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Abstract: 42 
 43 
Introduction: Loss of entorhinal cortex (EC) layer II neurons represents the earliest AD 44 
lesion in the brain. Research suggests differing functional roles between two EC 45 
subregions, the anterolateral EC (aLEC) and the posteromedial EC (pMEC). 46 
 47 
Methods: We use joint label fusion to obtain aLEC and pMEC cortical thickness 48 
measurements from serial MRI scans of 775 ADNI-1 participants (219 healthy; 380 MCI; 49 
176 AD) and use linear mixed-effects models to analyze longitudinal associations 50 
between cortical thickness, disease status and cognitive measures. 51 
 52 
Results:  Group status is reliability predicted by aLEC thickness, which also exhibits 53 
greater associations with cognitive outcomes than does pMEC thickness. Change in 54 
aLEC thickness is also associated with CSF amyloid and tau levels.  55 
 56 
Discussion: Thinning of aLEC is a sensitive structural biomarker that changes over 57 
short durations in the course of AD and tracks disease severity – it is a strong candidate 58 
biomarker for detection of early AD. 59 
 60 
 61 
 62 
 63 
 64 
 65 

  66 
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Introduction: 67 
 68 
Layer II of the entorhinal cortex (EC) is one of the earliest sites for the accumulation of 69 
tangle pathology and neurodegeneration in the course of Alzheimer’s disease (AD) 1–3. 70 
Quantitative studies of neuron numbers in autopsy brains characterized for AD 71 
pathology have shown that a substantial reduction in EC is observed by the time of 72 
dementia diagnosis and further progressive loss of EC neurons occurs over the course 73 
of the disease 4–6. Little or no neuron loss occurs within EC in healthy aged brains 74 
without AD pathology suggesting that EC neurodegeneration is specific to disease 4. 75 
 76 
Histopathological data indicate that the transentorhinal region, which consists of the 77 
anterolateral EC (aLEC) and perirhinal cortex, is vulnerable in the early stages of AD 78 
(Braak Stages I and II [2]). Recent evidence has elucidated a functional subdivision in 79 
the EC whereby the lateral and medial portions are involved in different aspects of 80 
information processing 7 and are differentially connected with the perirhinal and 81 
parahippocampal cortices 8. Other work has shown that the aLEC (which maps onto the 82 
lateral entorhinal cortex in rodents) is selectively vulnerable to age-related alterations in 83 
processing 9 as well as structural changes associated with age-related cognitive decline 84 
10 in contrast to the posteromedial portion (pMEC). While volume reductions in the EC 85 
independently predict the likelihood of conversion from healthy aging to amnestic mild 86 
cognitive impairment (MCI) and from MCI to AD 11–13, preceding and predicting 87 
hippocampal volume reduction 14, it is unclear whether these volumetric changes are 88 
primarily driven by the aLEC or the pMEC. 89 
 90 
Given the need for improved diagnostic biomarkers that are capable of detecting the 91 
earliest signs of neurodegeneration and the wealth of evidence pointing to the EC as an 92 
early site of structural decline, we seek to determine if we can identify different 93 
trajectories of structural thinning in the aLEC and pMEC in healthy, MCI and AD 94 
individuals.  95 
 96 
The Alzheimer’s Disease Neuroimaging Initiative (ADNI 15) began in 2003 with the goal 97 
of developing imaging, genetic and pathological biomarkers for early detection and 98 
longitudinal progression in AD. This multisite imaging endeavor provides investigators 99 
with open access to serial MRI scans from nondemented individuals as well as MCI and 100 
AD patients, in conjunction with other biomarker data such as CSF amyloid and tau 101 
pathological markers. Measurements of cortical thickness (CT) have recently emerged 102 
as potential candidates for biomarkers due to their superior sensitivity to layer-specific 103 
cortical atrophy compared to volumetric approaches and the availability of automated 104 
methods for estimation 16. In the ADNI sample, EC CT was the most powerful measure 105 
of structural change both in MCI and AD brains 17. EC thinning also preceded and 106 
predicted hippocampal atrophy 18 and predicted conversion to AD with the greatest 107 
accuracy 19.  108 
 109 
For EC thinning to be a reliable and robust measurement that accurately reflects 110 
neurodegeneration and supports longitudinal tracking of disease progression, several 111 
common methodological limitations need to be addressed 20. These issues include 112 
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registration bias and inverse consistency, bias due to asymmetric interpolation favoring 113 
the baseline scan in longitudinal pipelines 21 and susceptibility to errors in segmentation 114 
or overestimation of gray matter thickness without specified anatomical constraints 22. 115 
 116 
Here, we apply a novel pipeline that we recently developed for longitudinal registration-117 
based CT to quantify aLEC and pMEC thinning that directly addresses these pitfalls and 118 
extend prior findings that EC thickness reliably differentiates normal controls from MCI 119 
patients and MCI patients from AD patients in the ADNI sample. Using linear mixed-120 
effects (LME) models, we quantify cross-sectional and longitudinal associations 121 
between aLEC and pMEC thickness and two cognitive outcomes, the Clinical Dementia 122 
Rating – Memory box score (CDRM) and the Mini-Mental State Exam (MMSE), while 123 
controlling for possible confounding variables including age, sex, total brain volume and 124 
APOE ε4 genotype. We supplement this analysis of cognitive outcomes by using further 125 
LME models to establish diagnostic cohort specific trajectories in aLEC and pMEC CT 126 
through time and receiver operating characteristic (ROC) curves to ascertain predictive 127 
value of aLEC and pMEC CT for diagnostic outcomes. In a secondary analysis, we use 128 
an LME model to follow trajectories in aLEC and pMEC CT through time for two sub-129 
cohorts with differing CSF amyloid profiles. 130 
 131 

Materials and Methods: 132 

 133 
Raw imaging data and preprocessing 134 
 135 
All T1-weighted MPRAGE MRI scans used in this study were drawn from the publicly 136 
available Alzheimer’s Disease Neuroimaging Initiative (ADNI). Exact parameters for the 137 
sequences acquired are available on http://adni.loni.usc.edu. Due to limited contrast 138 
between EC regions and surrounding areas in T1-weighted MRI,  we employ the multi-139 
atlas joint label fusion methodology 23 for EC parcellation and subsequent thickness 140 
estimation based on combined T1- and T2-weighted image information from a set of 141 
gold-standard atlases (see below), permitting a more robust weighted consensus 142 
approach than single-template and/or T1-weighted-only alternatives. 143 
 144 
Atlas data 145 
 146 
We use a set of 17 atlases for multi-atlas joint label fusion comprising T1/T2-weighted 147 
image pairs and corresponding segmentation labels for the following left/right regions 148 
(aLEC, pMEC, perirhinal cortex, parahippocampal cortex, DG/CA3, CA1, and 149 
subiculum). Manual atlas labeling uses the T2-weighted image for each atlas set and a 150 
well-established and validated protocol 9. Atlas labels for a single subject are shown in 151 
Supplementary Figure S1 superimposed on the corresponding T2-weighted image. 152 
The scans used to compose the atlases were collected on a Philips 3T scanner at the 153 
University of California, Irvine. T1-weighted MPRAGE scans were acquired in the 154 
sagittal orientation with an isotropic image resolution of 0.75 x 0.75 x 0.75 mm3. Image 155 
acquisition for the T2-weighted protocol was angled perpendicular to the long axis of the 156 
hippocampus consistent with previous work 24. T2-weighted image resolution is 0.47 x 157 
0.47 x 2.0 mm3.  The optimal rigid transformation between each individual atlas’ T1- and 158 
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T2-weighted images was determined using the Advanced Normalization Tools (ANTs) 159 
software package 25,26. 160 
 161 
Population-specific templates 162 
 163 
To facilitate aLEC/pMEC thickness estimation for the ADNI cohort described below, two 164 
population-specific, optimal shape/intensity templates were generated. The first T1-165 
weighted template was constructed from 52 cognitively normal ADNI-1 subjects for a 166 
separate ADNI-based investigation 27, and we opted to use it in this study since it 167 
provides an intermediate registration space for transforming the labels of the 17 atlases. 168 
The second T1-weighted template, the “UCI” template, was generated from the 17 T1-169 
weighted atlas images discussed above28. Representative slices for both templates are 170 
shown in Supplementary Figure S2. ANTs-based Symmetric normalization (SyN) was 171 
used to determine optimal diffeomorphic transformation between the two T1-weighted 172 
templates. This permits the two T1-weighted templates to act as an intermediate 173 
geometric space for the “pseudo-geodesic” mapping 29 between a set of atlas labels and 174 
the individual T1-weighted time point.  175 
 176 
Individual time point processing 177 
 178 
Processing was conducted using the recently developed ANTs longitudinal structural 179 
processing pipeline 27 which is an extension of the previously reported cross-sectional 180 
framework 30. Briefly, the T1-weighted images constituting the set of subject’s 181 
longitudinal data were used to create a single-subject template (SST) as an unbiased 182 
space for processing longitudinal time points of individual subjects 21. The SST was then 183 
processed through the cross-sectional pipeline using the ADNI-1 template mentioned 184 
earlier. This processing produced the SST auxiliary images (i.e., n-tissue segmentation 185 
priors and brain extraction mask prior) used for individual time point brain extraction and 186 
tissue segmentation into CSF, cortical gray matter, white matter, deep gray matter, 187 
brain stem and cerebellum. Output of this processing stream includes the transforms 188 
between the individual time point and the SST and the transforms between the SST and 189 
the ADNI-1 template. In this way, concatenation of transforms can be used to map each 190 
of the 17 atlas label sets to each individual time point through a set of intermediary 191 
spaces which constitutes the “pseudo-geodesic” transform. This strategy has the benefit 192 
of reducing diffeomorphic distances between registration image pairs, reducing 193 
computational costs in terms of the sheer number of registrations, and taking advantage 194 
of the longitudinal nature of the data. This pseudo-geodesic mapping strategy is 195 
illustrated in Supplementary Figure S3.  196 
 197 
Multi-atlas joint label fusion 198 
 199 
After mapping the set of 17 atlas label sets to each individual time point, the multi-atlas 200 
joint label fusion23 approach is applied. This technique weights the contribution of each 201 
atlas while minimizing informational redundancy between the atlases. To estimate CT 202 
for each EC region, we base our strategy on the MindBoggle approach31 but, instead of 203 
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employing a mesh-based surface area calculation, we opt for the more accurate 204 
Crofton’s formula 32, which estimates the surface area directly.  205 
 206 
Statistical analyses 207 
 208 
Our primary interest is the linear association between cognitive performance (CDRM 209 
and MMSE), diagnostic status (healthy, MCI and AD) and cortical thickness (CT) in the 210 
aLEC and pMEC. We seek to discern whether declining cognitive performance tracks 211 
with deterioration of CT within the two subregions. We also ask whether clinical 212 
diagnostic groups are separable when viewed through subregion CTs and their 213 
trajectories through time. 214 
 215 
Linear mixed-effects (LME) 33 modeling allows us to leverage the longitudinal nature of 216 
the ADNI repeated-measures design insofar as a correctly specified LME model adjusts 217 
for within-subject correlation structure through time. As an extension of the multiple 218 
linear regression framework, LME modeling also supports adjustment for possible 219 
confounding variables as well as inclusion of precision variables. For the primary 220 
analysis, we use three LME models in total, each of which features subject-specific 221 
random intercepts and slopes through time. We decide on the inclusion of random 222 
components using the modified likelihood ratio test34. 223 
 224 
With the first two models we wish to understand cognitive performance as a linear 225 
function of CT and its change through time. Both of these models regress either CDRM 226 
or MMSE over aLEC or pMEC CTs (and functions thereof) independently. We fit each 227 
model once for aLEC thickness as predictor of interest and once for pMEC thickness as 228 
predictor of interest since simultaneous inclusion of both measures results in 229 
multicollinearity on account of correlations between subregional CT. The first model 230 
evaluates cognitive score as a function of baseline thickness and the interaction 231 
between baseline thickness and months since baseline. The second model evaluates 232 
cognitive score as a function of baseline thickness and loss of thickness through time. 233 
We stratify the first two models by diagnostic cohort on account of the possibility of 234 
diagnosis based non-linearities in associations through time. Stratification decreases 235 
statistical power but increases model robustness. 236 
 237 
Another primary question is whether population CT averages and their trajectories 238 
through time can be separated as a function of healthy, MCI and AD statuses. A third 239 
LME model (Model 3) independently regresses aLEC or pMEC CTs over diagnostic 240 
status and its interaction with months from baseline. We supplement Model 3’s 241 
inferential analysis with a predictive analysis using ROC curves 35 and area under these 242 
curves (AUC) to demonstrate prediction of diagnostic statuses using aLEC or pMEC 243 
thicknesses alone.  244 
 245 
Given positive results, we motivate future research by asking the secondary question 246 
whether differential associations between CSF amyloid levels and aLEC/pMEC CTs 247 
provides explanatory power for primary analysis results. Based on prior work 36–39, 248 
Model 4 considers the ratio between p-tau and Aß binarized at the threshold 0.1 as 249 
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predictor for CT in aLEC and pMEC subregions. All models are outlined in 250 
Supplementary Table 1. All modeling decisions were made prior to data access. 251 
 252 
We use the R programming language 40 for all statistical analyses. We use the nlme 253 
package 41  for LME model fitting, the ggplot2 package 42 for visualization and the 254 
plotROC package for generating ROC curves 43. For exploratory analyses, we: present 255 
a data table with means, proportions and standard deviations of outcomes and model 256 
covariates stratified by diagnostic cohort; plot aLEC and pMEC thicknesses as a 257 
function of subject age, stratifying by sex; and use nearest neighbor missclassification 258 
as an index of homogeneity. 259 
 260 

Results: 261 
 262 
Data distributions 263 
 264 
We provide descriptive statistics for outcomes, predictors and other covariates in Table 265 
1 organized by diagnostic cohort. For each cohort, means and standard deviations 266 
appear for continuous variables and level-wise percent membership appears for factors. 267 
 268 
For both baseline aLEC and baseline pMEC cortical thickness, the controls have the 269 
highest values, the AD cohort has the least, and the MCI cohort is in the middle. This 270 
trend holds for the longitudinal change in thickness. The AD cohort has the largest 271 
percent loss per year, and the MCI cohort has less percent loss per year. For both of 272 
these groups the %/yr loss is less for pMEC than it is for aLEC. MMSE and CDRM also 273 
follow the cohort-wise trends: baseline MMSE decreases from control cohort to AD 274 
cohort and baseline CDRM rises. For both MCI and AD cohorts, CDRM changes more 275 
through time than does MMSE. 276 
 277 
Figure 1 shows a scatterplot of unadjusted cortical thickness and age across sex and 278 
diagnostic cohort (healthy control and AD). Figure 1a,c shows aLEC thickness in males 279 
and females respectively, while Figure 1b,d shows pMEC thickness in males and 280 
females respectively. Visibly, there is greater overlap between healthy and AD cohort 281 
point clouds as a function of pMEC than as a function of aLEC. We quantify this overlap 282 
using the nearest neighbor misclassification rate as a homogeneity index. Regardless of 283 
sex, cohort clusters exhibit roughly 70% less homogeneity when viewed with aLEC 284 
thickness than with pMEC thickness. 285 
 286 
[ INSERT FIGURE 1 HERE] 287 
 288 
EC cortical thickness and cognitive performance 289 
 290 
Models 1 and 2 regress cognitive performance over baseline and longitudinal CT. 291 
Figure 2a contains results from analyses based on Models 1 and 2. Green cells are 292 
nominally statistically significant at a 95% confidence level. Baseline CT and percent 293 
loss are standardized within cohort to facilitate cross-cohort comparisons and 294 
comparisons between the aLEC and the pMEC. In general, aLEC thickness is more 295 
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predictive of outcome than is pMEC thickness. Across both outcomes (MMSE and 296 
CDRM), aLEC thickness has 8 significant associations with outcome, whereas pMEC 297 
only has 3 significant associations. In 9 of 12 of the comparisons shown in Table 2 298 
effect sizes are larger for aLEC thickness. 299 
 300 
Figure 2 also illustrates Model 2 results, but, to facilitate comparisons across CDRM 301 
and MMSE and aLEC and pMEC thicknesses, axes are standardized. MCI cohort 302 
results are shown in Figure 2b, AD cohort results are shown in Figure 2c. We flipped 303 
the sign of MMSE so that lower scores reflect better testing performance for both 304 
cognitive measures. In general, regression coefficients reflecting the associations 305 
between CDRM or MMSE and aLEC (orange) thickness (and changes thereof) are 306 
more significantly non-zero than those of pMEC (blue) thickness. The scaled 307 
coefficients of aLEC are uniformly higher than pMEC except for the case of MMSE as a 308 
function of % loss CT for the AD cohort. For the MCI cohort, both lower baseline aLEC 309 
thickness and greater % loss aLEC CT predict worse CDRM and MMSE scores. 310 
 311 
[INSERT FIGURE 2 HERE] 312 
 313 
EC cortical thickness and clinical diagnosis 314 
 315 
Model 3 regresses CT over cohort membership and its interaction with time. In general, 316 
estimated effect sizes for aLEC as a function of cohort membership and time are twice 317 
those for pMEC. Nonetheless, all linear associations are nominally statistically 318 
significant at the 95% confidence level, i.e. none of the intervals contain zero.   319 
 320 
The top row of Figure 3 illustrates these results as a function of months from baseline. 321 
aLEC thickness is regressed over cohort membership and months in Figure 3a, pMEC 322 
thickness is regressed over the same in Figure 3b. The three cohorts exhibit greater 323 
separation at baseline when viewed through aLEC thickness than they exhibit when 324 
viewed through pMEC thickness. Estimated aLEC thickness 95% confidence bands 325 
maintain complete separation among cohorts throughout time, whereas estimated 326 
pMEC thickness 95% confidence bands do not. 327 
 328 
Figure 4 supplements these inferential results with a predictive analysis using ROC 329 
curves to measure predictive content of aLEC and pMEC CTs with respect to MCI 330 
(Figure 4a) and AD (Figure 4b) status. The aLEC curves are consistently above the 331 
pMEC curves and yield higher AUCs, signifying greater predictive content at every 332 
threshold of the continuous CT values. Both aLEC and pMEC AUCs outperform those 333 
of subject age (MCI 0.47; AD 0.48) and total brain volume (MCI 0.47; AD 0.57). 334 
 335 
EC cortical thickness and CSF AD pathology 336 
 337 
Given the stronger associations between aLEC CT and clinical outcomes than between 338 
pMEC thickness and the same, we ask whether a stronger link between aLEC thickness 339 
and CSF AD pathology levels exists than between pMEC thickness and the same. This 340 
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secondary analysis provides a basis for future research into physiological mechanisms 341 
underlying aLEC CT and its clinical effects. 342 
 343 
We look at the longitudinal progressions of aLEC and pMEC thicknesses as a function 344 
of the binary threshold given by the ratio of phosphorylated tau-181 (p-tau) to amyloid 345 
beta (Aß) being greater than 0.1 36–39. These CSF data are available for a smaller 238 346 
subject (70 healthy; 119 MCI; 49 AD) subset of the data used in the primary analyses. 347 
Due to dearth of repeated measures for CSF levels, we consider only the first CSF 348 
measurement for each individual and only include CT, CDRM and MMSE data collected 349 
during visits occurring after this CSF measurement with one-month grace period. 350 
Proportions of the ratio of p-tau to Aß that are greater than 0.1 are 0.9 for the healthy 351 
cohort, 0.97 for the MCI cohort and 1 for the AD cohort. We refer to these subjects as 352 
being “p-tau/Aß ratio-positive” or “amyloid ratio-positive”. 353 
 354 
We model the linear associations between subregion CTs and ratio positivity and its 355 
interaction with time from baseline (as measured by time of CSF measurement). The 356 
bottom row of Figure 3 presents the estimated linear cross-sectional (left) and 357 
longitudinal (right) associations along with 95% confidence intervals. Cross-sectionally, 358 
we estimate that the population of individuals with amyloid ratio positivity has 0.11 mm 359 
less aLEC CT than does the population of individuals who are amyloid ratio negative. 360 
For perspective, 0.11 mm is more than the difference between baseline aLEC thickness 361 
means of healthy control and MCI cohorts presented in Table 1.  362 
 363 
Longitudinally, we estimate that the amyloid ratio-positive sample of individuals 364 
experiences an additional loss of 0.025 mm aLEC CT per year compared to the loss 365 
experienced by the amyloid ratio-negative sample. The additional loss in aLEC CT 366 
experienced by the amyloid ratio-positive sample requires 4 years before the difference 367 
between healthy and MCI cohorts is spanned. Due to the smaller sample size in this 368 
analysis, the results require further research and should be regarded as preliminary. 369 
 370 

Discussion 371 
 372 
Given the wealth of research implicating the transentorhinal region1–3,  selective 373 
vulnerability of the aLEC to age-related alterations in processing 9 and structural 374 
changes associated with age-related cognitive decline 10, we hypothesized that aLEC 375 
structure, specifically CT, might provide a suitable biomarker for early AD detection. We 376 
implemented a novel longitudinal CT pipeline on structural MRI data collected from the 377 
ADNI-1 cohort and compared this data with MMSE and CDRM performance, diagnostic 378 
cohort membership and CSF amyloid levels. Initial homogeneity analyses showed less 379 
overlap between healthy control and AD cohorts as a function of aLEC CT than for 380 
pMEC CT. We used LME models to analyze linear associations between these 381 
quantities through time while controlling for within-subject correlations and confounders 382 
such as age, sex, brain volume and APOE ε4 genotype.  383 
 384 
Primary analyses showed statistically and practically significant negative associations 385 
between baseline aLEC thickness and progression of cognitive performance over time 386 
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(Model 1). We also observed statistically and practically significant associations 387 
between change in aLEC thickness and cognitive performance through time (Model 2). 388 
Cross-sectional and longitudinal correlations between aLEC thickness and cognitive 389 
performance were present for both MCI and AD cohorts. We also tested whether 390 
trajectories of EC subregional CT through time differentiate by clinical diagnostic 391 
grouping (Model 3). aLEC thickness maintained complete separation between 95% 392 
confidence bands between healthy, MCI and AD cohorts while pMEC thickness did not. 393 
  394 
Results indicate that the EC subregions could be differentially affected during early 395 
stages of AD. This is consistent with histopathological studies, which have reported that 396 
neurofibrillary tangles and neuropil threads show a distribution pattern that allow for 397 
staging 3. Initial stages show alterations confined to the transentorhinal region, which 398 
includes the aLEC. These results contribute to growing evidence that the aLEC is 399 
selectively vulnerable during early AD and also demonstrate that aLEC CT and changes 400 
in thickness over time are sensitive to cognitive changes and serve as a viable 401 
biomarker for prodromal AD. 402 
  403 
In a secondary analysis, we analyzed the relationship between subregional CT and CSF 404 
measures of amyloid and tau pathology. Clinical symptoms of Alzheimer’s disease are 405 
preceded by a long preclinical phase in which pathological protein aggregation occurs in 406 
the brain 6,44. Additionally, Aβ plaques develop ~15-20 years before onset of cognitive 407 
impairment and neurofibrillary tangles begin to accumulate at least 5 years before 408 
symptom onset 44. Previous studies have shown low CSF levels of Aβ strongly correlate 409 
with increased plaque load in the brain, and that high concentrations of CSF p�tau 410 
correlate with AD�specific neurofibrillary pathology 45,46. Furthermore, ptau181-Aβ42 ratio 411 
(ptau181/Aβ42) has been shown to be a strong predictor of conversion from cognitively 412 
normal to mild cognitive impairment over a 3~4 year period 36–38.  413 
 414 
We found statistically and practically significant linear associations between the 415 
binarized ratio p-tau/ Aβ >0.1 and aLEC CT and estimated that there are similar 416 
differences in aLEC CT levels comparing the  p-tau/ Aβ ratio-positive sample to the 417 
ratio-negative sample as for the comparison between the MCI cohort and the healthy 418 
cohort. Furthermore, the p-tau/ Aβ ratio-positive sample exhibits a statistically and 419 
practically significant change in aLEC thickness over time, requiring an estimated 4 420 
years to span the gap between healthy and MCI cohorts. This secondary analysis 421 
suggests the presence of AD-specific neuropathology may mediate thinning of the 422 
aLEC over time, but results require further investigation. 423 
 424 
Overall, these results suggest that aLEC cortical thickness is a sensitive measure to 425 
cognitive decline as well as to AD pathological stage. Considering the growing interest 426 
in surrogate biomarkers that are sensitive and specific to AD especially during the early 427 
stages, we suggest that aLEC thinning may be an early marker that may be associated 428 
with cognitive decline especially in the memory domain and may serve as a mechanistic 429 
link between pathological load and cognitive outcomes. Additional research should 430 
focus on further understanding the function of aLEC and structural trajectories with 431 
aging and disease. For example, the human aLEC appears is involved in tasks ranging 432 
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from visual object pattern separation 7,9 to intra-item configural processing 47 to temporal 433 
precision in real-world stimuli 48. Developing tasks that are specific and sensitive to 434 
aLEC (dys)function could serve as an early predictor of cognitive decline. In the future, 435 
these tasks can provide measures that can be used as neurobiologically-validated 436 
outcomes for clinical trials in preclinical AD.  437 
 438 
 439 
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624 
 625 
Table 1. Outcomes, predictors, and confounding variables. For each continuous 626 
variable, we show cohort means and standard deviations. For factors, we show the 627 
percentage of the cohort in each level. Baseline variables are shown with their natural 628 
scale, whereas change in these variables is shown using percentages to facilitate 629 
comparison across variables. 630 
 631 
  632 
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Figures and Captions 633 
 634 

635 
 636 
Figure 1. Scatterplots featuring anterolateral and posteromedial (aLEC and pMEC) 637 
cortical thickness (CT) and age stratified by sex and diagnostic cohort. aLEC 638 
thickness in males (a) and females (c) exhibits moderately less overlap between cohorts 639 
than does pMEC thickness in males (b) and females (d). We quantify overlap between 640 
healthy and AD cohorts using nearest neighbor misclassification rate as homogeneity 641 
index. 642 
 643 
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 645 

646 
 647 
Figure 2. Estimated linear associations and nominal 95% confidence intervals 648 
between anterolateral and posteromedial entorhinal (aLEC and pMEC) cortical 649 
thicknesses (CT) and MMSE or CDRM.  (a) for AD and MCI cohorts, the first row 650 
contains cross-sectional associations with baseline thickness (CT0) whereas the second 651 
and third lines contain longitudinal associations. Cells for which intervals do not contain 652 
zero are green. (b-c) Model 2’s adjusted linear associations between CDRM or MMSE 653 
and aLEC or pMEC baseline thicknesses and percent change in thickness from 654 
baseline. Baseline CT, percent gain CT, MMSE and CDRM are standardized. MMSE is 655 
negated since high performance is a higher score for MMSE but lower for CDRM. 656 
Associations are stronger for aLEC CT than for pMEC CT for both MCI (b) and AD (c), 657 
exhibiting point estimates of greater scale as well as fewer confidence intervals 658 
overlapping zero. 659 
 660 
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 662 

663 
Figure 3. Subregion cortical thickness (CT) progressions through time as 664 
estimated using Model 3 along with 95% confidence bands. Model 3 accounts for 665 
individual variations as well as confounding variables. (a-b) when viewed through aLEC 666 
CT, the diagnostic cohorts exhibit statistically significant separation that persists through 667 
the entire time of measurement. Such separation is not apparent in pMEC CT. (c-d) 668 
secondary analysis on subset of ADNI-1 cohort comparing progressions for amyloid 669 
ratio-positive (p-tau/Aß >0.1) and ratio-negative cohorts shows qualitatively different 670 
behavior between aLEC and posteromedial entorhinal (pMEC) CT, suggesting a 671 
possible role for CSF amyloid ratio in influencing aLEC but not pMEC CT trajectory. 672 
 673 
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 675 

676 
Figure 4. Receiver operating characteristic (ROC) curves for the prediction of MCI 677 
status and AD status using aLEC and pMEC CT. (a) In predicting MCI status, the 678 
aLEC curve dominates the respective pMEC curve and exhibits a larger area under the 679 
curve (AUC 0.69 vs. 0.62). (b) In predicting AD status, the aLEC curve also dominates 680 
the respective pMEC curve and exhibits a larger area under the curve (AUC 0.73 vs. 681 
0.67). Both aLEC and pMEC AUCs outperform those of subject age (MCI 0.47; AD 682 
0.48) and total brain volume (MCI 0.47; AD 0.57). 683 
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 692 

Supplementary Methods  693 

 694 
S.1. The ADNI dataset 695 
 696 
Data used in the preparation of this article were obtained from the ADNI database 697 
(http://adni.loni.ucla.edu/). The ADNI was launched in 2003 by the National Institute on 698 
Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), 699 
the Food and Drug Administration (FDA), private pharmaceutical companies and non-700 
profit organizations, as a $60 million, 5- year public-private partnership. The primary 701 
goal of ADNI (PI: Michael Weiner, UCSF) has been to test whether serial magnetic 702 
resonance imaging (MRI), positron emission tomography (PET), other biological 703 
markers, and clinical and neuropsychological assessment can be combined to measure 704 
the progression of MCI and early AD. Determination of sensitive and specific markers of 705 
very early AD progression is intended to aid researchers and clinicians to develop new 706 
treatments and monitor their effectiveness, as well as lessen the time and cost of 707 
clinical trials. 708 
 709 
ADNI is the result of efforts of many co-investigators from a broad range of academic 710 
institutions and private corporations, and subjects have been recruited from over 50 711 
sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, 712 
ages 55 to 90, to participate in the research, approximately 200 cognitively normal older 713 
individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years 714 
and 200 people with early AD to be followed for 2 years. A detailed description of the 715 
ADNI population, protocols and biomarkers is provided at http://adni.loni.ucla.edu/. 716 
 717 
S.2. Subject selection 718 
 719 
The ADNI general eligibility criteria are previously described 49. Normal controls (NC) 720 
have a CDR of 0. Subjects with MCI have a subjective memory complaint, objective 721 
memory loss measured by education-adjusted scores on Wechsler Memory Scale 722 
Logical Memory II, a CDR of 0.5, preserved activities of daily living, and absence of 723 
dementia. Subjects with AD have a CDR of 0.5 or 1.0 and meet NINDS criteria for 724 
probable AD. At the time of download, 300 individuals with MCI and 191 healthy 725 
controls with baseline, 6 months, and 12-month follow-up data were available for 726 
download and were used in the current study. We also randomly selected a sample of 727 
49 AD patients with baseline scans for comparison and to define the parametric space 728 
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of EC thickness. Demographics and baseline neuropsychological variables for all three 729 
groups are shown in Table 1. Neuropsychological test data were not available for 4 AD 730 
subjects. 731 
 732 
S.3. MRI methods 733 
 734 
Detailed methods of MRI acquisition are previously described 50. Only T1-weighted 3D 735 
MP-RAGE scans were used in this report (acquisition parameters: FOV = 240 x 240; 736 
matrix = 192 x 192; TR = 3000 ms; TI = 1000; flip angle = 8 degrees, slice thickness = 737 
1.2 mm; sagittal orientation). All MPRAGE scans underwent quality control procedures, 738 
N3 bias correction and were scaled for gradient drift using phantom data.  739 
 740 
S.4. Inferential model building and variable selection 741 
 742 
To moderate inflation of type 1 error, we design our statistical models from first 743 
principles and prior to accessing the data. We select model responses and predictors of 744 
interest based on our neuroscientific questions of interest. After this, we decide upon 745 
the inclusion of additional covariates based on whether they might be confounders, i.e., 746 
variables that might influence both outcome and predictors of interest, or precision 747 
variables, i.e., variables that influence outcome alone. Inclusion of confounders 748 
decreases estimator bias and increases variance, leading to more conservative 749 
intervals. Inclusion of precision variables tightens confidence intervals, increasing 750 
certainty.  751 
 752 
With these relationships in mind, we now discuss inclusion rationale. The first two 753 
models regress cognitive indices over CT and functions of CT and time from baseline. 754 
As such, we include months from baseline, clinical diagnosis, the number of APOE �4 755 
alleles, sex, age and total brain volume as potential confounding variables – months 756 
from baseline plausibly modulates CT and cognition scores; as a primary biomarker for 757 
genetic predisposition, APOE allele count certainly associates with cognition and might 758 
associate with CT; when combined with other subject descriptors, sex might modulate 759 
cognitive performance and certainly modulates CT; age certainly modulates both; and 760 
brain volume plausibly modulates both. For Model 3, similar logic applies by exchanging 761 
clinical diagnosis for cognition scores. A difference is that we take months from baseline 762 
to be a precision variable since CT changes with time but diagnosis remains constant 763 
for the cohort we consider. 764 
 765 
Importantly, we adjust for all but one potential confounder by inclusion in the regression 766 
models as covariates, with the only exception being diagnostic status for Models 1 and 767 
2. Since diagnostic differences plausibly modify the relationship between cortical 768 
thickness and MMSE/CDRM in complicated, nonlinear ways, we instead stratify the 769 
analysis by diagnosis, fitting the two models to the individual cohorts separately. Such 770 
stratification increases model robustness but decreases power, here expressed as 771 
wider, more conservative confidence intervals. Variables of all models appear in Table 772 
S1. 773 
 774 
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Supplementary Results 775 
 776 
Statistical interpretations for Models 1 and 2 777 
 778 
We provide statistical interpretations here as examples. Focusing on the upper left cell 779 
of Figure 2 in which the association between baseline aLEC thickness and MMSE is 780 
presented), the interpretation is that for every additional standard deviation in baseline 781 
aLEC thickness, there is an estimated gain of 0.44 (95% CI: 0.07, 0.82) MMSE 782 
expected for the AD subjects. For the result in which CDRM is modeled as a function of 783 
the interaction between baseline aLEC cortical thickness and months from baseline 784 
within MCI subjects, our interpretation is that for every additional standard deviation of 785 
baseline aLEC thickness and for each additional month from baseline, there is an 786 
estimated decrease of 0.004 (95% CI: 0.002, 0.006) in CDRM expected for MCI 787 
subjects. Finally, for the estimated linear association between standardized percent loss 788 
aLEC thickness and CDRM for the AD population, our interpretation is that for every 789 
additional standard deviation of percent loss from baseline, there is an estimated 790 
increase in CDRM of 0.053 (95% CI: 0.014, 0.091) expected for AD subjects. 791 
 792 
Statistical interpretations for Model 3 793 
 794 
Considering aLEC thickness as a function of AD group membership and its interaction 795 
with time, it is estimated that when comparing the AD group to the healthy group, (1) the 796 
AD group has 0.20 mm (95% CI: 0.16, 0.23) lower aLEC thickness expected, all other 797 
covariates being held equal; and (2) the AD group has 0.02 mm (95% CI: 0.01, 0.04) 798 
lower aLEC thickness expected for each additional year from baseline, all other 799 
covariates being held equal. For the MCI group, estimated cross-sectional association 800 
with aLEC thickness is half that of the AD population (0.9 mm; 95% CI: 0.06, 0.12), but 801 
the estimated longitudinal association is roughly equal to that of the AD population (0.02 802 
mm; 95% CI: 0.01, 0.02). 803 
 804 
  805 
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Table S1. Linear mixed-effects models and their variables. 806 

 807 
 808 
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 812 
 813 
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 815 
 816 
Figure S1. Atlas labels for Subject S1 partitioning the EC/hippocampal cortical 817 
complex. Each set of labels for the 17 subjects was manually placed in the space of the 818 
subject’s T2-weighted image using the procedure specified in the text. 819 
 820 
  821 
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822 
 823 
Figure S2. Representative views of the two population-specific templates created 824 
for this study. The ADNI-1 template was created from 52 cognitively normal subjects 825 
selected from the ADNI-1 template while the UCI template was created from the 17 T1-826 
weighted images of the atlas set used for joint label fusion. These images constitute the 827 
intermediate spaces for the pseudo-geodesic transform between the EC labels and the 828 
T1-weighted images representing individual subject time points.  829 

830 

27 

 

e 

 .CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.not peer-reviewed)

(which wasThe copyright holder for this preprint  . http://dx.doi.org/10.1101/19011825doi: medRxiv preprint first posted online Nov. 14, 2019 ; 

http://dx.doi.org/10.1101/19011825
http://creativecommons.org/licenses/by-nd/4.0/


Page 27 of 27 

 831 
 832 

 833 
 834 
Figure S3. Illustration of the set of transforms used to map the set of 17 atlas 835 
labels to the T1 image of each individual time point. This pseudo-geodesic scheme 836 
minimizes the total number of pair-wise registrations for this study while taking 837 
advantage of the longitudinal aspect of the data. TR and T� denotes rigid and 838 
diffeomorphic transforms, respectively. 839 
 840 
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