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Abstract:

Introduction: Loss of entorhinal cortex (EC) layer Il neurons represents the earliest AD
lesion in the brain. Research suggests differing functional roles between two EC
subregions, the anterolateral EC (aLEC) and the posteromedial EC (pMEC).

Methods: We use joint label fusion to obtain aLEC and pMEC cortical thickness
measurements from serial MRI scans of 775 ADNI-1 participants (219 healthy; 380 MCI,;
176 AD) and use linear mixed-effects models to analyze longitudinal associations
between cortical thickness, disease status and cognitive measures.

Results: Group status is reliability predicted by aLEC thickness, which also exhibits
greater associations with cognitive outcomes than does pMEC thickness. Change in
aLEC thickness is also associated with CSF amyloid and tau levels.

Discussion: Thinning of aLEC is a sensitive structural biomarker that changes over

short durations in the course of AD and tracks disease severity — it is a strong candidate
biomarker for detection of early AD.
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67 Introduction:
68
69 Layer Il of the entorhinal cortex (EC) is one of the earliest sites for the accumulation of
70 tangle pathology and neurodegeneration in the course of Alzheimer's disease (AD) *>.
71  Quantitative studies of neuron numbers in autopsy brains characterized for AD
72  pathology have shown that a substantial reduction in EC is observed by the time of
73 dementia diagnosis and further progressive loss of EC neurons occurs over the course
74 of the disease *°. Little or no neuron loss occurs within EC in healthy aged brains
75  without AD pathology suggesting that EC neurodegeneration is specific to disease *.
76
77  Histopathological data indicate that the transentorhinal region, which consists of the
78 anterolateral EC (aLEC) and perirhinal cortex, is vulnerable in the early stages of AD
79 (Braak Stages | and Il [2]). Recent evidence has elucidated a functional subdivision in
80 the EC whereby the lateral and medial portions are involved in different aspects of
81 information processing ’ and are differentially connected with the perirhinal and
82  parahippocampal cortices ®. Other work has shown that the aLEC (which maps onto the
83 lateral entorhinal cortex in rodents) is selectively vulnerable to age-related alterations in
84 processing ° as well as structural changes associated with age-related cognitive decline
85 ' in contrast to the posteromedial portion (pPMEC). While volume reductions in the EC
86 independently predict the likelihood of conversion from healthy aging to amnestic mild
87  cognitive impairment (MCI) and from MCI to AD ™3, preceding and predicting
88  hippocampal volume reduction **, it is unclear whether these volumetric changes are
89  primarily driven by the aLEC or the pMEC.
90
91  Given the need for improved diagnostic biomarkers that are capable of detecting the
92 earliest signs of neurodegeneration and the wealth of evidence pointing to the EC as an
93 early site of structural decline, we seek to determine if we can identify different
94  trajectories of structural thinning in the aLEC and pMEC in healthy, MCIl and AD
95 individuals.
96
97  The Alzheimer's Disease Neuroimaging Initiative (ADNI *°) began in 2003 with the goal
98 of developing imaging, genetic and pathological biomarkers for early detection and
99 longitudinal progression in AD. This multisite imaging endeavor provides investigators
100  with open access to serial MRI scans from nondemented individuals as well as MCI and
101  AD patients, in conjunction with other biomarker data such as CSF amyloid and tau
102 pathological markers. Measurements of cortical thickness (CT) have recently emerged
103 as potential candidates for biomarkers due to their superior sensitivity to layer-specific
104  cortical atrophy compared to volumetric approaches and the availability of automated
105 methods for estimation *°. In the ADNI sample, EC CT was the most powerful measure
106  of structural change both in MCI and AD brains *”. EC thinning also preceded and
107  predicted hippocampal atrophy *® and predicted conversion to AD with the greatest
108  accuracy *°.
109
110  For EC thinning to be a reliable and robust measurement that accurately reflects
111  neurodegeneration and supports longitudinal tracking of disease progression, several
112 common methodological limitations need to be addressed ?°. These issues include
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113 registration bias and inverse consistency, bias due to asymmetric interpolation favoring
114 the baseline scan in longitudinal pipelines #* and susceptibility to errors in segmentation
115  or overestimation of gray matter thickness without specified anatomical constraints %%
116

117  Here, we apply a novel pipeline that we recently developed for longitudinal registration-
118 based CT to quantify aLEC and pMEC thinning that directly addresses these pitfalls and
119 extend prior findings that EC thickness reliably differentiates normal controls from MCI
120 patients and MCI patients from AD patients in the ADNI sample. Using linear mixed-
121  effects (LME) models, we quantify cross-sectional and longitudinal associations

122 between aLEC and pMEC thickness and two cognitive outcomes, the Clinical Dementia
123  Rating — Memory box score (CDRM) and the Mini-Mental State Exam (MMSE), while
124  controlling for possible confounding variables including age, sex, total brain volume and
125 APOE &4 genotype. We supplement this analysis of cognitive outcomes by using further
126 LME models to establish diagnostic cohort specific trajectories in aLEC and pMEC CT
127  through time and receiver operating characteristic (ROC) curves to ascertain predictive
128 value of aLEC and pMEC CT for diagnostic outcomes. In a secondary analysis, we use
129 an LME model to follow trajectories in aLEC and pMEC CT through time for two sub-
130 cohorts with differing CSF amyloid profiles.

131

132 Materials and Methods:

133

134 Raw imaging data and preprocessing
135

136  All T1l-weighted MPRAGE MRI scans used in this study were drawn from the publicly
137 available Alzheimer’s Disease Neuroimaging Initiative (ADNI). Exact parameters for the
138 sequences acquired are available on http://adni.loni.usc.edu. Due to limited contrast
139 between EC regions and surrounding areas in T1-weighted MRI, we employ the multi-
140 atlas joint label fusion methodology ** for EC parcellation and subsequent thickness
141  estimation based on combined T1- and T2-weighted image information from a set of
142  gold-standard atlases (see below), permitting a more robust weighted consensus

143  approach than single-template and/or T1-weighted-only alternatives.

144

145  Atlas data

146

147  We use a set of 17 atlases for multi-atlas joint label fusion comprising T1/T2-weighted
148 image pairs and corresponding segmentation labels for the following left/right regions
149 (aLEC, pMEC, perirhinal cortex, parahippocampal cortex, DG/CA3, CA1, and

150 subiculum). Manual atlas labeling uses the T2-weighted image for each atlas set and a
151  well-established and validated protocol °. Atlas labels for a single subject are shown in
152  Supplementary Figure S1 superimposed on the corresponding T2-weighted image.
153 The scans used to compose the atlases were collected on a Philips 3T scanner at the
154  University of California, Irvine. T1-weighted MPRAGE scans were acquired in the

155  sagittal orientation with an isotropic image resolution of 0.75 x 0.75 x 0.75 mm?®. Image
156  acquisition for the T2-weighted protocol was angled perpendicular to the long axis of the
157  hippocampus consistent with previous work 2*. T2-weighted image resolution is 0.47 x
158  0.47 x 2.0 mm?®. The optimal rigid transformation between each individual atlas’ T1- and
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159 T2-weighted images was determined using the Advanced Normalization Tools (ANTS)
160  software package »?°.

161

162 Population-specific templates

163

164  To facilitate aLEC/pMEC thickness estimation for the ADNI cohort described below, two
165 population-specific, optimal shape/intensity templates were generated. The first T1-

166  weighted template was constructed from 52 cognitively normal ADNI-1 subjects for a
167 separate ADNI-based investigation ?’, and we opted to use it in this study since it

168  provides an intermediate registration space for transforming the labels of the 17 atlases.
169 The second T1-weighted template, the “UCI” template, was generated from the 17 T1-
170  weighted atlas images discussed above®. Representative slices for both templates are
171  shown in Supplementary Figure S2. ANTs-based Symmetric normalization (SyN) was
172  used to determine optimal diffeomorphic transformation between the two T1-weighted
173  templates. This permits the two T1-weighted templates to act as an intermediate

174  geometric space for the “pseudo-geodesic” mapping ?° between a set of atlas labels and
175 the individual T1-weighted time point.

176

177 Individual time point processing

178

179  Processing was conducted using the recently developed ANTSs longitudinal structural
180  processing pipeline ? which is an extension of the previously reported cross-sectional
181  framework %. Briefly, the T1-weighted images constituting the set of subject’s

182 longitudinal data were used to create a single-subject template (SST) as an unbiased
183  space for processing longitudinal time points of individual subjects 2. The SST was then
184  processed through the cross-sectional pipeline using the ADNI-1 template mentioned
185 earlier. This processing produced the SST auxiliary images (i.e., n-tissue segmentation
186  priors and brain extraction mask prior) used for individual time point brain extraction and
187  tissue segmentation into CSF, cortical gray matter, white matter, deep gray matter,

188 brain stem and cerebellum. Output of this processing stream includes the transforms
189  between the individual time point and the SST and the transforms between the SST and
190 the ADNI-1 template. In this way, concatenation of transforms can be used to map each
191 of the 17 atlas label sets to each individual time point through a set of intermediary

192  spaces which constitutes the “pseudo-geodesic” transform. This strategy has the benefit
193  of reducing diffeomorphic distances between registration image pairs, reducing

194 computational costs in terms of the sheer number of registrations, and taking advantage
195 of the longitudinal nature of the data. This pseudo-geodesic mapping strategy is

196 illustrated in Supplementary Figure S3.

197

198 Multi-atlas joint label fusion

199

200 After mapping the set of 17 atlas label sets to each individual time point, the multi-atlas
201 joint label fusion® approach is applied. This technique weights the contribution of each
202 atlas while minimizing informational redundancy between the atlases. To estimate CT
203  for each EC region, we base our strategy on the MindBoggle approach® but, instead of
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204 employing a mesh-based surface area calculation, we opt for the more accurate

205  Crofton’s formula *%, which estimates the surface area directly.

206

207  Statistical analyses

208

209  Our primary interest is the linear association between cognitive performance (CDRM
210 and MMSE), diagnostic status (healthy, MCI and AD) and cortical thickness (CT) in the
211 alLEC and pMEC. We seek to discern whether declining cognitive performance tracks
212  with deterioration of CT within the two subregions. We also ask whether clinical

213  diagnostic groups are separable when viewed through subregion CTs and their

214  trajectories through time.

215

216 Linear mixed-effects (LME) ** modeling allows us to leverage the longitudinal nature of
217 the ADNI repeated-measures design insofar as a correctly specified LME model adjusts
218  for within-subject correlation structure through time. As an extension of the multiple
219 linear regression framework, LME modeling also supports adjustment for possible

220 confounding variables as well as inclusion of precision variables. For the primary

221 analysis, we use three LME models in total, each of which features subject-specific
222  random intercepts and slopes through time. We decide on the inclusion of random

223 components using the modified likelihood ratio test®*.

224

225  With the first two models we wish to understand cognitive performance as a linear

226  function of CT and its change through time. Both of these models regress either CDRM
227 or MMSE over aLEC or pMEC CTs (and functions thereof) independently. We fit each
228 model once for aLEC thickness as predictor of interest and once for pMEC thickness as
229 predictor of interest since simultaneous inclusion of both measures results in

230 multicollinearity on account of correlations between subregional CT. The first model
231 evaluates cognitive score as a function of baseline thickness and the interaction

232  between baseline thickness and months since baseline. The second model evaluates
233  cognitive score as a function of baseline thickness and loss of thickness through time.
234  We stratify the first two models by diagnostic cohort on account of the possibility of
235 diagnosis based non-linearities in associations through time. Stratification decreases
236  statistical power but increases model robustness.

237

238  Another primary question is whether population CT averages and their trajectories

239 through time can be separated as a function of healthy, MCI and AD statuses. A third
240 LME model (Model 3) independently regresses aLEC or pMEC CTs over diagnostic
241  status and its interaction with months from baseline. We supplement Model 3's

242 inferential analysis with a predictive analysis using ROC curves * and area under these
243  curves (AUC) to demonstrate prediction of diagnostic statuses using aLEC or pMEC
244  thicknesses alone.

245

246  Given positive results, we motivate future research by asking the secondary question
247  whether differential associations between CSF amyloid levels and aLEC/pMEC CTs
248  provides explanatory power for primary analysis results. Based on prior work 7%,

249  Model 4 considers the ratio between p-tau and AR binarized at the threshold 0.1 as
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250 predictor for CT in aLEC and pMEC subregions. All models are outlined in

251 Supplementary Table 1. All modeling decisions were made prior to data access.

252

253 We use the R programming language “° for all statistical analyses. We use the nime
254  package ** for LME model fitting, the ggplot2 package ** for visualization and the

255  plotROC package for generating ROC curves *®. For exploratory analyses, we: present
256 a data table with means, proportions and standard deviations of outcomes and model
257  covariates stratified by diagnostic cohort; plot aLEC and pMEC thicknesses as a

258  function of subject age, stratifying by sex; and use nearest neighbor missclassification
259  as an index of homogeneity.

260

261 Results:

262

263 Data distributions
264

265 We provide descriptive statistics for outcomes, predictors and other covariates in Table
266 1 organized by diagnostic cohort. For each cohort, means and standard deviations

267  appear for continuous variables and level-wise percent membership appears for factors.
268

269  For both baseline aLEC and baseline pMEC cortical thickness, the controls have the
270 highest values, the AD cohort has the least, and the MCI cohort is in the middle. This
271  trend holds for the longitudinal change in thickness. The AD cohort has the largest

272  percent loss per year, and the MCI cohort has less percent loss per year. For both of
273  these groups the %l/yr loss is less for pMEC than it is for aLEC. MMSE and CDRM also
274  follow the cohort-wise trends: baseline MMSE decreases from control cohort to AD

275 cohort and baseline CDRM rises. For both MCI and AD cohorts, CDRM changes more
276  through time than does MMSE.

277

278  Figure 1 shows a scatterplot of unadjusted cortical thickness and age across sex and
279 diagnostic cohort (healthy control and AD). Figure la,c shows aLEC thickness in males
280 and females respectively, while Figure 1b,d shows pMEC thickness in males and

281 females respectively. Visibly, there is greater overlap between healthy and AD cohort
282  point clouds as a function of pMEC than as a function of aLEC. We quantify this overlap
283 using the nearest neighbor misclassification rate as a homogeneity index. Regardless of
284  sex, cohort clusters exhibit roughly 70% less homogeneity when viewed with aLEC

285 thickness than with pMEC thickness.

286

287 [ INSERT FIGURE 1 HERE]

288

289 EC cortical thickness and cognitive performance
290

291 Models 1 and 2 regress cognitive performance over baseline and longitudinal CT.
292  Figure 2a contains results from analyses based on Models 1 and 2. Green cells are
293 nominally statistically significant at a 95% confidence level. Baseline CT and percent
294  loss are standardized within cohort to facilitate cross-cohort comparisons and

295 comparisons between the aLEC and the pMEC. In general, aLEC thickness is more
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296  predictive of outcome than is pMEC thickness. Across both outcomes (MMSE and

297 CDRM), aLEC thickness has 8 significant associations with outcome, whereas pMEC
298 only has 3 significant associations. In 9 of 12 of the comparisons shown in Table 2

299 effect sizes are larger for aLEC thickness.

300

301 Figure 2 also illustrates Model 2 results, but, to facilitate comparisons across CDRM
302 and MMSE and aLEC and pMEC thicknesses, axes are standardized. MCI cohort

303 results are shown in Figure 2b, AD cohort results are shown in Figure 2c. We flipped
304 the sign of MMSE so that lower scores reflect better testing performance for both

305 cognitive measures. In general, regression coefficients reflecting the associations

306 between CDRM or MMSE and aLEC (orange) thickness (and changes thereof) are

307  more significantly non-zero than those of pMEC (blue) thickness. The scaled

308 coefficients of aLEC are uniformly higher than pMEC except for the case of MMSE as a
309 function of % loss CT for the AD cohort. For the MCI cohort, both lower baseline aLEC
310 thickness and greater % loss aLEC CT predict worse CDRM and MMSE scores.

311

312 [INSERT FIGURE 2 HERE]

313

314 EC cortical thickness and clinical diagnosis

315

316 Model 3 regresses CT over cohort membership and its interaction with time. In general,
317 estimated effect sizes for aLEC as a function of cohort membership and time are twice
318 those for pMEC. Nonetheless, all linear associations are nominally statistically

319 significant at the 95% confidence level, i.e. none of the intervals contain zero.

320

321 The top row of Figure 3 illustrates these results as a function of months from baseline.
322 aLEC thickness is regressed over cohort membership and months in Figure 3a, pMEC
323 thickness is regressed over the same in Figure 3b. The three cohorts exhibit greater
324  separation at baseline when viewed through aLEC thickness than they exhibit when
325 viewed through pMEC thickness. Estimated aLEC thickness 95% confidence bands
326 maintain complete separation among cohorts throughout time, whereas estimated

327 pMEC thickness 95% confidence bands do not.

328

329 Figure 4 supplements these inferential results with a predictive analysis using ROC
330 curves to measure predictive content of aLEC and pMEC CTs with respect to MCI

331 (Figure 4a) and AD (Figure 4b) status. The aLEC curves are consistently above the
332 pMEC curves and yield higher AUCs, signifying greater predictive content at every

333 threshold of the continuous CT values. Both aLEC and pMEC AUCs outperform those
334  of subject age (MCI 0.47; AD 0.48) and total brain volume (MCI 0.47; AD 0.57).

335

336 EC cortical thickness and CSF AD pathology

337

338 Given the stronger associations between aLEC CT and clinical outcomes than between
339 pMEC thickness and the same, we ask whether a stronger link between aLEC thickness
340 and CSF AD pathology levels exists than between pMEC thickness and the same. This
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341 secondary analysis provides a basis for future research into physiological mechanisms
342 underlying aLEC CT and its clinical effects.

343

344  We look at the longitudinal progressions of aLEC and pMEC thicknesses as a function
345  of the binary threshold given by the ratio of phosphorylated tau-181 (p-tau) to amyloid
346  beta (AR) being greater than 0.1 *7%°. These CSF data are available for a smaller 238
347  subject (70 healthy; 119 MCI; 49 AD) subset of the data used in the primary analyses.
348 Due to dearth of repeated measures for CSF levels, we consider only the first CSF

349 measurement for each individual and only include CT, CDRM and MMSE data collected
350 during visits occurring after this CSF measurement with one-month grace period.

351  Proportions of the ratio of p-tau to AR that are greater than 0.1 are 0.9 for the healthy
352 cohort, 0.97 for the MCI cohort and 1 for the AD cohort. We refer to these subjects as
353  being “p-tau/Al ratio-positive” or “amyloid ratio-positive”.

354

355 We model the linear associations between subregion CTs and ratio positivity and its
356 interaction with time from baseline (as measured by time of CSF measurement). The
357 bottom row of Figure 3 presents the estimated linear cross-sectional (left) and

358 longitudinal (right) associations along with 95% confidence intervals. Cross-sectionally,
359 we estimate that the population of individuals with amyloid ratio positivity has 0.11 mm
360 less aLEC CT than does the population of individuals who are amyloid ratio negative.
361 For perspective, 0.11 mm is more than the difference between baseline aLEC thickness
362 means of healthy control and MCI cohorts presented in Table 1.

363

364  Longitudinally, we estimate that the amyloid ratio-positive sample of individuals

365 experiences an additional loss of 0.025 mm aLEC CT per year compared to the loss
366 experienced by the amyloid ratio-negative sample. The additional loss in aLEC CT

367 experienced by the amyloid ratio-positive sample requires 4 years before the difference
368 between healthy and MCI cohorts is spanned. Due to the smaller sample size in this
369 analysis, the results require further research and should be regarded as preliminary.
370

371 Discussion

372

373  Given the wealth of research implicating the transentorhinal region'™, selective

374  vulnerability of the aLEC to age-related alterations in processing ° and structural

375 changes associated with age-related cognitive decline *°, we hypothesized that aLEC
376  structure, specifically CT, might provide a suitable biomarker for early AD detection. We
377 implemented a novel longitudinal CT pipeline on structural MRI data collected from the
378  ADNI-1 cohort and compared this data with MMSE and CDRM performance, diagnostic
379 cohort membership and CSF amyloid levels. Initial homogeneity analyses showed less
380 overlap between healthy control and AD cohorts as a function of aLEC CT than for

381 pMEC CT. We used LME models to analyze linear associations between these

382 quantities through time while controlling for within-subject correlations and confounders
383 such as age, sex, brain volume and APOE &4 genotype.

384

385 Primary analyses showed statistically and practically significant negative associations
386 between baseline aLEC thickness and progression of cognitive performance over time
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387 (Model 1). We also observed statistically and practically significant associations

388 between change in aLEC thickness and cognitive performance through time (Model 2).
389 Cross-sectional and longitudinal correlations between aLEC thickness and cognitive
390 performance were present for both MCI and AD cohorts. We also tested whether

391 trajectories of EC subregional CT through time differentiate by clinical diagnostic

392 grouping (Model 3). aLEC thickness maintained complete separation between 95%

393 confidence bands between healthy, MCI and AD cohorts while pMEC thickness did not.
394

395 Results indicate that the EC subregions could be differentially affected during early

396 stages of AD. This is consistent with histopathological studies, which have reported that
397 neurofibrillary tangles and neuropil threads show a distribution pattern that allow for

398  staging °. Initial stages show alterations confined to the transentorhinal region, which
399 includes the aLEC. These results contribute to growing evidence that the aLEC is

400 selectively vulnerable during early AD and also demonstrate that aLEC CT and changes
401 in thickness over time are sensitive to cognitive changes and serve as a viable

402  biomarker for prodromal AD.

403

404 In a secondary analysis, we analyzed the relationship between subregional CT and CSF
405 measures of amyloid and tau pathology. Clinical symptoms of Alzheimer’s disease are
406 preceded by a long preclinical phase in which pathological protein aggregation occurs in
407  the brain ®**. Additionally, AR plaques develop ~15-20 years before onset of cognitive
408 impairment and neurofibrillary tangles begin to accumulate at least 5 years before

409  symptom onset **. Previous studies have shown low CSF levels of AB strongly correlate
410  with increased plaque load in the brain, and that high concentrations of CSF p! itau

411  correlate with ADCspecific neurofibrillary pathology ****°. Furthermore, ptauis;-ABa ratio
412  (ptauisi/ABs2) has been shown to be a strong predictor of conversion from cognitively
413 normal to mild cognitive impairment over a 3~4 year period **-¢,

414

415  We found statistically and practically significant linear associations between the

416  binarized ratio p-tau/ AR >0.1 and aLEC CT and estimated that there are similar

417  differences in aLEC CT levels comparing the p-tau/ AR ratio-positive sample to the

418 ratio-negative sample as for the comparison between the MCI cohort and the healthy
419  cohort. Furthermore, the p-tau/ AR ratio-positive sample exhibits a statistically and

420  practically significant change in aLEC thickness over time, requiring an estimated 4

421  years to span the gap between healthy and MCI cohorts. This secondary analysis

422  suggests the presence of AD-specific neuropathology may mediate thinning of the

423 aLEC over time, but results require further investigation.

424

425  Overall, these results suggest that aLEC cortical thickness is a sensitive measure to
426  cognitive decline as well as to AD pathological stage. Considering the growing interest
427  in surrogate biomarkers that are sensitive and specific to AD especially during the early
428  stages, we suggest that aLEC thinning may be an early marker that may be associated
429  with cognitive decline especially in the memory domain and may serve as a mechanistic
430 link between pathological load and cognitive outcomes. Additional research should

431  focus on further understanding the function of aLEC and structural trajectories with

432 aging and disease. For example, the human aLEC appears is involved in tasks ranging
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433 from visual object pattern separation " to intra-item configural processing *’ to temporal
434  precision in real-world stimuli “®. Developing tasks that are specific and sensitive to

435 aLEC (dys)function could serve as an early predictor of cognitive decline. In the future,
436  these tasks can provide measures that can be used as neurobiologically-validated

437  outcomes for clinical trials in preclinical AD.

438
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Control (219) MCI (380) AD (176)
Baseline aLEC (mm) 2.19 (0.14) 2.11 (0.20) 1.97 (0.19)
Loss aLEC (%l/yr) 6.7x107* (2.6x107%)  1.1x107% (3.1x107%) 1.3x1072 (4.0x1072)
Baseline pMEC (mm) 1.89 (0.13) 1.85(0.15) 1.77 (0.16)
Loss pMEC (%l/yr) 1.4x1073 (2.2x107%)  5.2x107% (2.4x107%) 6.9x107% (3.0x1072)
Baseline MMSE 29.12 (0.97) 27 06 (1.78) 23.41 (2.04)
Loss MMSE (%/yr) 4.0 %10~ (4.8x10+7) 2.7 x107* (1.0x10°Y) 1.0 x10~* (1.8x10~%)
Baseline CDRM 0.00 (0.15) 0.57 (0. 19) 1.00 (0. 32)
Gain CDRM (%/yr) N/A 1.7 x107! (65.4x10°1) 2.5 x107! (5.6x1071)
Brain volume (mm?) 1.47x10° (1.39x10%)  1.50x10° (1.48x10°) 1.45x10° (1.62x10?)
Baseline age (yrs) 75.97 (5.06) 7493 (7.14) 75.01 (7.63)
APOE (% with (0, 1, 2) 4 alleles) (74, 24, 2) (47,42, 12) (33, 48, 1 )
Male (%) 54 64

Continuous variables present as mean (standard deviation)
aLEC: anterior lateral entorhinal cortex

pMEC: posterior medial entorhinal cortex

MMSE: mini-mental state exam

CDRM: clinical dementia rating—memory

APOE: apolipoprotein e4

624
625
626 Table 1. Outcomes, predictors, and confounding variables. For each continuous
627 variable, we show cohort means and standard deviations. For factors, we show the
628 percentage of the cohort in each level. Baseline variables are shown with their natural
629 scale, whereas change in these variables is shown using percentages to facilitate

630 comparison across variables.

631

632
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Figure 1. Scatterplots featuring anterolateral and posteromedial (aLEC and pMEC)
cortical thickness (CT) and age stratified by sex and diagnostic cohort. aLEC
thickness in males (a) and females (c) exhibits moderately less overlap between cohorts
than does pMEC thickness in males (b) and females (d). We quantify overlap between
healthy and AD cohorts using nearest neighbor misclassification rate as homogeneity
index.
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a
MMSE CDRM
Effect aLEC pMEC aLEC pMEC
AD CT, 0.44 (0.07, 0.82) 0.04 (-0.32, 0.40) | -0.059 (-0.114, -0.005) -0.030 (-0.083, 0.022)
CT, x months -0.02 (-0.07, 0.04) -0.01 (-0.06, 0.04) | -0.001 (-0.006, 0.004)  0.003 (-0.002, 0.008)
CT Std. % loss | -0.243 (-0.582, 0.097) | “0.332 (:0.655, -0.008) | 0.053 (0.014,0.091)  0.048 (0.006, 0.090)
MCI CT, 0.17 (-0.04, 0.39) -0.02 (-0.23, 0.18) | -0.033 (-0.055, -0.010) -0.038 (-0.059, -0.017)
CT, x months 0.03 (0.01, 0.05) 0.01 (-0.01, 0.03) | -0.004 (-0.008, -0.002)  -0.001 (-0.003, 0.001)
CT Std. % loss | -0.210 (-0.374, -0.046) 0.057 (-0.086, 0.200) 0.018 (0.001, 0.036) 0.006 (-0.010, 0.022)
b MCI cohort ¢ AD cohort
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Figure 2. Estimated linear associations and nominal 95% confidence intervals
between anterolateral and posteromedial entorhinal (aLEC and pMEC) cortical
thicknesses (CT) and MMSE or CDRM. (a) for AD and MCI cohorts, the first row
contains cross-sectional associations with baseline thickness (CTy) whereas the second
and third lines contain longitudinal associations. Cells for which intervals do not contain
zero are green. (b-c) Model 2’s adjusted linear associations between CDRM or MMSE
and aLEC or pMEC baseline thicknesses and percent change in thickness from
baseline. Baseline CT, percent gain CT, MMSE and CDRM are standardized. MMSE is
negated since high performance is a higher score for MMSE but lower for CDRM.
Associations are stronger for aLEC CT than for pMEC CT for both MCI (b) and AD (c),
exhibiting point estimates of greater scale as well as fewer confidence intervals

overlapping zero.
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664  Figure 3. Subregion cortical thickness (CT) progressions through time as

665 estimated using Model 3 along with 95% confidence bands. Model 3 accounts for
666 individual variations as well as confounding variables. (a-b) when viewed through aLEC
667 CT, the diagnostic cohorts exhibit statistically significant separation that persists through
668 the entire time of measurement. Such separation is not apparent in pMEC CT. (c-d)
669  secondary analysis on subset of ADNI-1 cohort comparing progressions for amyloid
670 ratio-positive (p-tau/Al3 >0.1) and ratio-negative cohorts shows qualitatively different
671 behavior between aLEC and posteromedial entorhinal (pbMEC) CT, suggesting a

672 possible role for CSF amyloid ratio in influencing aLEC but not pMEC CT trajectory.
673

674
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677 Figure 4. Receiver operating characteristic (ROC) curves for the prediction of MCI
678 status and AD status using aLEC and pMEC CT. (a) In predicting MCI status, the
679 aLEC curve dominates the respective pMEC curve and exhibits a larger area under the
680 curve (AUC 0.69 vs. 0.62). (b) In predicting AD status, the aLEC curve also dominates
681 the respective pMEC curve and exhibits a larger area under the curve (AUC 0.73 vs.
682 0.67). Both aLEC and pMEC AUCs outperform those of subject age (MCI 0.47; AD

683  0.48) and total brain volume (MCI 0.47; AD 0.57).

684
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690
691 Supplementary Materials

692
693 Supplementary Methods

694

695 S.1. The ADNI dataset

696

697 Data used in the preparation of this article were obtained from the ADNI database

698  (http://adni.loni.ucla.edu/). The ADNI was launched in 2003 by the National Institute on
699  Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
700 the Food and Drug Administration (FDA), private pharmaceutical companies and non-
701  profit organizations, as a $60 million, 5- year public-private partnership. The primary
702 goal of ADNI (PI: Michael Weiner, UCSF) has been to test whether serial magnetic
703 resonance imaging (MRI), positron emission tomography (PET), other biological

704  markers, and clinical and neuropsychological assessment can be combined to measure
705 the progression of MCI and early AD. Determination of sensitive and specific markers of
706  very early AD progression is intended to aid researchers and clinicians to develop new
707 treatments and monitor their effectiveness, as well as lessen the time and cost of

708  clinical trials.

709

710 ADNI is the result of efforts of many co-investigators from a broad range of academic
711  institutions and private corporations, and subjects have been recruited from over 50
712  sites across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults,
713 ages 55 to 90, to participate in the research, approximately 200 cognitively normal older
714  individuals to be followed for 3 years, 400 people with MCI to be followed for 3 years
715 and 200 people with early AD to be followed for 2 years. A detailed description of the
716  ADNI population, protocols and biomarkers is provided at http://adni.loni.ucla.edu/.

717

718 S.2. Subject selection

719

720  The ADNI general eligibility criteria are previously described *°. Normal controls (NC)
721 have a CDR of 0. Subjects with MCI have a subjective memory complaint, objective
722  memory loss measured by education-adjusted scores on Wechsler Memory Scale

723  Logical Memory Il, a CDR of 0.5, preserved activities of daily living, and absence of
724  dementia. Subjects with AD have a CDR of 0.5 or 1.0 and meet NINDS criteria for

725 probable AD. At the time of download, 300 individuals with MCI and 191 healthy

726  controls with baseline, 6 months, and 12-month follow-up data were available for

727  download and were used in the current study. We also randomly selected a sample of
728 49 AD patients with baseline scans for comparison and to define the parametric space
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729 of EC thickness. Demographics and baseline neuropsychological variables for all three
730 groups are shown in Table 1. Neuropsychological test data were not available for 4 AD
731  subjects.

732

733  S.3. MRI methods

734

735  Detailed methods of MRI acquisition are previously described *°. Only T1-weighted 3D
736 MP-RAGE scans were used in this report (acquisition parameters: FOV = 240 x 240;
737  matrix = 192 x 192; TR = 3000 ms; TI = 1000; flip angle = 8 degrees, slice thickness =
738 1.2 mm; sagittal orientation). All MPRAGE scans underwent quality control procedures,
739 N3 bias correction and were scaled for gradient drift using phantom data.

740

741  S.4. Inferential model building and variable selection

742

743  To moderate inflation of type 1 error, we design our statistical models from first

744  principles and prior to accessing the data. We select model responses and predictors of
745  interest based on our neuroscientific questions of interest. After this, we decide upon
746  the inclusion of additional covariates based on whether they might be confounders, i.e.,
747  variables that might influence both outcome and predictors of interest, or precision

748 variables, i.e., variables that influence outcome alone. Inclusion of confounders

749  decreases estimator bias and increases variance, leading to more conservative

750 intervals. Inclusion of precision variables tightens confidence intervals, increasing

751  certainty.

752

753  With these relationships in mind, we now discuss inclusion rationale. The first two

754  models regress cognitive indices over CT and functions of CT and time from baseline.
755  As such, we include months from baseline, clinical diagnosis, the number of APOE 24
756  alleles, sex, age and total brain volume as potential confounding variables — months
757  from baseline plausibly modulates CT and cognition scores; as a primary biomarker for
758  genetic predisposition, APOE allele count certainly associates with cognition and might
759  associate with CT; when combined with other subject descriptors, sex might modulate
760 cognitive performance and certainly modulates CT; age certainly modulates both; and
761  brain volume plausibly modulates both. For Model 3, similar logic applies by exchanging
762  clinical diagnosis for cognition scores. A difference is that we take months from baseline
763  to be a precision variable since CT changes with time but diagnosis remains constant
764  for the cohort we consider.

765

766  Importantly, we adjust for all but one potential confounder by inclusion in the regression
767 models as covariates, with the only exception being diagnostic status for Models 1 and
768 2. Since diagnostic differences plausibly modify the relationship between cortical

769 thickness and MMSE/CDRM in complicated, nonlinear ways, we instead stratify the
770 analysis by diagnosis, fitting the two models to the individual cohorts separately. Such
771  stratification increases model robustness but decreases power, here expressed as

772  wider, more conservative confidence intervals. Variables of all models appear in Table
773 Sl

774
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775 Supplementary Results

776

777  Statistical interpretations for Models 1 and 2

778

779  We provide statistical interpretations here as examples. Focusing on the upper left cell
780 of Figure 2 in which the association between baseline aLEC thickness and MMSE is
781 presented), the interpretation is that for every additional standard deviation in baseline
782  aLEC thickness, there is an estimated gain of 0.44 (95% CI: 0.07, 0.82) MMSE

783  expected for the AD subjects. For the result in which CDRM is modeled as a function of
784  the interaction between baseline aLEC cortical thickness and months from baseline
785  within MCI subjects, our interpretation is that for every additional standard deviation of
786  baseline aLEC thickness and for each additional month from baseline, there is an

787  estimated decrease of 0.004 (95% CI: 0.002, 0.006) in CDRM expected for MCI

788  subjects. Finally, for the estimated linear association between standardized percent loss
789 aLEC thickness and CDRM for the AD population, our interpretation is that for every
790 additional standard deviation of percent loss from baseline, there is an estimated

791 increase in CDRM of 0.053 (95% CI: 0.014, 0.091) expected for AD subjects.

792

793  Statistical interpretations for Model 3

794

795 Considering aLEC thickness as a function of AD group membership and its interaction
796  with time, it is estimated that when comparing the AD group to the healthy group, (1) the
797  AD group has 0.20 mm (95% CI: 0.16, 0.23) lower aLEC thickness expected, all other
798 covariates being held equal; and (2) the AD group has 0.02 mm (95% CI. 0.01, 0.04)
799 lower aLEC thickness expected for each additional year from baseline, all other

800 covariates being held equal. For the MCI group, estimated cross-sectional association
801 with aLEC thickness is half that of the AD population (0.9 mm; 95% CI: 0.06, 0.12), but
802 the estimated longitudinal association is roughly equal to that of the AD population (0.02
803 mm; 95% CI: 0.01, 0.02).

804

805
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Table S1. Linear mixed-effects models and their variables.

Model Variable type Variables

| Response MMSE or CDRM
Predictor of interest CT, and CT,xmonths for aLEC or pMEC
Potential confounders months, diagnosis, APOE, sex, age, brain volume
Precision variable -

Il Response MMSE or CDRM
Predictor of interest CT, and % loss CT for aLEC or pMEC
Potential confounders months, diagnosis, APOE, sex, age, brain volume
Precision variable —

I Response CT for aLEC or pMEC
Predictor of interest diagnosis (control, MCI, AD)
Potential confounder MMSE, APOE, sex, age, brain volume
Precision variable months

IV Response CT for aLEC or pMEC

Predictor of interest
Potential confounder
Precision variable

p-tau/As > 0.1
MMSE, APOE, sex, age, brain volume
months

CT: cortical thickness
CT,: cortical thickness at baseline

aLEC: anterior lateral entorhinal cortex
pPMEC: posterior medial entorhinal cortex
MMSE: mini-mental state exam
CDRM: clinical dementia rating—memaory
APOQOE: apolipoprotein ¢4
p-tau: phosphorylated tau-181
A3 amyloid beta 42
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815
816

817 Figure S1. Atlas labels for Subject S1 partitioning the EC/hippocampal cortical
818 complex. Each set of labels for the 17 subjects was manually placed in the space of the
819 subject’s T2-weighted image using the procedure specified in the text.

820

821
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Figure S2. Representative views of the two population-specific templates created
for this study. The ADNI-1 template was created from 52 cognitively normal subjects
selected from the ADNI-1 template while the UCI template was created from the 17 T1-
weighted images of the atlas set used for joint label fusion. These images constitute the
intermediate spaces for the pseudo-geodesic transform between the EC labels and the
T1-weighted images representing individual subject time points.
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831
832
Atlas labels/ T1 Yassa T1 ADNI-1 T1 Single-subject Individual
template Template template time point
833
834

835 Figure S3. lllustration of the set of transforms used to map the set of 17 atlas
836 labels to the T1 image of each individual time point. This pseudo-geodesic scheme
837 minimizes the total number of pair-wise registrations for this study while taking

838 advantage of the longitudinal aspect of the data. Tr and T~ denotes rigid and

839 diffeomorphic transforms, respectively.
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