

1 Anterolateral entorhinal cortex thickness as a new biomarker 2 for early detection of Alzheimer's disease

3
4 Andrew Holbrook^{1*}, Nicholas Tustison^{2,3}, Freddie Marquez³, Jared Roberts³, Michael A.
5 Yassa^{3*}, Daniel Gillen^{1*}, for the Alzheimer's Disease Neuroimaging Initiative[§]

6
7 ¹Department of Statistics, University of California, Irvine, CA, USA

8 ²Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA,
9 USA

10 ³Department of Neurobiology and Behavior and Center for the Neurobiology of Learning
11 and Memory, University of California, Irvine, Irvine, CA, USA

12
13 [§]Data used in preparation of this article were obtained from the Alzheimer's Disease
14 Neuroimaging Initiative (ADNI) database (<http://adni.loni.usc.edu>). As such, the investigators
15 within the ADNI contributed to the design and implementation of ADNI and/or provided data but
16 did not participate in analysis or writing of this report. A complete listing of ADNI investigators
17 can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf.

18
19 * Co-corresponding authors:

20 Andrew Holbrook – aholbroo@g.ucla.edu

21 Daniel Gillen – dgillen@uci.edu

22 Michael Yassa – myassa@uci.edu (Primary journal contact)

23
24
25
26
27 **Keywords:** ADNI-1; Alzheimer's disease; Anterolateral entorhinal cortex; Biomarker;
28 Brain imaging; Clinical dementia rating; memory; Cortical thickness; CSF amyloid;
29 Linear mixed-effects models; Mild cognitive impairment; Mini-mental state exam;
30 Posteromedial entorhinal cortex; ROC.

31

32

33

34

35

36

37

38

39

40

41

42 **Abstract:**

43

44 **Introduction:** Loss of entorhinal cortex (EC) layer II neurons represents the earliest AD
45 lesion in the brain. Research suggests differing functional roles between two EC
46 subregions, the anterolateral EC (aLEC) and the posteromedial EC (pMEC).

47

48 **Methods:** We use joint label fusion to obtain aLEC and pMEC cortical thickness
49 measurements from serial MRI scans of 775 ADNI-1 participants (219 healthy; 380 MCI;
50 176 AD) and use linear mixed-effects models to analyze longitudinal associations
51 between cortical thickness, disease status and cognitive measures.

52

53 **Results:** Group status is reliability predicted by aLEC thickness, which also exhibits
54 greater associations with cognitive outcomes than does pMEC thickness. Change in
55 aLEC thickness is also associated with CSF amyloid and tau levels.

56

57 **Discussion:** Thinning of aLEC is a sensitive structural biomarker that changes over
58 short durations in the course of AD and tracks disease severity – it is a strong candidate
59 biomarker for detection of early AD.

60

61

62

63

64

65

66

67 **Introduction:**

68
69 Layer II of the entorhinal cortex (EC) is one of the earliest sites for the accumulation of
70 tangle pathology and neurodegeneration in the course of Alzheimer's disease (AD)¹⁻³.
71 Quantitative studies of neuron numbers in autopsy brains characterized for AD
72 pathology have shown that a substantial reduction in EC is observed by the time of
73 dementia diagnosis and further progressive loss of EC neurons occurs over the course
74 of the disease⁴⁻⁶. Little or no neuron loss occurs within EC in healthy aged brains
75 without AD pathology suggesting that EC neurodegeneration is specific to disease⁴.
76

77 Histopathological data indicate that the transentorhinal region, which consists of the
78 anterolateral EC (aLEC) and perirhinal cortex, is vulnerable in the early stages of AD
79 (Braak Stages I and II [2]). Recent evidence has elucidated a functional subdivision in
80 the EC whereby the lateral and medial portions are involved in different aspects of
81 information processing⁷ and are differentially connected with the perirhinal and
82 parahippocampal cortices⁸. Other work has shown that the aLEC (which maps onto the
83 lateral entorhinal cortex in rodents) is selectively vulnerable to age-related alterations in
84 processing⁹ as well as structural changes associated with age-related cognitive decline
85¹⁰ in contrast to the posteromedial portion (pMEC). While volume reductions in the EC
86 independently predict the likelihood of conversion from healthy aging to amnestic mild
87 cognitive impairment (MCI) and from MCI to AD¹¹⁻¹³, preceding and predicting
88 hippocampal volume reduction¹⁴, it is unclear whether these volumetric changes are
89 primarily driven by the aLEC or the pMEC.
90

91 Given the need for improved diagnostic biomarkers that are capable of detecting the
92 earliest signs of neurodegeneration and the wealth of evidence pointing to the EC as an
93 early site of structural decline, we seek to determine if we can identify different
94 trajectories of structural thinning in the aLEC and pMEC in healthy, MCI and AD
95 individuals.
96

97 The Alzheimer's Disease Neuroimaging Initiative (ADNI)¹⁵ began in 2003 with the goal
98 of developing imaging, genetic and pathological biomarkers for early detection and
99 longitudinal progression in AD. This multisite imaging endeavor provides investigators
100 with open access to serial MRI scans from nondemented individuals as well as MCI and
101 AD patients, in conjunction with other biomarker data such as CSF amyloid and tau
102 pathological markers. Measurements of cortical thickness (CT) have recently emerged
103 as potential candidates for biomarkers due to their superior sensitivity to layer-specific
104 cortical atrophy compared to volumetric approaches and the availability of automated
105 methods for estimation¹⁶. In the ADNI sample, EC CT was the most powerful measure
106 of structural change both in MCI and AD brains¹⁷. EC thinning also preceded and
107 predicted hippocampal atrophy¹⁸ and predicted conversion to AD with the greatest
108 accuracy¹⁹.
109

110 For EC thinning to be a reliable and robust measurement that accurately reflects
111 neurodegeneration and supports longitudinal tracking of disease progression, several
112 common methodological limitations need to be addressed²⁰. These issues include

113 registration bias and inverse consistency, bias due to asymmetric interpolation favoring
114 the baseline scan in longitudinal pipelines²¹ and susceptibility to errors in segmentation
115 or overestimation of gray matter thickness without specified anatomical constraints²².
116

117 Here, we apply a novel pipeline that we recently developed for longitudinal registration-
118 based CT to quantify aLEC and pMEC thinning that directly addresses these pitfalls and
119 extend prior findings that EC thickness reliably differentiates normal controls from MCI
120 patients and MCI patients from AD patients in the ADNI sample. Using linear mixed-
121 effects (LME) models, we quantify cross-sectional and longitudinal associations
122 between aLEC and pMEC thickness and two cognitive outcomes, the Clinical Dementia
123 Rating – Memory box score (CDRM) and the Mini-Mental State Exam (MMSE), while
124 controlling for possible confounding variables including age, sex, total brain volume and
125 *APOE ε4* genotype. We supplement this analysis of cognitive outcomes by using further
126 LME models to establish diagnostic cohort specific trajectories in aLEC and pMEC CT
127 through time and receiver operating characteristic (ROC) curves to ascertain predictive
128 value of aLEC and pMEC CT for diagnostic outcomes. In a secondary analysis, we use
129 an LME model to follow trajectories in aLEC and pMEC CT through time for two sub-
130 cohorts with differing CSF amyloid profiles.
131

132 Materials and Methods:

133 Raw imaging data and preprocessing

136 All T1-weighted MPRAGE MRI scans used in this study were drawn from the publicly
137 available Alzheimer's Disease Neuroimaging Initiative (ADNI). Exact parameters for the
138 sequences acquired are available on <http://adni.loni.usc.edu>. Due to limited contrast
139 between EC regions and surrounding areas in T1-weighted MRI, we employ the multi-
140 atlas joint label fusion methodology²³ for EC parcellation and subsequent thickness
141 estimation based on combined T1- and T2-weighted image information from a set of
142 gold-standard atlases (see below), permitting a more robust weighted consensus
143 approach than single-template and/or T1-weighted-only alternatives.
144

145 Atlas data

147 We use a set of 17 atlases for multi-atlas joint label fusion comprising T1/T2-weighted
148 image pairs and corresponding segmentation labels for the following left/right regions
149 (aLEC, pMEC, perirhinal cortex, parahippocampal cortex, DG/CA3, CA1, and
150 subiculum). Manual atlas labeling uses the T2-weighted image for each atlas set and a
151 well-established and validated protocol⁹. Atlas labels for a single subject are shown in
152 **Supplementary Figure S1** superimposed on the corresponding T2-weighted image.
153 The scans used to compose the atlases were collected on a Philips 3T scanner at the
154 University of California, Irvine. T1-weighted MPRAGE scans were acquired in the
155 sagittal orientation with an isotropic image resolution of 0.75 x 0.75 x 0.75 mm³. Image
156 acquisition for the T2-weighted protocol was angled perpendicular to the long axis of the
157 hippocampus consistent with previous work²⁴. T2-weighted image resolution is 0.47 x
158 0.47 x 2.0 mm³. The optimal rigid transformation between each individual atlas' T1- and

159 T2-weighted images was determined using the Advanced Normalization Tools (ANTs)
160 software package^{25,26}.

161

162 Population-specific templates

163

164 To facilitate aLEC/pMEC thickness estimation for the ADNI cohort described below, two
165 population-specific, optimal shape/intensity templates were generated. The first T1-
166 weighted template was constructed from 52 cognitively normal ADNI-1 subjects for a
167 separate ADNI-based investigation²⁷, and we opted to use it in this study since it
168 provides an intermediate registration space for transforming the labels of the 17 atlases.
169 The second T1-weighted template, the “UCI” template, was generated from the 17 T1-
170 weighted atlas images discussed above²⁸. Representative slices for both templates are
171 shown in **Supplementary Figure S2**. ANTs-based Symmetric normalization (SyN) was
172 used to determine optimal diffeomorphic transformation between the two T1-weighted
173 templates. This permits the two T1-weighted templates to act as an intermediate
174 geometric space for the “pseudo-geodesic” mapping²⁹ between a set of atlas labels and
175 the individual T1-weighted time point.

176

177 Individual time point processing

178

179 Processing was conducted using the recently developed ANTs longitudinal structural
180 processing pipeline²⁷ which is an extension of the previously reported cross-sectional
181 framework³⁰. Briefly, the T1-weighted images constituting the set of subject's
182 longitudinal data were used to create a single-subject template (SST) as an unbiased
183 space for processing longitudinal time points of individual subjects²¹. The SST was then
184 processed through the cross-sectional pipeline using the ADNI-1 template mentioned
185 earlier. This processing produced the SST auxiliary images (i.e., *n*-tissue segmentation
186 priors and brain extraction mask prior) used for individual time point brain extraction and
187 tissue segmentation into CSF, cortical gray matter, white matter, deep gray matter,
188 brain stem and cerebellum. Output of this processing stream includes the transforms
189 between the individual time point and the SST and the transforms between the SST and
190 the ADNI-1 template. In this way, concatenation of transforms can be used to map each
191 of the 17 atlas label sets to each individual time point through a set of intermediary
192 spaces which constitutes the “pseudo-geodesic” transform. This strategy has the benefit
193 of reducing diffeomorphic distances between registration image pairs, reducing
194 computational costs in terms of the sheer number of registrations, and taking advantage
195 of the longitudinal nature of the data. This pseudo-geodesic mapping strategy is
196 illustrated in **Supplementary Figure S3**.

197

198 Multi-atlas joint label fusion

199

200 After mapping the set of 17 atlas label sets to each individual time point, the multi-atlas
201 joint label fusion²³ approach is applied. This technique weights the contribution of each
202 atlas while minimizing informational redundancy between the atlases. To estimate CT
203 for each EC region, we base our strategy on the MindBoggle approach³¹ but, instead of

204 employing a mesh-based surface area calculation, we opt for the more accurate
205 Crofton's formula ³², which estimates the surface area directly.
206

207 **Statistical analyses**

208

209 Our primary interest is the linear association between cognitive performance (CDRM
210 and MMSE), diagnostic status (healthy, MCI and AD) and cortical thickness (CT) in the
211 aLEC and pMEC. We seek to discern whether declining cognitive performance tracks
212 with deterioration of CT within the two subregions. We also ask whether clinical
213 diagnostic groups are separable when viewed through subregion CTs and their
214 trajectories through time.
215

216 Linear mixed-effects (LME) ³³ modeling allows us to leverage the longitudinal nature of
217 the ADNI repeated-measures design insofar as a correctly specified LME model adjusts
218 for within-subject correlation structure through time. As an extension of the multiple
219 linear regression framework, LME modeling also supports adjustment for possible
220 confounding variables as well as inclusion of precision variables. For the primary
221 analysis, we use three LME models in total, each of which features subject-specific
222 random intercepts and slopes through time. We decide on the inclusion of random
223 components using the modified likelihood ratio test³⁴.
224

225 With the first two models we wish to understand cognitive performance as a linear
226 function of CT and its change through time. Both of these models regress either CDRM
227 or MMSE over aLEC or pMEC CTs (and functions thereof) independently. We fit each
228 model once for aLEC thickness as predictor of interest and once for pMEC thickness as
229 predictor of interest since simultaneous inclusion of both measures results in
230 multicollinearity on account of correlations between subregional CT. The first model
231 evaluates cognitive score as a function of baseline thickness and the interaction
232 between baseline thickness and months since baseline. The second model evaluates
233 cognitive score as a function of baseline thickness and loss of thickness through time.
234 We stratify the first two models by diagnostic cohort on account of the possibility of
235 diagnosis based non-linearities in associations through time. Stratification decreases
236 statistical power but increases model robustness.
237

238 Another primary question is whether population CT averages and their trajectories
239 through time can be separated as a function of healthy, MCI and AD statuses. A third
240 LME model (Model 3) independently regresses aLEC or pMEC CTs over diagnostic
241 status and its interaction with months from baseline. We supplement Model 3's
242 inferential analysis with a predictive analysis using ROC curves ³⁵ and area under these
243 curves (AUC) to demonstrate prediction of diagnostic statuses using aLEC or pMEC
244 thicknesses alone.
245

246 Given positive results, we motivate future research by asking the secondary question
247 whether differential associations between CSF amyloid levels and aLEC/pMEC CTs
248 provides explanatory power for primary analysis results. Based on prior work ³⁶⁻³⁹,
249 Model 4 considers the ratio between p-tau and A β binarized at the threshold 0.1 as

250 predictor for CT in aLEC and pMEC subregions. All models are outlined in
251 **Supplementary Table 1**. All modeling decisions were made prior to data access.
252

253 We use the R programming language ⁴⁰ for all statistical analyses. We use the nlme
254 package ⁴¹ for LME model fitting, the ggplot2 package ⁴² for visualization and the
255 plotROC package for generating ROC curves ⁴³. For exploratory analyses, we: present
256 a data table with means, proportions and standard deviations of outcomes and model
257 covariates stratified by diagnostic cohort; plot aLEC and pMEC thicknesses as a
258 function of subject age, stratifying by sex; and use nearest neighbor missclassification
259 as an index of homogeneity.
260

261 **Results:**

262 **Data distributions**

263 We provide descriptive statistics for outcomes, predictors and other covariates in **Table**
264 **1** organized by diagnostic cohort. For each cohort, means and standard deviations
265 appear for continuous variables and level-wise percent membership appears for factors.
266

267 For both baseline aLEC and baseline pMEC cortical thickness, the controls have the
268 highest values, the AD cohort has the least, and the MCI cohort is in the middle. This
269 trend holds for the longitudinal change in thickness. The AD cohort has the largest
270 percent loss per year, and the MCI cohort has less percent loss per year. For both of
271 these groups the %/yr loss is less for pMEC than it is for aLEC. MMSE and CDRM also
272 follow the cohort-wise trends: baseline MMSE decreases from control cohort to AD
273 cohort and baseline CDRM rises. For both MCI and AD cohorts, CDRM changes more
274 through time than does MMSE.
275

276 **Figure 1** shows a scatterplot of unadjusted cortical thickness and age across sex and
277 diagnostic cohort (healthy control and AD). **Figure 1a,c** shows aLEC thickness in males
278 and females respectively, while **Figure 1b,d** shows pMEC thickness in males and
279 females respectively. Visibly, there is greater overlap between healthy and AD cohort
280 point clouds as a function of pMEC than as a function of aLEC. We quantify this overlap
281 using the nearest neighbor misclassification rate as a homogeneity index. Regardless of
282 sex, cohort clusters exhibit roughly 70% less homogeneity when viewed with aLEC
283 thickness than with pMEC thickness.
284

285 [INSERT FIGURE 1 HERE]
286

287 **EC cortical thickness and cognitive performance**

288 Models 1 and 2 regress cognitive performance over baseline and longitudinal CT.
289 **Figure 2a** contains results from analyses based on Models 1 and 2. Green cells are
290 nominally statistically significant at a 95% confidence level. Baseline CT and percent
291 loss are standardized within cohort to facilitate cross-cohort comparisons and
292 comparisons between the aLEC and the pMEC. In general, aLEC thickness is more
293

296 predictive of outcome than is pMEC thickness. Across both outcomes (MMSE and
297 CDRM), aLEC thickness has 8 significant associations with outcome, whereas pMEC
298 only has 3 significant associations. In 9 of 12 of the comparisons shown in Table 2
299 effect sizes are larger for aLEC thickness.
300

301 **Figure 2** also illustrates Model 2 results, but, to facilitate comparisons across CDRM
302 and MMSE and aLEC and pMEC thicknesses, axes are standardized. MCI cohort
303 results are shown in **Figure 2b**, AD cohort results are shown in **Figure 2c**. We flipped
304 the sign of MMSE so that lower scores reflect better testing performance for both
305 cognitive measures. In general, regression coefficients reflecting the associations
306 between CDRM or MMSE and aLEC (orange) thickness (and changes thereof) are
307 more significantly non-zero than those of pMEC (blue) thickness. The scaled
308 coefficients of aLEC are uniformly higher than pMEC except for the case of MMSE as a
309 function of % loss CT for the AD cohort. For the MCI cohort, both lower baseline aLEC
310 thickness and greater % loss aLEC CT predict worse CDRM and MMSE scores.
311

312 [INSERT FIGURE 2 HERE]
313

314 **EC cortical thickness and clinical diagnosis**

315 Model 3 regresses CT over cohort membership and its interaction with time. In general,
316 estimated effect sizes for aLEC as a function of cohort membership and time are twice
317 those for pMEC. Nonetheless, all linear associations are nominally statistically
318 significant at the 95% confidence level, i.e. none of the intervals contain zero.
319

320 The top row of **Figure 3** illustrates these results as a function of months from baseline.
321 aLEC thickness is regressed over cohort membership and months in **Figure 3a**, pMEC
322 thickness is regressed over the same in **Figure 3b**. The three cohorts exhibit greater
323 separation at baseline when viewed through aLEC thickness than they exhibit when
324 viewed through pMEC thickness. Estimated aLEC thickness 95% confidence bands
325 maintain complete separation among cohorts throughout time, whereas estimated
326 pMEC thickness 95% confidence bands do not.
327

328 **Figure 4** supplements these inferential results with a predictive analysis using ROC
329 curves to measure predictive content of aLEC and pMEC CTs with respect to MCI
330 (**Figure 4a**) and AD (**Figure 4b**) status. The aLEC curves are consistently above the
331 pMEC curves and yield higher AUCs, signifying greater predictive content at every
332 threshold of the continuous CT values. Both aLEC and pMEC AUCs outperform those
333 of subject age (MCI 0.47; AD 0.48) and total brain volume (MCI 0.47; AD 0.57).
334

335 **EC cortical thickness and CSF AD pathology**

336 Given the stronger associations between aLEC CT and clinical outcomes than between
337 pMEC thickness and the same, we ask whether a stronger link between aLEC thickness
338 and CSF AD pathology levels exists than between pMEC thickness and the same. This
339

341 secondary analysis provides a basis for future research into physiological mechanisms
342 underlying aLEC CT and its clinical effects.

343
344 We look at the longitudinal progressions of aLEC and pMEC thicknesses as a function
345 of the binary threshold given by the ratio of phosphorylated tau-181 (p-tau) to amyloid
346 beta (A β) being greater than 0.1³⁶⁻³⁹. These CSF data are available for a smaller 238
347 subject (70 healthy; 119 MCI; 49 AD) subset of the data used in the primary analyses.
348 Due to dearth of repeated measures for CSF levels, we consider only the first CSF
349 measurement for each individual and only include CT, CDRM and MMSE data collected
350 during visits occurring after this CSF measurement with one-month grace period.
351 Proportions of the ratio of p-tau to A β that are greater than 0.1 are 0.9 for the healthy
352 cohort, 0.97 for the MCI cohort and 1 for the AD cohort. We refer to these subjects as
353 being “p-tau/A β ratio-positive” or “amyloid ratio-positive”.

354
355 We model the linear associations between subregion CTs and ratio positivity and its
356 interaction with time from baseline (as measured by time of CSF measurement). The
357 bottom row of **Figure 3** presents the estimated linear cross-sectional (left) and
358 longitudinal (right) associations along with 95% confidence intervals. Cross-sectionally,
359 we estimate that the population of individuals with amyloid ratio positivity has 0.11 mm
360 less aLEC CT than does the population of individuals who are amyloid ratio negative.
361 For perspective, 0.11 mm is more than the difference between baseline aLEC thickness
362 means of healthy control and MCI cohorts presented in **Table 1**.

363
364 Longitudinally, we estimate that the amyloid ratio-positive sample of individuals
365 experiences an additional loss of 0.025 mm aLEC CT per year compared to the loss
366 experienced by the amyloid ratio-negative sample. The additional loss in aLEC CT
367 experienced by the amyloid ratio-positive sample requires 4 years before the difference
368 between healthy and MCI cohorts is spanned. Due to the smaller sample size in this
369 analysis, the results require further research and should be regarded as preliminary.
370

371 **Discussion**

372

373 Given the wealth of research implicating the transentorhinal region¹⁻³, selective
374 vulnerability of the aLEC to age-related alterations in processing⁹ and structural
375 changes associated with age-related cognitive decline¹⁰, we hypothesized that aLEC
376 structure, specifically CT, might provide a suitable biomarker for early AD detection. We
377 implemented a novel longitudinal CT pipeline on structural MRI data collected from the
378 ADNI-1 cohort and compared this data with MMSE and CDRM performance, diagnostic
379 cohort membership and CSF amyloid levels. Initial homogeneity analyses showed less
380 overlap between healthy control and AD cohorts as a function of aLEC CT than for
381 pMEC CT. We used LME models to analyze linear associations between these
382 quantities through time while controlling for within-subject correlations and confounders
383 such as age, sex, brain volume and APOE ϵ 4 genotype.

384
385 Primary analyses showed statistically and practically significant negative associations
386 between baseline aLEC thickness and progression of cognitive performance over time

387 (Model 1). We also observed statistically and practically significant associations
388 between change in aLEC thickness and cognitive performance through time (Model 2).
389 Cross-sectional and longitudinal correlations between aLEC thickness and cognitive
390 performance were present for both MCI and AD cohorts. We also tested whether
391 trajectories of EC subregional CT through time differentiate by clinical diagnostic
392 grouping (Model 3). aLEC thickness maintained complete separation between 95%
393 confidence bands between healthy, MCI and AD cohorts while pMEC thickness did not.
394

395 Results indicate that the EC subregions could be differentially affected during early
396 stages of AD. This is consistent with histopathological studies, which have reported that
397 neurofibrillary tangles and neuropil threads show a distribution pattern that allow for
398 staging ³. Initial stages show alterations confined to the transentorhinal region, which
399 includes the aLEC. These results contribute to growing evidence that the aLEC is
400 selectively vulnerable during early AD and also demonstrate that aLEC CT and changes
401 in thickness over time are sensitive to cognitive changes and serve as a viable
402 biomarker for prodromal AD.

403
404 In a secondary analysis, we analyzed the relationship between subregional CT and CSF
405 measures of amyloid and tau pathology. Clinical symptoms of Alzheimer's disease are
406 preceded by a long preclinical phase in which pathological protein aggregation occurs in
407 the brain ^{6,44}. Additionally, A β plaques develop ~15-20 years before onset of cognitive
408 impairment and neurofibrillary tangles begin to accumulate at least 5 years before
409 symptom onset ⁴⁴. Previous studies have shown low CSF levels of A β strongly correlate
410 with increased plaque load in the brain, and that high concentrations of CSF p \square tau
411 correlate with AD \square specific neurofibrillary pathology ^{45,46}. Furthermore, ptau₁₈₁-A β ₄₂ ratio
412 (ptau₁₈₁/A β ₄₂) has been shown to be a strong predictor of conversion from cognitively
413 normal to mild cognitive impairment over a 3~4 year period ³⁶⁻³⁸.

414
415 We found statistically and practically significant linear associations between the
416 binarized ratio p-tau/ A β >0.1 and aLEC CT and estimated that there are similar
417 differences in aLEC CT levels comparing the p-tau/ A β ratio-positive sample to the
418 ratio-negative sample as for the comparison between the MCI cohort and the healthy
419 cohort. Furthermore, the p-tau/ A β ratio-positive sample exhibits a statistically and
420 practically significant change in aLEC thickness over time, requiring an estimated 4
421 years to span the gap between healthy and MCI cohorts. This secondary analysis
422 suggests the presence of AD-specific neuropathology may mediate thinning of the
423 aLEC over time, but results require further investigation.

424
425 Overall, these results suggest that aLEC cortical thickness is a sensitive measure to
426 cognitive decline as well as to AD pathological stage. Considering the growing interest
427 in surrogate biomarkers that are sensitive and specific to AD especially during the early
428 stages, we suggest that aLEC thinning may be an early marker that may be associated
429 with cognitive decline especially in the memory domain and may serve as a mechanistic
430 link between pathological load and cognitive outcomes. Additional research should
431 focus on further understanding the function of aLEC and structural trajectories with
432 aging and disease. For example, the human aLEC appears is involved in tasks ranging

433 from visual object pattern separation ^{7,9} to intra-item configural processing ⁴⁷ to temporal
434 precision in real-world stimuli ⁴⁸. Developing tasks that are specific and sensitive to
435 aLEC (dys)function could serve as an early predictor of cognitive decline. In the future,
436 these tasks can provide measures that can be used as neurobiologically-validated
437 outcomes for clinical trials in preclinical AD.

438

439

440 Acknowledgements

441

442 We acknowledge our sources of funding: T32 AG000096 (AH), NSF DGE-1321846 and
443 B2D-1612490 (FM), as well NIA R01AG053555 and P50AG05146 (DG and MAY). We
444 also acknowledge posthumously our co-author Jared Roberts who inspired and
445 developed the initial stages of this project. Data collection and sharing for this project
446 was funded by the Alzheimer's Disease Neuroimaging Initiative (ADNI) (National
447 Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense
448 award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging,
449 the National Institute of Biomedical Imaging and Bioengineering, and through generous
450 contributions from the following: AbbVie, Alzheimer's Association; Alzheimer's Drug
451 Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb
452 Company; CereSpir, Inc.; Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and
453 Company; Euroimmun; F. Hoffmann-La Roche Ltd and its affiliated company
454 Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer
455 Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical
456 Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale
457 Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis
458 Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda
459 Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of
460 Health Research is providing funds to support ADNI clinical sites in Canada. Private
461 sector contributions are facilitated by the Foundation for the National Institutes of Health
462 (www.fnih.org). The grantee organization is the Northern California Institute for
463 Research and Education, and the study is coordinated by the Alzheimer's Therapeutic
464 Research Institute at the University of Southern California. ADNI data are disseminated
465 by the Laboratory for Neuro Imaging at the University of Southern California.

466

467

468 References

469

- 470 1. Hyman BT, Van Hoesen GW, Damasio AR, Barnes CL. Alzheimer's disease: cell-
471 specific pathology isolates the hippocampal formation. *Science* (80-).
472 1984;225(4667):1168-1170. doi:10.1126/science.6474172
- 473 2. Van Hoesen GW, Hyman BT, Damasio AR. Entorhinal cortex pathology in
474 Alzheimer's disease. *Hippocampus*. 1991;1(1):1-8. doi:10.1002/hipo.450010102

475 3. Braak H, Braak E. Demonstration of Amyloid Deposits and Neurofibrillary
476 Changes in Whole Brain Sections. *Brain Pathol.* 1991;1(3):213-216.
477 doi:10.1111/j.1750-3639.1991.tb00661.x

478 4. Gomez-Isla T, West HL, Rebeck GW, et al. Clinical and pathological correlates of
479 apolipoprotein E epsilon 4 in Alzheimer's disease. *Ann Neurol.* 1996;39(1):62-70.
480 doi:10.1002/ana.410390110

481 5. Kordower JH, Chu Y, Stebbins GT, et al. Loss and atrophy of layer II entorhinal
482 cortex neurons in elderly people with mild cognitive impairment. *Ann Neurol.*
483 2001;49(2):202-213. <https://www.ncbi.nlm.nih.gov/pubmed/11220740>.

484 6. Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC. Neuron number in
485 the entorhinal cortex and CA1 in preclinical Alzheimer disease. *Arch Neurol.*
486 2001;58(9):1395-1402. doi:10.1001/archneur.58.9.1395

487 7. Reagh ZM, Yassa MA. Object and spatial mnemonic interference differentially
488 engage lateral and medial entorhinal cortex in humans. *Proc Natl Acad Sci U S A.*
489 2014;111(40):E4264-73. <http://www.ncbi.nlm.nih.gov/pubmed/25246569>.

490 8. Maass A, Berron D, Libby LA, Ranganath C, Düzel E. Functional subregions of
491 the human entorhinal cortex. *eLife.* 2015;4(JUNE):1-20. doi:10.7554/eLife.06426

492 9. Reagh ZM, Noche JA, Tustison NJ, Delisle D, Murray EA, Yassa MA. Functional
493 Imbalance of Anterolateral Entorhinal Cortex and Hippocampal Dentate/CA3
494 Underlies Age-Related Object Pattern Separation Deficits. *Neuron.* 2018;97(5).
495 doi:10.1016/j.neuron.2018.01.039

496 10. Olsen RK, Yeung L-K, Noly-Gandon A, et al. Human anterolateral entorhinal
497 cortex volumes are associated with cognitive decline in aging prior to clinical
498 diagnosis. *Neurobiol Aging.* 2017;57:195-205.
499 doi:10.1016/j.neurobiolaging.2017.04.025

500 11. deToledo-Morrell L, Stoub TR, Bulgakova M, et al. MRI-derived entorhinal volume
501 is a good predictor of conversion from MCI to AD. *Neurobiol Aging.*
502 2004;25(9):1197-1203. doi:10.1016/j.neurobiolaging.2003.12.007

503 12. Devanand DP, Pradhaban G, Liu X, et al. Hippocampal and entorhinal atrophy in
504 mild cognitive impairment: prediction of Alzheimer disease. *Neurology.*
505 2007;68(11):828-836. doi:10.1212/01.wnl.0000256697.20968.d7

506 13. Jauhainen AM, Pihlajamäki M, Tervo S, et al. Discriminating accuracy of medial
507 temporal lobe volumetry and fMRI in mild cognitive impairment. *Hippocampus.*
508 2009;19(2):166-175. doi:10.1002/hipo.20494

509 14. Pennanen C, Kivipelto M, Tuomainen S, et al. Hippocampus and entorhinal cortex
510 in mild cognitive impairment and early AD. *Neurobiol Aging.* 2004;25(3):303-310.
511 doi:10.1016/S0197-4580(03)00084-8

512 15. Weiner MW, Veitch DP, Aisen PS, et al. The Alzheimer's Disease Neuroimaging
513 Initiative: A review of papers published since its inception. *Alzheimer's Dement.*
514 2012;8(1):S1-S68. doi:10.1016/j.jalz.2011.09.172

515 16. Fischl B, Dale AM. Measuring the thickness of the human cerebral cortex from
516 magnetic resonance images. *Proc Natl Acad Sci U S A.* 2000;97(20):11050-
517 11055. doi:10.1073/pnas.200033797

518 17. Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM, Initiative ADN.
519 Subregional neuroanatomical change as a biomarker for Alzheimer's disease.
520 *Proc Natl Acad Sci U S A.* 2009;106(49):20954-20959.

521 doi:10.1073/pnas.0906053106

522 18. Desikan RS, Cabral HJ, Settecase F, et al. Automated MRI measures predict
523 progression to Alzheimer's disease. *Neurobiol Aging*. 2010;31(8):1364-1374.
524 doi:10.1016/j.neurobiolaging.2010.04.023

525 19. Ewers M, Walsh C, Trojanowski JQ, et al. Prediction of conversion from mild
526 cognitive impairment to Alzheimer's disease dementia based upon biomarkers
527 and neuropsychological test performance. *Neurobiol Aging*. 2012;33(7):1203-
528 1214. doi:10.1016/j.neurobiolaging.2010.10.019

529 20. Reuter M, Fischl B. Avoiding asymmetry-induced bias in longitudinal image
530 processing. *Neuroimage*. 2011;57(1):19-21.
531 doi:10.1016/j.neuroimage.2011.02.076

532 21. Yushkevich PA, Avants BB, Das SR, Pluta J, Altinay M, Craige C. Bias in
533 estimation of hippocampal atrophy using deformation-based morphometry arises
534 from asymmetric global normalization: An illustration in ADNI 3 T MRI data.
535 *Neuroimage*. 2010;50(2):434-445. doi:10.1016/j.neuroimage.2009.12.007

536 22. Das SR, Avants BB, Grossman M, Gee JC. Registration based cortical thickness
537 measurement. *Neuroimage*. 2009;45(3):867-879.
538 doi:10.1016/j.neuroimage.2008.12.016

539 23. Wang H, Yushkevich PA. Multi-atlas segmentation with joint label fusion and
540 corrective learning—an open source implementation. *Front Neuroinform*. 2013;7.
541 doi:10.3389/fninf.2013.00027

542 24. Yushkevich PA, Wang H, Pluta J, et al. Nearly automatic segmentation of
543 hippocampal subfields in in vivo focal T2-weighted MRI. *Neuroimage*.
544 2010;53(4):1208-1224. doi:10.1016/j.neuroimage.2010.06.040

545 25. Avants BB, Tustison NJ, Song G, Cook PA, Klein A, Gee JC. A reproducible
546 evaluation of ANTs similarity metric performance in brain image registration.
547 *Neuroimage*. 2011;54(3):2033-2044. doi:10.1016/j.neuroimage.2010.09.025

548 26. Avants BB, Tustison NJ, Stauffer M, Song G, Wu B, Gee JC. The Insight ToolKit
549 image registration framework. *Front Neuroinform*. 2014;8:44.
550 doi:10.3389/fninf.2014.00044

551 27. Tustison NJ, Holbrook AJ, Avants BB, et al. Longitudinal Mapping of Cortical
552 Thickness Measurements: An Alzheimer's Disease Neuroimaging Initiative-Based
553 Evaluation Study. *J Alzheimers Dis*. 2019;71(1):165-183. doi:10.3233/JAD-
554 190283

555 28. Avants BB, Yushkevich P, Pluta J, et al. The optimal template effect in
556 hippocampus studies of diseased populations. *Neuroimage*. 2010;49(3):2457-
557 2466. doi:10.1016/j.neuroimage.2009.09.062

558 29. Tustison NJ, Avants BB. Explicit B-spline regularization in diffeomorphic image
559 registration. *Front Neuroinform*. 2013;7:39. doi:10.3389/fninf.2013.00039

560 30. Tustison NJ, Avants BB, Cook PA, et al. The ANTs cortical thickness processing
561 pipeline. *Med Imaging 2013 Biomed Appl Mol Struct Funct Imaging*. 2013.
562 doi:10.1117/12.2007128

563 31. Klein A, Ghosh SS, Bao FS, et al. Mindboggling morphometry of human brains.
564 *PLoS Comput Biol*. 2017;13(2):e1005350. doi:10.1371/journal.pcbi.1005350

565 32. Lehmann G, Legland D. Efficient N-Dimensional surface estimation using Crofton
566 formula and run-length encoding. *Insight J*. 2012.

567 33. Verbeke G, Molenberghs G. *Linear Mixed Models for Longitudinal Data*. Springer
568 Science & Business Media; 2009.
569 https://books.google.com/books/about/Linear_Mixed_Models_for_Longitudinal_Data.html?hl=&id=jmPkX4VU7h0C LB - Y761.

570 34. Ruppert D, Wand MP, Carroll RJ. *Semiparametric Regression*. Cambridge
571 University Press; 2003.
572 https://books.google.com/books/about/Semiparametric_Regression.html?hl=&id=Y4uEvXFP2voC LB - 8rF3.

573 35. Huang HK. Evaluation of Diagnostic Systems: Methods from Signal Detection
574 Theory by J. A. Swets and R. M. Pickett. *Med Phys*. 1983;10(2):266-267.
575 doi:10.11118/1.595256

576 36. Harari O, Cruchaga C, Kauwe JSK, et al. Phosphorylated tau- β 42 ratio as a
577 continuous trait for biomarker discovery for early-stage Alzheimer's disease in
578 multiplex immunoassay panels of cerebrospinal fluid. *Biol Psychiatry*.
579 2014;75(9):723-731. doi:10.1016/j.biopsych.2013.11.032

580 37. Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between in vivo amyloid
581 imaging load and cerebrospinal fluid Abeta42 in humans. *Ann Neurol*.
582 2006;59(3):512-519. doi:10.1002/ana.20730

583 38. Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM.
584 Cerebrospinal fluid tau/beta-amyloid(42) ratio as a prediction of cognitive decline
585 in nondemented older adults. *Arch Neurol*. 2007;64(3):343-349.
586 doi:10.1001/archneur.64.3.noc60123

587 39. Grill JD, Nuño MM, Gillen DL, Initiative ADN. Which MCI Patients Should be
588 Included in Prodromal Alzheimer Disease Clinical Trials? *Alzheimer Dis Assoc
589 Disord*. 2019;33(2):104-112. doi:10.1097/WAD.0000000000000303

590 40. Team RC. *An Introduction to R*. Samurai Media Limited; 2015.
591 https://books.google.com/books/about/An_Introduction_to_R.html?hl=&id=tGwds
592 wEACAAJ LB - i5JN.

593 41. Heisterkamp h S, Simon, Heisterkamp H, et al. Update of the nlme Package to
594 Allow a Fixed Standard Deviation of the Residual Error. *R J*. 2017;9(1):239.
595 doi:10.32614/rj-2017-010

596 42. Wickham H. Programming with ggplot2. *Use R!*. 2016:241-253. doi:10.1007/978-
597 3-319-24277-4_12

598 43. Sachs MC. plotROC: A Tool for Plotting ROC Curves. *J Stat Softw*. 2017;79.
599 doi:10.18637/jss.v079.c02

600 44. Holtzman DM, Goate A, Kelly J, Sperling R. Mapping the Road Forward in
601 Alzheimer's Disease. *Sci Transl Med*. 2011;3(114):114ps48-114ps48.
602 doi:10.1126/scitranslmed.3003529

603 45. Buerger K, Ewers M, Pirttila T, et al. CSF phosphorylated tau protein correlates
604 with neocortical neurofibrillary pathology in Alzheimer's disease. *Brain*.
605 2006;129(11):3035-3041. doi:10.1093/brain/awl269

606 46. Strozyk D, Blennow K, White LR, Launer LJ. CSF A 42 levels correlate with
607 amyloid-neuropathology in a population-based autopsy study. *Neurology*.
608 2003;60(4):652-656. doi:10.1212/01.wnl.0000046581.81650.d0

609 47. Yeung L-K, Olsen RK, Bild-Enkin HEP, et al. Anterolateral Entorhinal Cortex
610 Volume Predicted by Altered Intra-Item Configural Processing. *J Neurosci*.
611

612

613 2017;37(22):5527-5538. doi:10.1523/JNEUROSCI.3664-16.2017

614 48. Montchal ME, Reagh ZM, Yassa MA. Precise temporal memories are supported
615 by the lateral entorhinal cortex in humans. *Nat Neurosci*. 2019;22(2):284-288.
616 doi:10.1038/s41593-018-0303-1

617 49. Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer's Disease Neuroimaging
618 Initiative (ADNI): clinical characterization. *Neurology*. 2010;74(3):201-209.
619 doi:10.1212/WNL.0b013e3181cb3e25

620 50. Jack Jr CR, Bernstein MA, Fox NC, et al. The Alzheimer's Disease Neuroimaging
621 Initiative (ADNI): MRI methods. *J Magn Reson Imaging*. 2008;27(4):685-691.
622 doi:10.1002/jmri.21049

623

	Control (219)	MCI (380)	AD (176)
Baseline aLEC (mm)	2.19 (0.14)	2.11 (0.20)	1.97 (0.19)
Loss aLEC (%/yr)	6.7×10^{-4} (2.6×10^{-2})	1.1×10^{-2} (3.1×10^{-2})	1.3×10^{-2} (4.0×10^{-2})
Baseline pMEC (mm)	1.89 (0.13)	1.85 (0.15)	1.77 (0.16)
Loss pMEC (%/yr)	1.4×10^{-3} (2.2×10^{-2})	5.2×10^{-3} (2.4×10^{-2})	6.9×10^{-3} (3.0×10^{-2})
Baseline MMSE	29.12 (0.97)	27.06 (1.78)	23.41 (2.04)
Loss MMSE (%/yr)	4.0×10^{-4} (4.8×10^{-2})	2.7×10^{-2} (1.0×10^{-1})	1.0×10^{-1} (1.8×10^{-1})
Baseline CDRM	0.00 (0.15)	0.57 (0.19)	1.00 (0.32)
Gain CDRM (%/yr)	N/A	1.7×10^{-1} (5.4×10^{-1})	2.5×10^{-1} (5.6×10^{-1})
Brain volume (mm ³)	1.47×10^6 (1.39×10^5)	1.50×10^6 (1.48×10^5)	1.45×10^6 (1.62×10^5)
Baseline age (yrs)	75.97 (5.06)	74.93 (7.14)	75.01 (7.63)
APOE (% with (0, 1, 2) ε4 alleles)	(74, 24, 2)	(47, 42, 12)	(33, 48, 19)
Male (%)	54	64	52

Continuous variables present as *mean (standard deviation)*

aLEC: anterior lateral entorhinal cortex

pMEC: posterior medial entorhinal cortex

MMSE: mini-mental state exam

CDRM: clinical dementia rating–memory

APOE: apolipoprotein ε4

624

625

626 **Table 1. Outcomes, predictors, and confounding variables.** For each continuous
627 variable, we show cohort means and standard deviations. For factors, we show the
628 percentage of the cohort in each level. Baseline variables are shown with their natural
629 scale, whereas change in these variables is shown using percentages to facilitate
630 comparison across variables.

631

632

633 Figures and Captions

634

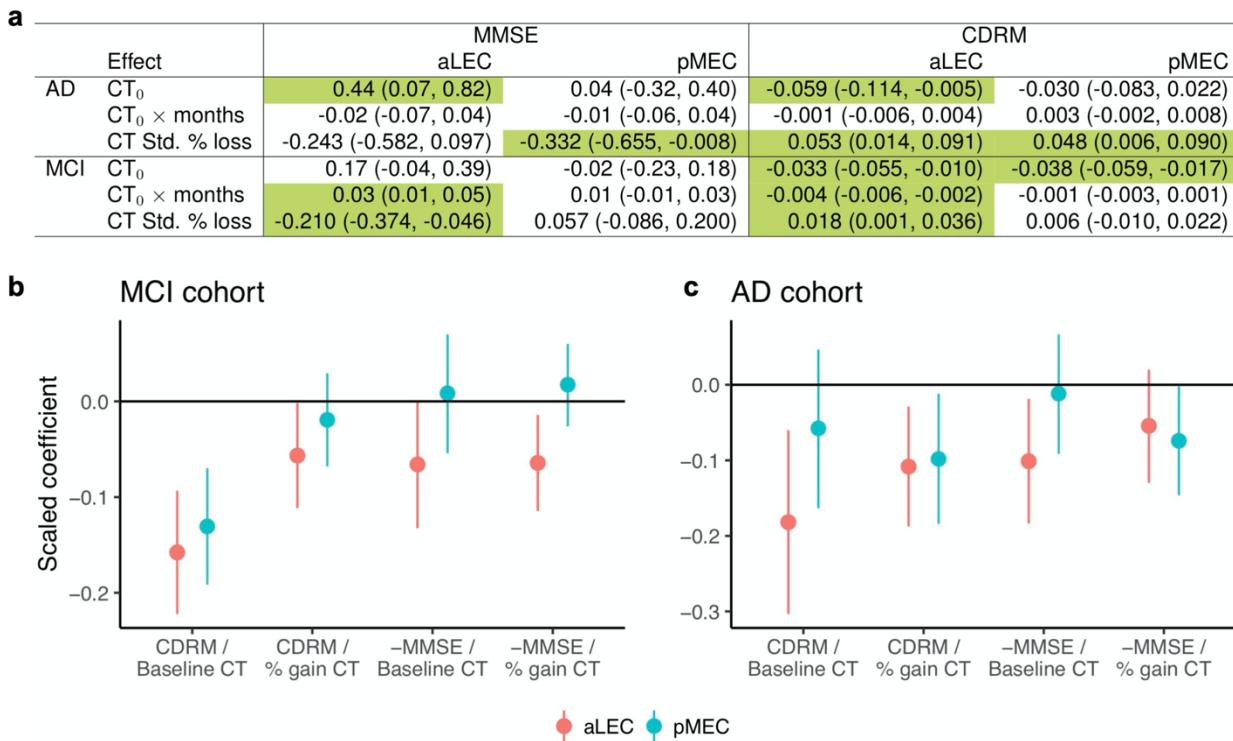


635
636

637 **Figure 1. Scatterplots featuring anterolateral and posteromedial (aLEC and pMEC)**
638 **cortical thickness (CT) and age stratified by sex and diagnostic cohort.** aLEC
639 thickness in males (a) and females (c) exhibits moderately less overlap between cohorts
640 than does pMEC thickness in males (b) and females (d). We quantify overlap between
641 healthy and AD cohorts using nearest neighbor misclassification rate as homogeneity
642 index.

643
644

645



646

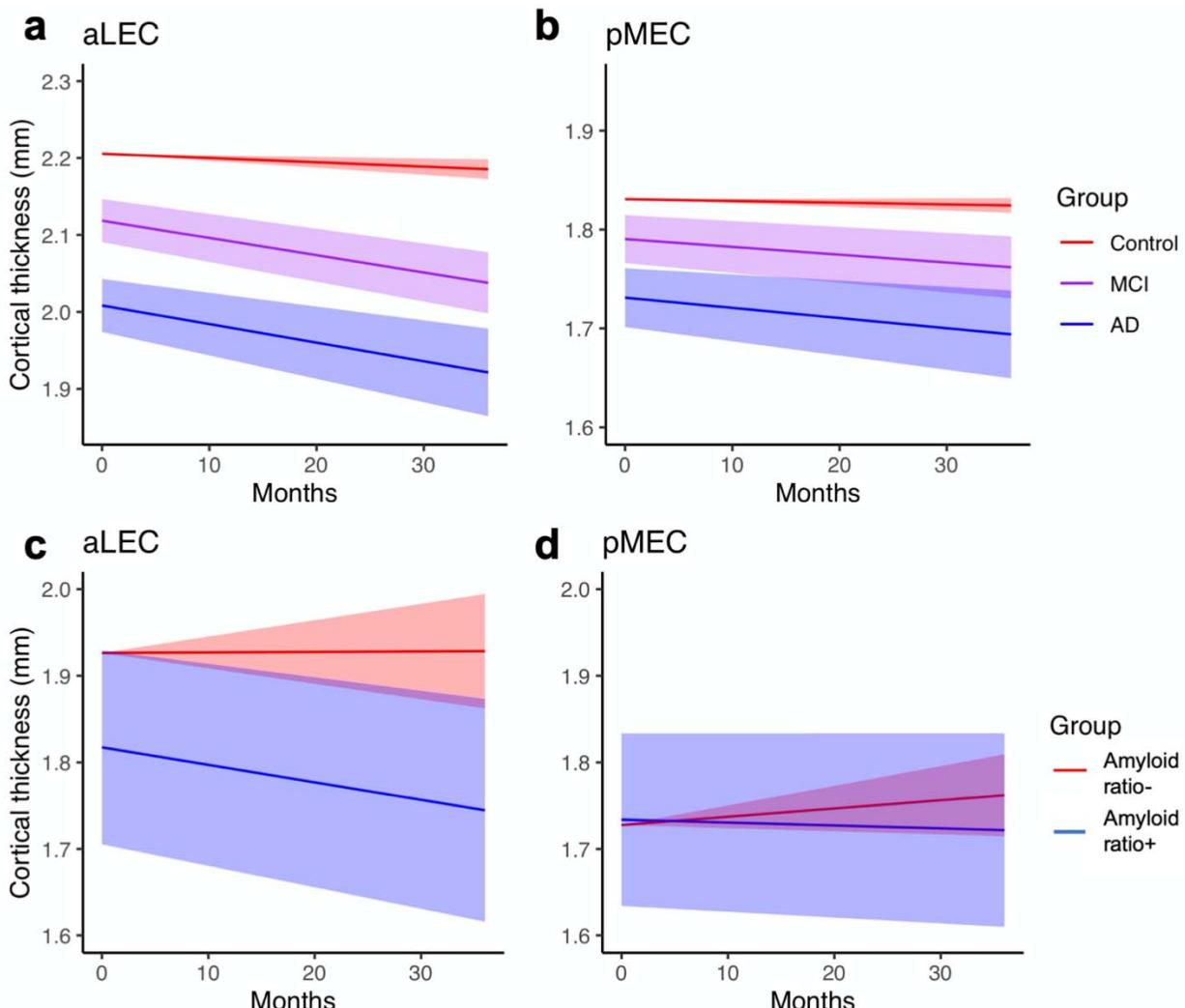
647

648 **Figure 2. Estimated linear associations and nominal 95% confidence intervals**
649 **between anterolateral and posteromedial entorhinal (aLEC and pMEC) cortical**
650 **thicknesses (CT) and MMSE or CDRM. (a)** for AD and MCI cohorts, the first row
651 contains cross-sectional associations with baseline thickness (CT₀) whereas the second
652 and third lines contain longitudinal associations. Cells for which intervals do not contain
653 zero are green. **(b-c)** Model 2's adjusted linear associations between CDRM or MMSE
654 and aLEC or pMEC baseline thicknesses and percent change in thickness from
655 baseline. Baseline CT, percent gain CT, MMSE and CDRM are standardized. MMSE is
656 negated since high performance is a higher score for MMSE but lower for CDRM.
657 Associations are stronger for aLEC CT than for pMEC CT for both MCI **(b)** and AD **(c)**,
658 exhibiting point estimates of greater scale as well as fewer confidence intervals
659 overlapping zero.

660

661

662



663

664

Figure 3. Subregion cortical thickness (CT) progressions through time as estimated using Model 3 along with 95% confidence bands. Model 3 accounts for individual variations as well as confounding variables. **(a-b)** when viewed through aLEC CT, the diagnostic cohorts exhibit statistically significant separation that persists through the entire time of measurement. Such separation is not apparent in pMEC CT. **(c-d)** secondary analysis on subset of ADNI-1 cohort comparing progressions for amyloid ratio-positive (p-tau/A β > 0.1) and ratio-negative cohorts shows qualitatively different behavior between aLEC and posteromedial entorhinal (pMEC) CT, suggesting a possible role for CSF amyloid ratio in influencing aLEC but not pMEC CT trajectory.

665

666

667

668

669

670

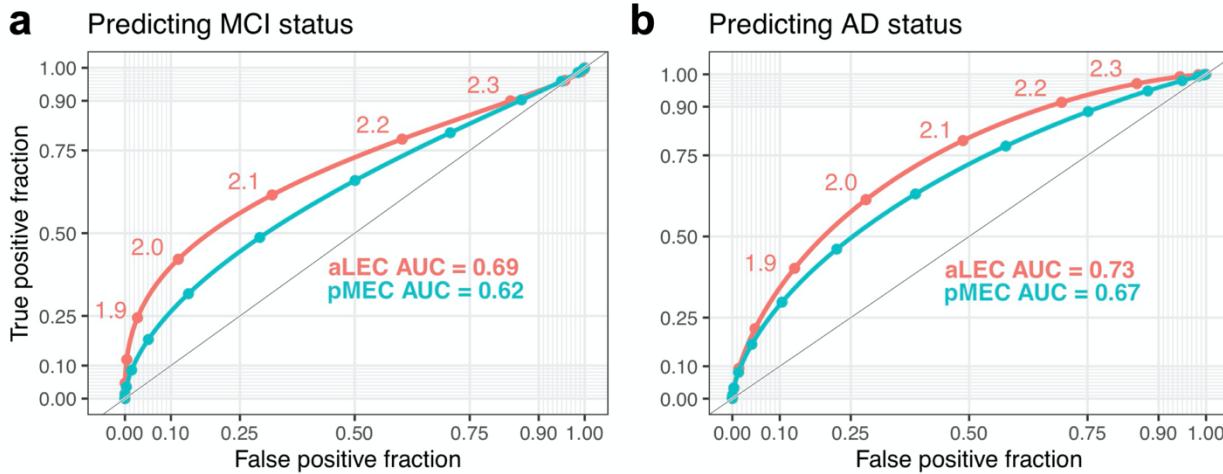
671

672

673

674

675



676
677
678
679
680
681
682
683
684

Figure 4. Receiver operating characteristic (ROC) curves for the prediction of MCI status and AD status using aLEC and pMEC CT. (a) In predicting MCI status, the aLEC curve dominates the respective pMEC curve and exhibits a larger area under the curve (AUC 0.69 vs. 0.62). (b) In predicting AD status, the aLEC curve also dominates the respective pMEC curve and exhibits a larger area under the curve (AUC 0.73 vs. 0.67). Both aLEC and pMEC AUCs outperform those of subject age (MCI 0.47; AD 0.48) and total brain volume (MCI 0.47; AD 0.57).

685 **Anterolateral entorhinal cortex thickness as a new biomarker 686 for early detection of Alzheimer's disease**

687

688 Andrew Holbrook^{1*}, Nicholas Tustison^{2,3}, Freddie Marquez³, Jared Roberts³, Michael A.
689 Yassa^{3*}, Daniel Gillen^{1*}, for the Alzheimer's Disease Neuroimaging Initiative[§]

690

691 **Supplementary Materials**

692

693 **Supplementary Methods**

694

695 **S.1. The ADNI dataset**

696

697 Data used in the preparation of this article were obtained from the ADNI database
698 (<http://adni.loni.ucla.edu/>). The ADNI was launched in 2003 by the National Institute on
699 Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
700 the Food and Drug Administration (FDA), private pharmaceutical companies and non-
701 profit organizations, as a \$60 million, 5- year public-private partnership. The primary
702 goal of ADNI (PI: Michael Weiner, UCSF) has been to test whether serial magnetic
703 resonance imaging (MRI), positron emission tomography (PET), other biological
704 markers, and clinical and neuropsychological assessment can be combined to measure
705 the progression of MCI and early AD. Determination of sensitive and specific markers of
706 very early AD progression is intended to aid researchers and clinicians to develop new
707 treatments and monitor their effectiveness, as well as lessen the time and cost of
708 clinical trials.

709

710 ADNI is the result of efforts of many co-investigators from a broad range of academic
711 institutions and private corporations, and subjects have been recruited from over 50
712 sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults,
713 ages 55 to 90, to participate in the research, approximately 200 cognitively normal older
714 individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years
715 and 200 people with early AD to be followed for 2 years. A detailed description of the
716 ADNI population, protocols and biomarkers is provided at <http://adni.loni.ucla.edu/>.

717

718 **S.2. Subject selection**

719

720 The ADNI general eligibility criteria are previously described ⁴⁹. Normal controls (NC)
721 have a CDR of 0. Subjects with MCI have a subjective memory complaint, objective
722 memory loss measured by education-adjusted scores on Wechsler Memory Scale
723 Logical Memory II, a CDR of 0.5, preserved activities of daily living, and absence of
724 dementia. Subjects with AD have a CDR of 0.5 or 1.0 and meet NINDS criteria for
725 probable AD. At the time of download, 300 individuals with MCI and 191 healthy
726 controls with baseline, 6 months, and 12-month follow-up data were available for
727 download and were used in the current study. We also randomly selected a sample of
728 49 AD patients with baseline scans for comparison and to define the parametric space

729 of EC thickness. Demographics and baseline neuropsychological variables for all three
730 groups are shown in **Table 1**. Neuropsychological test data were not available for 4 AD
731 subjects.

732

733 **S.3. MRI methods**

734

735 Detailed methods of MRI acquisition are previously described ⁵⁰. Only T1-weighted 3D
736 MP-RAGE scans were used in this report (acquisition parameters: FOV = 240 x 240;
737 matrix = 192 x 192; TR = 3000 ms; TI = 1000; flip angle = 8 degrees, slice thickness =
738 1.2 mm; sagittal orientation). All MPRAGE scans underwent quality control procedures,
739 N3 bias correction and were scaled for gradient drift using phantom data.

740

741 **S.4. Inferential model building and variable selection**

742

743 To moderate inflation of type 1 error, we design our statistical models from first
744 principles and prior to accessing the data. We select model responses and predictors of
745 interest based on our neuroscientific questions of interest. After this, we decide upon
746 the inclusion of additional covariates based on whether they might be confounders, i.e.,
747 variables that might influence both outcome and predictors of interest, or precision
748 variables, i.e., variables that influence outcome alone. Inclusion of confounders
749 decreases estimator bias and increases variance, leading to more conservative
750 intervals. Inclusion of precision variables tightens confidence intervals, increasing
751 certainty.

752

753 With these relationships in mind, we now discuss inclusion rationale. The first two
754 models regress cognitive indices over CT and functions of CT and time from baseline.
755 As such, we include *months* from baseline, clinical *diagnosis*, the *number of APOE 44*
756 *alleles*, *sex*, *age* and *total brain volume* as potential confounding variables – months
757 from baseline plausibly modulates CT and cognition scores; as a primary biomarker for
758 genetic predisposition, APOE allele count certainly associates with cognition and might
759 associate with CT; when combined with other subject descriptors, sex might modulate
760 cognitive performance and certainly modulates CT; age certainly modulates both; and
761 brain volume plausibly modulates both. For Model 3, similar logic applies by exchanging
762 clinical diagnosis for cognition scores. A difference is that we take months from baseline
763 to be a precision variable since CT changes with time but diagnosis remains constant
764 for the cohort we consider.

765

766 Importantly, we adjust for all but one potential confounder by inclusion in the regression
767 models as covariates, with the only exception being diagnostic status for Models 1 and
768 2. Since diagnostic differences plausibly modify the relationship between cortical
769 thickness and MMSE/CDRM in complicated, nonlinear ways, we instead stratify the
770 analysis by diagnosis, fitting the two models to the individual cohorts separately. Such
771 stratification increases model robustness but decreases power, here expressed as
772 wider, more conservative confidence intervals. Variables of all models appear in **Table**
773 **S1**.

774

775 **Supplementary Results**

776

777 **Statistical interpretations for Models 1 and 2**

778

779 We provide statistical interpretations here as examples. Focusing on the upper left cell
780 of Figure 2 in which the association between baseline aLEC thickness and MMSE is
781 presented), the interpretation is that for every additional standard deviation in baseline
782 aLEC thickness, there is an estimated gain of 0.44 (95% CI: 0.07, 0.82) MMSE
783 expected for the AD subjects. For the result in which CDRM is modeled as a function of
784 the interaction between baseline aLEC cortical thickness and months from baseline
785 within MCI subjects, our interpretation is that for every additional standard deviation of
786 baseline aLEC thickness and for each additional month from baseline, there is an
787 estimated decrease of 0.004 (95% CI: 0.002, 0.006) in CDRM expected for MCI
788 subjects. Finally, for the estimated linear association between standardized percent loss
789 aLEC thickness and CDRM for the AD population, our interpretation is that for every
790 additional standard deviation of percent loss from baseline, there is an estimated
791 increase in CDRM of 0.053 (95% CI: 0.014, 0.091) expected for AD subjects.

792

793 **Statistical interpretations for Model 3**

794

795 Considering aLEC thickness as a function of AD group membership and its interaction
796 with time, it is estimated that when comparing the AD group to the healthy group, (1) the
797 AD group has 0.20 mm (95% CI: 0.16, 0.23) lower aLEC thickness expected, all other
798 covariates being held equal; and (2) the AD group has 0.02 mm (95% CI: 0.01, 0.04)
799 lower aLEC thickness expected for each additional year from baseline, all other
800 covariates being held equal. For the MCI group, estimated cross-sectional association
801 with aLEC thickness is half that of the AD population (0.9 mm; 95% CI: 0.06, 0.12), but
802 the estimated longitudinal association is roughly equal to that of the AD population (0.02
803 mm; 95% CI: 0.01, 0.02).

804

805

806 **Table S1.** Linear mixed-effects models and their variables.

Model	Variable type	Variables
I	Response	MMSE or CDRM
	Predictor of interest	CT_0 and $CT_0 \times \text{months}$ for aLEC or pMEC
	Potential confounders	months, diagnosis, APOE, sex, age, brain volume
	Precision variable	—
II	Response	MMSE or CDRM
	Predictor of interest	CT_0 and % loss CT for aLEC or pMEC
	Potential confounders	months, diagnosis, APOE, sex, age, brain volume
	Precision variable	—
III	Response	CT for aLEC or pMEC
	Predictor of interest	diagnosis (control, MCI, AD)
	Potential confounder	MMSE, APOE, sex, age, brain volume
	Precision variable	months
IV	Response	CT for aLEC or pMEC
	Predictor of interest	$p\text{-tau}/A\beta > 0.1$
	Potential confounder	MMSE, APOE, sex, age, brain volume
	Precision variable	months

CT: cortical thickness

CT_0 : cortical thickness at baseline

aLEC: anterior lateral entorhinal cortex

pMEC: posterior medial entorhinal cortex

MMSE: mini-mental state exam

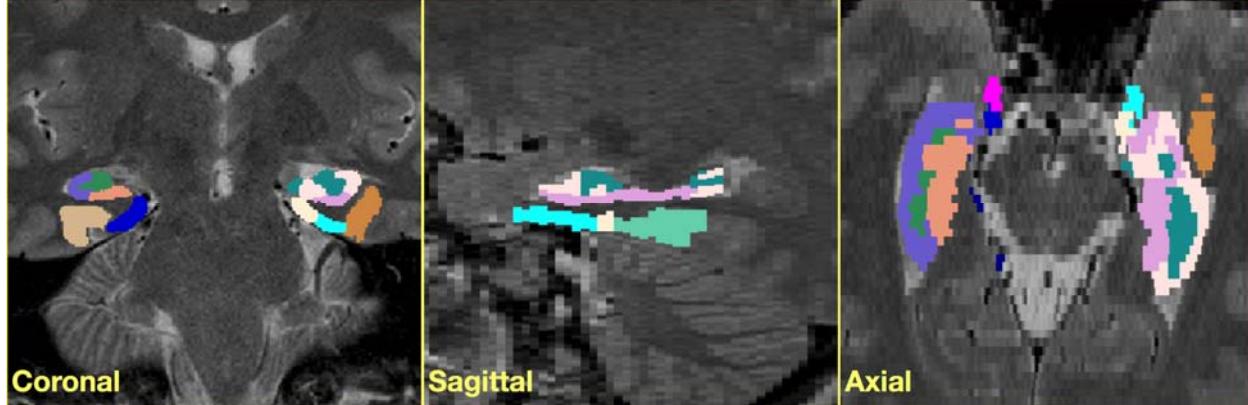
CDRM: clinical dementia rating–memory

APOE: apolipoprotein $\epsilon 4$

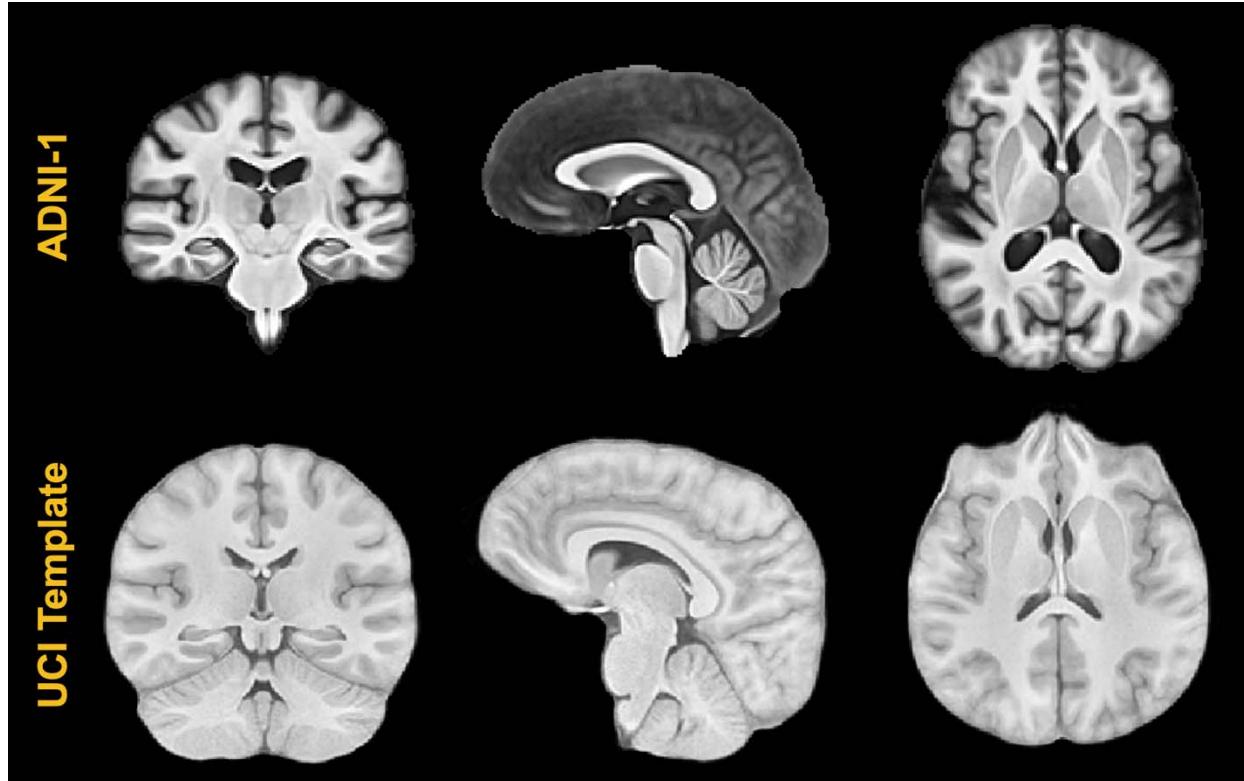
p-tau: phosphorylated tau-181

$A\beta$: amyloid beta 42

807
808
809
810
811
812
813
814

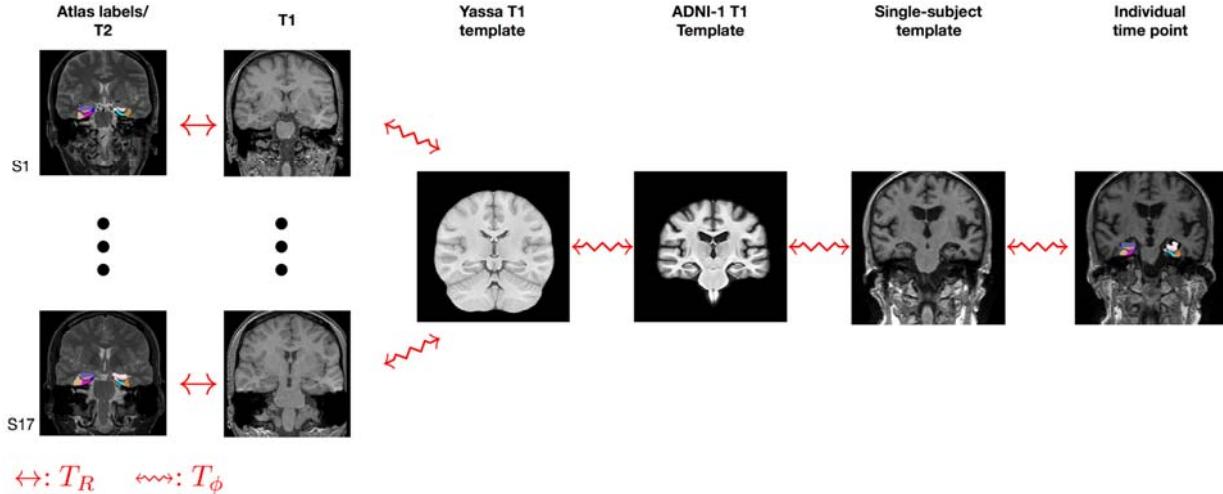


815
816
817 **Figure S1. Atlas labels for Subject S1 partitioning the EC/hippocampal cortical**
818 **complex.** Each set of labels for the 17 subjects was manually placed in the space of the
819 subject's T2-weighted image using the procedure specified in the text.
820
821



822
823
824 **Figure S2. Representative views of the two population-specific templates created**
825 **for this study.** The ADNI-1 template was created from 52 cognitively normal subjects
826 selected from the ADNI-1 template while the UCI template was created from the 17 T1-
827 weighted images of the atlas set used for joint label fusion. These images constitute the
828 intermediate spaces for the pseudo-geodesic transform between the EC labels and the
829 T1-weighted images representing individual subject time points.
830

831



833 $\leftrightarrow: T_R$ $\leftrightarrow: T_\phi$

834

835 **Figure S3. Illustration of the set of transforms used to map the set of 17 atlas**
836 **labels to the T1 image of each individual time point.** This pseudo-geodesic scheme
837 minimizes the total number of pair-wise registrations for this study while taking
838 advantage of the longitudinal aspect of the data. T_R and T_D denotes rigid and
839 diffeomorphic transforms, respectively.

840

841

842

843

844

845

843

846

847

848

849

850

851

852

853