identified by abs(effect)>10 or s.e. >10 on the log
odds scale.

International handedness consortium

The International Handedness Consortium (IHC) is a large-scale collaboration between 32
cohorts (N=125,612) with existing genome-wide association (GWAS) data to identify common
genetic variants influencing handedness. Across all studies, the phenotype was collected by
guestionnaire by asking either which hand was used for writing or for self-declared
handedness. As these two measures are highly (~¥95%) concordant, and less than 1% of
participants reported being able to write with both hands [8, 30] both left-handed and
ambidextrous individuals were classified as cases. All cohorts were population samples with
respect to handedness, thus combining the data from the 32 studies yielded 13,599 left-
handed and 112,013 right-handed individuals [Supplementary Table 1].

All individuals were of self-declared European ancestry (confirmed by genotypic PCA in each
cohort). Within each cohort, the genotypic data were imputed to Phase | and Il combined
HapMap CEU samples (build 36 release 22) with the exception of the Finnish Twin Cohort
study, Health Professionals Follow-Up Study and Nurses’ Health Study HPFS/NHS,
Netherlands Twin Registry (NTR), and TOP cohorts which were imputed to 1000G phase 3 V5
European population. Within each sample, genome-wide association analyses were
conducted for both genotyped and imputed SNPs. The imputed genotypes were analysed
using the dosage of an assumed effect allele under an additive model with covariates for year
of birth and sex. Supplementary Table 18 show the imputation and analysis software used in
each of the cohorts.
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Meta-analysis of IHC, UK Biobank and 23andMe

A weighted Z-score meta-analysis was conducted with the METAL software [54] using the
summary GWAS statistics from each of the 32 IHC cohorts, UK Biobank and 23andMe. Given
the large discrepancies between the number of cases and controls, we elected to weight each
sample by the effective sample size for binary traits, defined as Nef=4/(1/Ncases+1/Ncontrols)-

Prior to meta-analysis, quality control thresholds were applied to each of the GWAS results
from the individual studies (r?>> 0.3, MAF > 0.005, Puwe = 1x10°). We also removed genetic
variants for which the frequency substantially differed from one of the Haplotype Reference
Consortium panels (frequency difference > 0.2). We used EasyQC [55] to identify SNPs that
had allele frequencies which differed substantially from the Haplotype Reference Consortium.
In total, up to 13,346,399 SNPs remained for the left-handedness meta-analysis. For the
ambidexterity meta-analysis, only 23andMe and the UK Biobank were used. This meta-
analysis included up to 12,493,443 SNPs.

Tissue expression and pathway analyses

Tissue expression and pathway analyses were performed using DEPICT [25] implemented in
the Complex-Traits Genetics Virtual Lab (CTG-VL) [31]. DEPICT assesses whether genes in
associated loci are highly expressed in any of the 209 Medical Subject Heading (MeSH) tissue
and cell type annotations based on RNA-seq data from the GTEx project [56]. Molecular
pathways were constructed based on 14,461 gene sets from diverse database and data types,
including Gene ontology, Kyoto encyclopedia of genes and genomes (KEGG) and REACTOME.
Associations with an FDR < 5% are reported.

Gene-based association analyses

Gene-based association analyses were carried out using S-MultiXcan [26] implemented in the
CTG-VL [54], which conducts a test of association between phenotypes and gene expression
levels predicted by data derived from the GTEx project [56]. In this study, we performed S-
MultiXcan using prediction models of all the brain tissues available from the GTEx project.
This included amygdala, anterior cingulate cortex BA24, caudate basal ganglia, cerebellar
hemisphere, cerebellum, brain cortex, frontal cortex BA9, hippocampus, hypothalamus,
nucleus accumbens basal ganglia, putamen basal ganglia, spinal cord cervical c-1, substantia
nigra. As a total of 14,501 genes expressed in different brain tissues were tested, the
Bonferroni-corrected significance threshold was set at P = 3.44 x 10°®.

Genetic correlations

In order to test whether handedness shares a genetic background with other complex traits
with GWAS summary data available, we used CTG-VL [31] which implements LD score
regression and contains a large database of summary GWAS statistics. In total, we assessed
the genetic correlation of left-handedness and ambidexterity with 1,349 different traits. After
accounting for multiple testing, our Bonferroni corrected significance threshold was P < 3.7 x
10°.

Heritability estimates
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In order to estimate the proportion of phenotypic variance explained by SNPs we used two
statistical methods. Restricted Maximum Likelihood (REML), implemented in BOLT-LMM was
used to estimate the variance explained by additive effects of genotyped SNPs (h%) [57]. Using
a prevalence estimate of 10% the observed h?; was transformed to a SNP heritability on an
unobserved continuous liability scale [58]. LD-score regression was used to estimate the
variance explained by all the SNPs using the GWAS summary statistics. Similarly to REML, the
observed h2;was transformed to the liability scale using a prevalence estimate of 10%.

In order to estimate the narrow-sense heritability we fit a variance components model to
estimate the proportion of phenotypic variance attributable to additive genetic effects (A),
shared environmental effects (C), and environmental effects (E) [28]. We modelled the
genetic sharing between close relative pairs using identity by descent (IBD) information on
20,277 sibling pairs (0.65>IBD>0.35) and 49,788 relative pairs with 0.3>IBD>0.8 to estimate
trait heritability. In the model, we also estimated a variance component due to a shared
environment (siblings only) that made siblings potentially more similar in terms of
handedness, and a unique environmental component, that did not contribute to similarity
between relative pairs. Variance components were estimated using Maximum Likelihood
using the OpenMx package [59].
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Table 1. Loci associated with left-handedness after meta-analysis of 23andMe, UK Biobank and IHC.

CHR BP SNP Gene EA NEA EAF z OR* P Direction
1 44172458 rs34550543 ST3GAL3 T C 0.41 6.42 1.02 1.4E-10 +++
1 160398240 rs66513715 VANGL2 D | 0.20 -5.46 097 4.77E-08 -??
1 169112399 rs10081960 NME7 C G 0.60 -5.93 0.98 2.96E-09
2 48624007 rs4953572 FOXN2 A G 0.66 6.70 1.02 2.11E-11 +++
2 109954066 rs4676276 SH3RF3 A C 0.52 5.72 1.02 1.06E-08 +++
2 187522750 rs13006483 ITGAV T G 0.28 6.59 1.03 4.51E-11 +++
2 210300731 rs62213410 MAP2 AT 0.71 -11.45 0096 2.37E-30
3 18167162 rs1398651 SATB1 AT 0.56 5.49 1.02 4.11E-08 +++
3 74246260 rs201072423 CNTN3 D | 0.51 5.53 1.02 3.17E-08 +++
3 77574555 rs62251113 ROBO2 A C 0.37 5.45 1.02 4.94E-08 +++
3 158017859 rs1526194 RSRC1 T C 0.58 -6.65 0.98 3.02E-11
4 89910701 rs28658282:T FAM13A T C 0.10 -6.20 096 5.77E-10 -??
4 103188709 rs13107325 SLC39A8 T C 0.08 7.54 1.06 4.62E-14 +++
5 71890187 rs246628 LINC02056 C G 0.41 5.72 1.02 1.06E-08 +++
5 87825490 rs2194028 TMEM161B-AS1 T C 0.34 6.59 1.02 4.52E-11 +++
5 114471109 rs1422070 TRIM36 A C 0.60 -6.65 0.98 2.85E-11
6 3143866 rs35551703 BPHL A G 0.04 -7.04 094 1.93E-12
6 26599509 rs45527431 ABT1 A G 0.91 5.86 1.04 4.63E-09 ++7?
6 30688427 rs3132584 TUBB T G 0.21 -10.31 095 6.12E-25
6 127643791 rs148342778:GTA ECHDC1 D | 0.65 -5.68 0.97 1.32E-08 -??
7 127268806 rs806188 PAX4 T C 0.32 6.20 1.02 5.65E-10 +++
8 134274226 rs2233324 NDRG1 cC G 0.16 -766 096 1.86E-14

10 124992505 rs12414988 BUB3 A G 0.21 5.46 1.02 4.75E-08 +++
11 16474017 rs1000565 SOX6 A G 0.60 5.65 1.02 1.56E-08 +++
11 66173400 rs11227478 NPAS4 A G 0.21 -6.00 0.98 1.97E-09
11 77531890 rs11820337 RSF1 T C 0.35 6.27 1.02 3.64E-10 +++
11 115081563 rs9645660 CADM1 T C 0.52 -6.51 098 7.43E-11
12 49539892 rs11168884 TUBA1B T C 0.34 -6.37 098 1.96E-10
12 100324975 rs7132513:G ANKS1B C G 0.61 6.70 1.03 2.1E-11 +??
13 27294638 rs9581731 WASF3 T C 0.71 -6.05 0.98 1.49E-09
14 29628115 rs8016028 AL133166.1 T C 081 -6.37 097 1.92E-10
14 48430794 rs8012503 LINC00648 C G 0.88 5.48 1.03 4.27E-08 +++
15 91423543 rs6224 FURIN T G 0.47 939 097 6.16E-21
16 28828834 rs62036618 ATXN2L A C 0.61 -7.39 098 1.43E-13 --?
16 69224615 rs1424114 SNTB2 T C 0.35 -5.48 0.98 4.21E-08
16 89991599 rs4550447 TUBB3 C G 0.12 10.12 1.06 4.67E-24 +++
17 43757450 rs55974014 CRHR1 A C 0.21 -11.43 095 2.97E-30
19 6499231 rs66479618 TUBB4A T C 0.20 -6.87 0.97 6.48E-12 -+
19 42439263 rs112737242 RABAC1 D | 035 -7.80 0.97 6.4E-15 --?
22 23663848 rs4822384 BCR T G 0.39 -5.63 098 1.82E-08
22 28628209 rs5762532 TTC28 T C 0.59 -5.88 0.98 4.04E-09

CHR: Chromosome; EA: Effect allele; NEA: Non-effect allele; EAF: Effect allele frequency; Z: Z-statistic; P-value: Meta-analysis p-value.
Direction of effects are shown in the following order: 23andMe, UK Biobank and IHC. *OR correspond to that one derived from 23andMe
results. Where the SNP is missing in a cohort “?” is indicated in direction.
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Table 2. Results of the tissue enrichment analysis for left-handedness (DEPICT). Only results with
FDR < 5% are shown.

Tissue Group P-value

Corpus Striatum Nervous System 0.00000673
Basal Ganglia Nervous System 0.0000148
Hippocampus Nervous System 0.0000227
Central Nervous System Nervous System 0.0000327
Brain Nervous System 0.0000357
Telencephalon Nervous System 0.0000398
Parahippocampal Gyrus Nervous System 0.0000414
Entorhinal Cortex Nervous System 0.0000414
Limbic System Nervous System 0.0000423
Cerebrum Nervous System 0.0000427
Prosencephalon Nervous System 0.0000487
Temporal Lobe Nervous System 0.0000587
Cerebral Cortex Nervous System 0.0000668
Parietal Lobe Nervous System 0.000305
Mesencephalon Nervous System 0.000843
Occipital Lobe Nervous System 0.00131
Visual Cortex Nervous System 0.00156
Brain Stem Nervous System 0.00166
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Table 3. Results from pathway enrichment analysis for left-handedness (DEPICT). Only results with
FDR < 5% are shown.

Pathway ID Pathway description P-value
MP:0000788 abnormal cerebral cortex morphology 0.00000185
MP:0000807 abnormal hippocampus morphology 0.00000187
G0:0008017 microtubule binding 0.00000195
MP:0004275 abnormal postnatal subventricular zone 0.00000549
morphology
ENSG00000137285 TUBB2B subnetwork 0.00000571
MP:0000812 abnormal dentate gyrus morphology 0.00000843
ENSG00000206211 ENSG00000206211 subnetwork 0.0000128
ENSG00000206283 PFDNG6 subnetwork 0.0000128
ENSG00000204220 PFDNG6 subnetwork 0.0000128
G0:0005874 microtubule 0.0000140
G0:0021543 pallium development 0.0000456
MP:0000790 abnormal stratification in cerebral 0.0000500
cortex
ENSG00000147601 TERF1 subnetwork 0.0000596
G0:0015631 tubulin binding 0.0000600
REACTOME_APOPTOTIC_EXECUTION__ P  REACTOME_APOPTOTIC_EXECUTION__ 0.0000665
HASE PHASE '
G0:0021987 cerebral cortex development 0.0000696
ENSG00000182901 RGS7 subnetwork 0.0000731
ENSG00000106105 GARS subnetwork 0.0000738
G0:0007409 axonogenesis 0.0000902
REACTOME_APOPTOTIC_CLEAVAGE_OF_ REACTOME_APOPTOTIC_CLEAVAGE_OF 0.000108

CELLULAR_PROTEINS

_CELLULAR_PROTEINS
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Table 4. SNP heritability and heritability of left-handedness estimated using a range of different
approaches.

Data Used  Method hg? (s.e.) —
liability
scale

IHC Meta-analysis (32 studies) | LD-score regression 0.031
(0.013)
UK Biobank left-handed individuals only as cases | LD-score regression 0.033
(0.004)
23andMe left-handed individuals only as cases | LD-score regression 0.040
(0.002)
Meta-analysis UK biobank, 23andMe and IHC | LD-score regression 0.035
(0.002)
UK Biobank left-handed individuals only as cases (males) | LD-score regression 0.042
(0.006)
UK Biobank left-handed individuals only as cases (females) | LD-score regression 0.032
(0.005)
UK Biobank left-handed individuals only as cases | REML (BOLT-LMM) 0.059
(0.003)
Right vs Left handed 0.08 < IBD < 0.3 Relatives (no C) + siblings 0.65>IBD | ACE model A=0.12*
> (0.35 with C in the model. (95% Cl:
0.07 -
0.17)
C=0.045
(95% CI: 0
-0.09)
Right vs Left handed 0.08 < IBD < 0.3 Relatives (no C) + siblings 0.65> IBD | AE model A=0.20
> 0.35 without C in the model. (95% Cl:
0.14 -
0.26)
Meta-analysis of twin studies of handedness [12] | ACE model A=0.25
(95% Cl:
0.157 -
0.30)
C=0/(95%
Cl=0-
0.076%)

*Estimate of narrow sense heritability (h?)
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Table 5. Loci associated with ambidexterity through meta-analysis of 23andMe and UK Biobank.

CHR BP SNP Gene EA NEA EAF z OR* P Direction
1 150317558 rs782122127 PRPF3 D | 0.19 -6.32 0.88 2.70E-10 ?-
2 58196110 rs2030237 VRK2 A G 0.58 5.84 1.04 5.29E-09 ++
2 104437850 rs139630683 AC013727.1 D | 045 585 1.05 4.88E-09 +?
7 91899117 rs2040498 ANKIB1 AT 0.65 6.21 1.06 5.42E-10 ++
8 77104817 rs10113066 RNU2-54P T G 0.51 590 1.05 3.74E-09 ++
10 89722731 rs36062478 PTEN T C 0.87 -5.62 094 1.87E-08 -

12 49530132 rs35554786 TUBA1B D | 0.24 -6.05 0.93 1.49E-09 -?
CHR: Chromosome; EA: Effect allele; NEA: Non-effect allele; EAF: Effect allele frequency; Z: Z-statistic; P-value: Meta-analysis p-value.
Direction of effects are shown in the following order: 23andMe and UK Biobank. *OR correspond to that one derived from 23andMe results.
. Where the SNP is missing in a cohort “?” is indicated in direction.
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